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Introduction: Natural weed cover and a legume cover crop were examined to 
determine if they could impact soil fungal diversity as an indicator of soil quality 
in banana production.

Methods: Banana in Yunnan Province, China, was grown under three treatments: 
conventional tillage (bare soil), natural weed cover (primarily goosegrass (Eleusine 
indica (L.) Gaerth)), or a cover crop (Siratro (Macroptilium atropurpureum (DC.) 
Urb.)). Analysis of the soil fungal communities between 2017 and 2020 was done 
by Illumina Miseq high-throughput sequencing.

Results: Most significant effects were in the intercropping area for the treatments, 
whereas it was rarely observed in the furrow planted with banana. Based on the 
Shannon and Simpson diversity indices, soil fungal diversity in the intercropping 
area significantly decreased following planting banana in 2017 with all three 
treatments. However, both the Shannon and Simpson diversity indices showed 
that there were significant increases in fungal soil diversity in 2019 and 2020 
with natural weed cover or Siratro compared to bare soil. At the end of the 
experiment, significant increases in fungal genera with Siratro compared to bare 
soil were observed with Mortierella, Acremonium, Plectophaerella, Metarhizium 
and Acrocalymma, and significant decreases were observed with Fusicolla, 
Myrothecium, Exserohilum, Micropsalliota and Nigrospora. Siratro resulted in 
higher stability of the soil fungal microbiome by increasing the modularity and the 
proportion of negative co-occurrences compared to bare soil. For fungal guilds, 
Siratro significantly increased saprotrophs_symbiotrophs in 2019 and 2020 and 
significantly decreased pathogens_saprotrophs in 2020 compared to bare soil.

Discussion: Using Siratro as a cover crop in the intercropping area of banana 
helped maintain soil fungal diversity, which would be beneficial for soil health 
with more symbiotrophs and less pathogens in the soil. However, further research 
is needed to determine the long-term impact of weed or Siratro cover crop on 
the fungal soil ecosystem and growth of banana.
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1. Introduction

Banana (Musa spp.) is a perennial monocotyledonous plant with 
the nutrient-rich fruit, which is an important cash crop in tropical and 
subtropical regions worldwide (Bubici et  al., 2019). Conventional 
banana production in China can result in serious soil degradation, 
such as soil nutrient loss, acidification, compaction, salinization, and 
increased disease (Chen et  al., 2018) Nevertheless, soil is usually 
considered an important natural resource for maintaining the function 
and sustainability of terrestrial ecosystems, which is a living, dynamic 
and non-renewable resource on a human time scale (Evans et al., 
2022). Therefore, sustainability is becoming an urgent issue for agro-
ecosystems (Drost et  al., 2020), and maintaining beneficial soil 
properties to improve sustainability is a priority to ensure sustainable 
banana production in China and worldwide.

Soil physical and chemical properties are traditionally considered 
key elements of soil fertility, and are considered to be intrinsic and 
relatively static properties (Taboada et  al., 2011). However, soil 
biological properties are highly dynamic playing crucial roles in soil 
nutrient cycling and function (Jian et  al., 2020). For example, 
agricultural practices, such as deep tillage and high nitrogen 
fertilization, can negatively affect soil biology (Nivelle et al., 2016). 
Intensively managed mono-cropping can result in soil biodiversity 
losses dramatically reducing key soil functions (Tao et  al., 2022). 
Alternative farming practices provide a way to reduce the negative 
effects of agricultural production on soil. These include using 
conservation tillage, rotation, intercrops, fallow periods and cover 
crops (Serebrennikov et al., 2020).

Cover crops can help retain soil moisture and nutrients, improve 
soil quality, and enhance the soil productivity (Blanco-Canqui and 
Ruis, 2020). There have been a number of examples for its use in 
banana. For example, intercropping banana with a mixture of 
Alysicarpus ovalifolius, Brachiaria decumbens, Chamaecrista 
rotundifolia, Cynodon dactylon, Dichondra repens, Macroptilium 
atropurpureum, Neonotonia wightii, Paspalum notatum, Pueraria 
phaseoloides, and Stylosanthes spp. as a cover crop improved crop 
productivity and did not result in competition with banana for 
nitrogen (Tixier et al., 2011). Also, planting a mixture of Paspalum 
notatum, Neonotonia wightii, Pueraria phaseoloides, and Stylosanthes 
guyanensis as a cover crop increased yield of banana and reduced 
nematode damage (Djigal et al., 2012). Planting Canavalia ensiformis, 
Cajanus cajan, Crotalaria spp., Sorghum bicolor and Phaseolus lunatus 
as cover crops resulted in significant weed control in banana and 
increased yield (Ávila et al., 2020).

A common cover crop is Siratro, also known as purple bush-bean 
[Macroptilium atropurpureum (DC.) Urb.] (Chatterjee, 2021). It is a 
perennial climbing legume with dense vines that originated in tropical 
and subtropical regions of the Americas (Rojas-Sandoval, 2018). It can 
improve soil physical–chemical properties, such as soil pH and levels 
of calcium and magnesium (Espindola et al., 2005), and leaves large 
amounts of organic residues that can increase organic carbon, 
nitrogen and potassium levels (Macharia et al., 2011). Such changes 
can also indirectly affect soil microbial diversity. Examples of its use 
of a cover crop include planting Siratro to improve soil fertility and 
maize biomass production (Abayomi et al., 2001), and using it as a 
green manure for passion-fruit and rice (Werasopon et  al., 1998; 
Gama-Rodrigues et al., 2007). Examples of its use with banana include 
using it as a green manure to increase nutrients, particularly N, Ca and 

Mg (Espindola et al., 2006), and rotating it with banana to reduce 
plant-parasitic nematode damage (Risède et al., 2009).

Soil microbial diversity is considered to be a key parameter in 
evaluating soil health in agricultural ecosystems (Tahat et al., 2020). 
Microbial functional diversity as well depends on the diversity of the 
microbes present (van Capelle et  al., 2012). However, the 
biogeochemical processes affected by soil microorganisms are also 
highly sensitive to variation in environmental factors (Cycoń et al., 
2019). One way to increase soil microbial diversity is to increase plant 
diversity (Venter et al., 2016). This can be done with cover crops. For 
example, a cover crop of black medic resulted in higher alpha diversity 
in soil bacterial communities (Lupwayi et  al., 2018), a cover crop 
mixture of triticale, rye and common vetch resulted in higher soil 
fungal diversity (Schmidt et al., 2019). Increasing soil fungal diversity 
is important as soil fungi can benefit plants, such as by increasing 
phosphate availability (Barroso and Nahas, 2005), decaying organic 
matter to release nutrients (Argiroff et  al., 2022), degrading toxic 
compounds in soil (Chang et al., 2016), increasing antagonisms to 
pathogenic microbes (Miao et al., 2016) and improving soil structure 
by binding soil particles (Miller and Jastrow, 2000). Despite the 
benefits reported for cover crops in improving soil health and plant 
production, there is little work done on cover crops for such benefits 
in banana cropping systems.

In this study, a banana plantation was established in 2017 in a dry 
hot valley in southwestern China with the rows between the banana 
plants having either conventional tillage to maintain bare soil, a 
natural weed cover allowed to develop, or Siratro planted as a cover 
crop. The soil beneath the banana plants and between the plants was 
analyzed for fungal diversity, functional guilds and co-occurrence 
until 2020. The goal was to better understand how soil fungi respond 
to the cover crop to improve banana plant soil management.

2. Materials and methods

2.1. Site description

A site was chosen at the Science and Technology Demonstration 
Park of Institute of Tropical and Subtropical Cash Crops of 
Yunnan Academy of Agricultural Sciences, Lujiangba 
(N24°57′58′，E 98°53′14′) Baoshan, Yunnan, China. The climate 
type is dry-hot subtropical. Mean precipitation was approx. 
750 mm, mean annual pan evaporation was greater than 2,100 mm, 
mean annual temperature was 21.3°C, maximum temperature was 
40.4°C, minimum temperature was 0.2°C, annual accumulated 
temperature ≥ 10°C was 7,800°C, annual sunshine duration was 
2,333.7 h, altitude was 700 m, and relative humidity was 70%. The 
soil was sandy loam soil. The soil physio-chemical parameters were 
pH 6.71, organic matter 11.36 g kg−1, alkaline nitrogen 57.84 mg kg−1, 
available phosphorus 28.50 mg kg−1 and available potassium 
95.86 mg kg−1.

2.2. Plot design, treatments, and soil 
sampling

A randomized complete block factorial design was established in 
2017 with four replications with each plot was 135 m2 with 35 banana 
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plants (cv. Yunjiao No. 1). The treatments were conventional tillage 
with bare soil (CT), natural weed cover that was mainly goosegrass, 
Eleusine indica (WC) and Siratro cover (SC). Each plot contained 
3.5 m and 1.5 m rows defined as the intercropping area and furrow, 
respectively (Figure 1). Banana seedlings were planted 26 July 2017 in 
the furrows, and the CT, WC and SC treatments were applied to the 
intercropping area. CT treatment was sprayed with herbicide monthly 
to remove weeds, WC treatment allowed weeds to grow into the 
intercropping area, except for 30 cm from the banana seedlings in year 
one to avoid shading of the banana plants, and SC treatment was 
M. atropurpureum planted in 2017 at a density of 22.5 kg hm−2 to 
provide more than 60% plant coverage of the intercropping area. A 
micro-sprinkler irrigation system was used to apply water in the 
furrows once a week in the dry season (October to May) as well as 
several times as needed in rainy transition season (August and 
September). No irrigation was done in the rainy season (June to July), 
and there was no irrigation of the intercropping area. Fertilizer (40% 
urea, 40% compound (N: P: K = 15: 15: 15) and 20% potash) was 
applied twice a month at 1.5 kg per plant per year, and there was no 
fertilization of the intercropping area.

To collect soil for DNA analysis, soil was sampled from five 
random locations in each plot using a manual soil auger to the depth 
of the tilled layer (30 cm) in July, which was the time of planting 
banana in 2017 and the period of fastest growth of the cover crop 
during the warm late rainy season each year until 2020. Soil from the 
five locations per plot were combined to form one sample per plot. The 
soil was sieved (≤2 mm), and approximately 20 g of soil was stored at 
−80°C for DNA extraction.

2.3. DNA extraction and sequencing

Total genomic DNA was extracted from each sample using the 
OMEGA Soil DNA Kit (D5625-01) (Omega Bio-Tek, Norcross, GA, 
United States), following the manufacturer’s instructions, and stored 
at-20°C. The quantity and quality of the DNAs were measured using 
a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, 

Waltham, MA, United States) and agarose gel electrophoresis. The 
concentration of DNA, OD 260/280 ratio, OD260/230 and the 
number of analyzed sequences of each sample are presented in 
Supplementary Table S1, and the number of total NGS reads, quality 
filtered reads, read length and SE/PE reads per sample are given in 
Supplementary Table S2.

PCR amplification of the fungal ITS1 region was performed using 
the forward primer ITS5F (5′- GGAAGTAAAAGTCGTAACAAGG-3′) 
and the reverse primer ITS1R (5′- GCTGCGTTCTTCATCGATGC-3′). 
Sample-specific 7-bp barcodes were incorporated into the primers for 
multiplex sequencing. The PCRs contained 5 μL Q5 reaction buffer 
(5×), 5 μL Q5 HighFidelity GC buffer (5×), 0.25 μL Q5 High-Fidelity 
DNA Polymerase (5 U/μL), (2 μL 2.5 mM) dNTPs, 1 μL each 10 μM 
ITS5F and ITS1R primers, 2 μL DNA template, and 8.75 μL 
ddH2O. Thermal cycling consisted of initial cycle of 98°C for 2 min, 
followed by 25 cycles of 98°C for 15 s, 55°C for 30 s, and 72°C for 30 s, 
with a final cycle of 5 min at 72°C. PCR amplicons were purified with 
Agencourt AMPure Beads (Beckman Coulter, Indianapolis, IN, 
United States) and quantified using the PicoGreen dsDNA Assay Kit 
(Invitrogen, Carlsbad, CA, United  States). Paired-end 300 bp 
sequencing was performed using the Illlumina MiSeq platform with 
MiSeq Reagent Kit v3 (Shanghai Personal Biotechnology Co., 
Shanghai, China). The sequence data for all samples were deposited at 
NCBI, accession number PRJNA894310.

2.4. Sequence analysis

Microbiome analysis was performed with QIIME21 with slight 
modifications. Briefly, raw sequence data were demultiplexed using 
the demux plugin followed by primer removal with the cutadapt 
plugin (Magoč and Salzberg, 2011). Sequences were then quality 
filtered, denoised, merged and chimeras removed using the DADA2 
plugin (Callahan et  al., 2016). Non-singleton amplicon sequence 
variants (ASVs) were aligned with mafft (Katoh et al., 2002), and trees 
were constructed with fasttree2 (Price et al., 2009). Taxonomy was 
assigned to ASVs using the classify-sklearn naïve Bayes taxonomy 
classifier in the feature-classifier plugin (Bokulich et al., 2018) against 
the UNITE Release 8.0 Database.

2.5. Statistical analysis

All analysis was done with R 4.1.2.2 Alpha diversity indices were 
calculated by analyzing Chao1 richness and Shannon diversity in the 
Vegan package in R (Oksanen et al., 2013). β-diversity and construction 
of non-metric multidimensional scaling (NMDS) plots were also 
performed in the Vegan package in R. Normalized ASVs were analyzed 
using Bray Curtis metrics (Bray and Curtis, 1957). Bray-Curtis distance 
matrices were subjected to multivariate analysis of variance 
(PERMANOVA) (Anderson, 2001) to compare fungal community 
composition and abundance using the Adonis function with a 
permutation number of 999  in the Vegan package in R. Linear 

1 https://docs.qiime2.org/2019.4

2 https://cran.microsoft.com/snapshot/2022-02-11/bin/windows/base/

FIGURE 1

Diagram showing the 3.5 m intercropping area and 1.5 m furrow 
containing the banana plants within an individual plot.
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discriminant analysis (LDA) effect size (LEfSe) was used to compare 
taxonomic features between groups by the Python LEfSe package in R 
with an LDA threshold of 2.0 and an alpha value of 0.05. A heatmap was 
constructed for the statistically dominant genus (LDA p < 0.05) using 
the ‘heatmaply’ package in R (Galili et al., 2018). Fungal ASVs were 
assigned into functional guilds using the online application FUNGuild3 
(Nguyen et al., 2016). Co-occurrence patterns were reconstructed by 
Hmisc package in R and Gephi 0.9.2, A co-occurrence was considered 
to be robust if the Spearman’s correlation coefficient (r) was >0.80 and 
p < 0.05. Network stability was measured by the proportion of negative 
or positive correlations and the modularity (Gao et al., 2021).

3. Results

3.1. Soil fungal diversity and richness

For the intercropping area with CT treatment, the Chao1 diversity 
index of soil fungi showed significantly less diversity after planting in 
2020 compared to before planting in 2017, and the Shannon diversity 
index showed lower diversity in 2018 and 2020 compared to 2017 
(Figure 2A). With WC treatment, there was significantly less diversity 
compared to 2017 in 2018 and 2019 with the Chao1 index and 2018 
with the Shannon index. With SC treatment, there was only a 
significant difference in diversity between 2017 and 2020 with the 
Shannon index. Thus, soil fungal diversity in the intercropping area 
was generally least reduced with the SC treatment and most reduced 
with the CT treatment. A comparison between years showed that no 

3 http://www.stbates.org/guilds/app.php

treatment resulted in significant differences in soil fungal diversity in 
the intercropping areas (Supplementary Figure S1).

In the furrow area of the CT plots, there was a significant decrease 
in diversity between pre-planting in 2017 and post planting in 2019 
and 2020 detected with both indices (Figure 2B). In the furrow area of 
the WC and SC plots, both indices showed that diversity significantly 
decreased detected in all years after planting compared to pre-planting 
Thus, soil fungal diversity was always detected to be reduced after 
planting, except for 2018 in the furrow with CT treatment. It appears 
that the treatments were less effective in maintaining fungal soil 
diversity in the furrow where the banana plants were located than in 
the intercropping area. Similar to the intercropping area, no treatment 
resulted in significant differences in soil fungal diversity between years 
in the furrow area (Supplementary Figure S1).

3.2. Soil fungal community composition

Analysis of the soil fungal community composition by NMDS 
(Figure  3A) and PERMANOVA (Figure  3B) showed that it was 
significantly affected in the intercropping area by year primarily in 
2019 and 2020 for all treatment comparisons. In the furrow area, soil 
fungal community composition by NMDS (Figure  3C) and 
PERMANOVA (Figure 3D) was significantly affected only in 2020 for 
the CT-SC and WC-SC treatment comparisons. Figure  3A shows 
clustering but the separation of the clusters is much less than the 
intercropping area in Figure 3C. While we mostly focused on the 
intercropping area with the treatments, but the furrows were 
somewhat affected by the same management. While PERMANOVA 
analysis showed significant effects of the treatments on soil fungal 
community in both the intercropping area and furrow. These results 
indicate that both areas were affected by year and treatment, but more 

A

B

FIGURE 2

Chao1 and Shannon soil fungal diversity indices over years with conventional tillage (CT), weed cover (WC), and Siratro cover (SC) treatments in the 
intercropping area (A), and furrow (B). *, **, *** indicates p ≤ 0.05, 0.01, and 0.001, respectively.
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significant differences were observed by treatment for the 
intercropping area, which is where the treatments were applied. 
Consistent with this is that the SC treatment thus appeared to have 
earlier effects on soil fungal community composition in the 
intercropping area than the furrow (Supplementary Figure S2).

3.3. Dominant soil fungal groups

At the fungal family level, there were significant differences in 
relative abundance between treatments using Lefse analysis in the 
intercropping area in 2019 and 2020 (Figures 4A,B). The number of 
families with the highest relative abundance remained at two in 2019 
and 2020 with CT treatment, whereas it increased from three to four 
with the WC treatment and two to five with the SC treatment. The 
change over time in the number of highest abundant fungal families 
was mostly but not entirely due to the new families being included. 
There were also significant differences in relative abundance between 
treatments in the furrow in 2020 (Figure 4C). Unlike the intercropping 
area, however, most of the families with highest relative abundance in 
2020 were with the CT treatment in the furrow. The only shared fungal 
family in this analysis between the intercropping area and furrow in 
2020 was the Clavicipitaceae with the SC treatment.

At the end of the experiment in 2020, significant differences 
between treatments were observed among the 30 most abundant 
genera in the intercropping area (Supplementary Table S3). For SC 
compared to CT treatment, there were significantly higher levels of 
Mortierella, Acremonium, Plectophaerella, Metarhizium and 
Acrocalymma, but significantly lower levels of Fusicolla, Myrothecium, 
Exserohilum, Micropsalliota and Nigrospora. For SC compared to WC 

treatment, significantly higher levels of Mortierella, Acremonium, 
Plectosphaerella and Acrocalymma, but significantly lower levels of 
Fusicolla, Myrothecium, Micropsalliota, Nigrospora, Pyrenochaetopsis, 
Corynascella, Poaceascoma, and Dokmaia, were observed. For WC 
compared to the CT treatment, there were significantly higher levels 
of Fusicolla, Metarhizium, Micropsalliota, Nigrospora and Dokmaia, 
but significantly lower levels of Trechispora and Mycosphaerella.

At the end of the experiment in 2020, significant differences were 
also observed between treatments among the 30 most abundant 
genera in the furrow (Supplementary Table S4). There were 
significantly higher levels of Trechispora and significantly lower levels 
of Acrocalymma, Micropsalliota, Fusicolla, Nigrospora and Metarhizium 
with SC compared to CT treatment, and there were significantly 
higher levels of Trechispora and significantly lower levels of Fusicolla 
and Metarhizium with SC compared to WC treatment. For WC 
compared to CT treatment, significantly higher levels of Micropsalliota 
and Fusicolla were observed, but no genera significantly were observed 
with lower levels.

3.4. FUNguild functional prediction

Significant differences in functional prediction using FUNguild 
were observed due to treatments in intercropping area in 2018, 2019, 
and 2020 (Figures 5A–C). Compared to CT treatment, SC treatment 
resulted in significantly higher saprotroph_symbiotroph guild in 2019 
and 2020, and significantly lower pathotroph_saprotroph guild in 
2020. There was also significantly higher pathogen_saprotroph_
symbiotroph guild with SC compared to WC treatment in 2020. The 
only significant difference between treatments in the furrow was for a 

A B

C D

FIGURE 3

Soil fungal community composition variation over years with conventional tillage (CT), weed cover (WC), and Siratro cover (SC) treatments. NMDS and 
PERMANOVA analysis of the intercropping area (A,B, respectively), and furrow (C,D, respectively). *Indicates significance at p ≤ 0.05, and ns indicates not 
significant.
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significantly lower unknown guild with SC treatment in 2018, 2019, 
and 2020 (Supplementary Figures S3A–C).

3.5. Co-occurrence network analysis

PERMANOVA analysis of soil fungal community members with 
a relative abundance above 0.1% revealed significant differences 
between treatments in the intercropping area in 2019 and 2020, 
showing that the data from those years were suitable for the 
co-occurrence network analysis (Supplementary Table S3). SC 
treatment resulted in a higher stability of the soil fungal community 
with a modularity index of 2.00 compared to 1.47 and 1.51 for CT 
or WC treatments, respectively (Figure 6A). Based on edge analysis, 
the number of positive co-occurrences was 170, 191, and 158 for CT, 
WC and SC treatments, respectively, whereas the number of negative 
co-occurrences was 73, 93, and 94 for CT, WC, and SC treatments, 
respectively (Figure 6B). Thus, WC treatment had the most positive 
co-occurrences, and SC treatment had the most negative 
co-occurrences among the treatments. There were no significant 
differences in the degrees of the soil fungal community among the 

treatments indicating no significant differences in soil fungal 
community complexity (Figure 6C). PERMANOVA analysis of soil 
fungal community with a relative abundance more than 0.1% 
revealed no significant differences between treatments in 2018, 2019, 
and 2020 (Supplementary Table S5). Thus, that data in the furrow 
area was not suitable for the co-occurrence network analysis.

4. Discussion

Perennial cover crops are often used to improve soil properties of 
tropical fruit crops, even without the need to plow and incorporate the 
cover crop into the soil (Wei et al., 2021; Freidenreich et al., 2022). 
However, they are more difficult to use in banana cropping systems 
compared to other tropical fruits, as banana leaves create a large 
amount of shade limiting the growth of most cover crops. In addition, 
many banana producers, such as those in Yunnan province in China, 
do not use cover crops as they believe that cover crops would compete 
with banana for water and fertilizer. However, the lack of cover crops 
has contributed to banana soil degradation and possibly to higher 
levels of root diseases, such as banana Fusarium wilt disease (Shen 

A

B

C

FIGURE 4

LDA score distribution at the fungal family level for conventional tillage (CT), weed cover (WC), and Siratro cover (SC) treatments in the intercropping 
area in 2019 (A), 2020 (B) and the furrow in 2020 (C).
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et al., 2018; Hong et al., 2020). One benefit of cover crops is to increase 
soil fungal diversity and stability with crops, such as an alfalfa cover 
crop in apple orchards (Wang et al., 2022) and barley or vetch cover 
crops in sunflower or maize fields (García-González et al., 2016). Soil 
fungi are sensitive to the environmental factors, such as soil moisture, 
pH, temperature and organic matter, all of which can be affected by 
cover crops (Hamman et al., 2007; Wang et al., 2014).

While Siartro has been widely studied as a cover crop with a wide 
variety of crops worldwide including banana (Werasopon et al., 1998; 
Abayomi et al., 2001; Espindola et al., 2006; Gama-Rodrigues et al., 
2007; Risède et al., 2009), it has been studied in China much less often, 
but with reports showing benefits in orange and mango orchards (Li 
et al., 1996; Dong et al., 2016). As this study was too short to determine 
effects on banana yield, the impact of the Siartro cover crop was 
assessed by examining the soil fungal microbiome over 3 years 
comparing it to conventional tillage where there was bare soil, which 
is the most common current practice in Yunnan province, or allowing 
weeds to naturally invade, primarily goosegrass, which is also often 
observed in banana plantations in that region.

In the intercropping area, the Siratro cover crop treatment resulted 
in a generally much less reduced soil fungal diversity and richness 
after planting banana compared to conventional tillage or a natural 
weed cover. In the furrow, however, soil fungal diversity and richness 
showed a decreasing trend with all treatments, including Siratro, 
compared to soil before banana was planted. Soil fungal community 
composition was also more rapidly affected by treatments in the 
intercropping area than in the furrow. The greater effect of Siratro 
cover crop where it was grown in the intercropping area compared to 
the adjacent furrow could be  due to the localized nature of the 
rhizosphere effect where nutrients and other compounds are released 
in root exudates affecting microbes in the adjacent soil (Dotaniya and 
Meena, 2015). The rhizosphere likely was the dominant effect as the 
Siratro cover crop in this study was perennial and not incorporated 
into the soil resulting in plant residues being limited to senescent 
tissues. Legume root exudates contain nutrients, such as organic acids, 
flavonoids, and fatty acids, and signaling molecules, such as flavonoids 
and strigolactones, that affect soil fungi (Sugiyama and Yazaki, 2012). 
In contrast, the furrow had no Siratro planted and had virtually no 
naturally occurring weeds due to shading by the banana leaves, and 
thus soil fungi would be affected only by the rhizosphere effect from 
the banana roots.

Among two different cover plants in this study, Siratro showed a 
greater effect in the intercropping area than the naturally occurring 
goosegrass. Goosegrass is a highly invasive weed that creates 
significant competition to crops, negatively affecting crop yields, such 
as in cotton and maize (Rambakudzibga et al., 2002; Wu et al., 2015). 
It can also increase diseases by acting as an alternative host for 
pathogens, such as for the Fusarium wilt fungus of banana 
(Catambacan and Cumagun, 2022). However, goosegrass will still 
affect the soil microbiome through its rhizosphere effect, which can 
have beneficial impacts on soil microbes, such as increasing bacterial 
populations for bioremediation (Lu et al., 2010). Goosegrass belongs 
to the Poaceae and is an aggressively reseeding annual, while Siratro 
belongs to the Fabaceae and is a perennial. In addition to belonging 
to different plant families with different root exudate compositions 
and interactions with soil microbes, Siratro would thus be affecting 
the soil microbiome throughout the year, while goosegrass would die 
in the winter time, thus affecting the soil microbiome less via root 
exudates compared to Siratro and more via tissue decay. Goosegrass 
is not used as a cover crop, likely because of its aggressiveness, whereas 
Siratro has often been shown to be a desirable cover crop providing 
benefits to soil quality (Kocira et al., 2020), soil nitrogen (Virk et al., 
2022) and soil microbial populations (Cattelan and Vidor, 1990).

Among the 30 most abundant fungal genera in the intercropping 
area, 23 would be considered saprotrophs, whereas Acremonium and 
Trichoderma would be considered symbiotrophs, Metarhizium would 
be considered an insect pathotroph, and Exserohilum, Aspergillus, 
Plectosphaerella and Mycosphaerella would be  considered plant 
pathotrophs. The Siratro cover crop resulted in higher saprotroph_
symbiotroph and lower pathotroph_saprotroph guilds compared to 
conventional tillage. In contrast, goosegrass weed cover resulted in 
only lower fungi in the unknown guild compared to conventional 
tillage. Among 30 most abundant fungal genera in the intercropping 
area, 5 genera were significantly increased with Siratro cover crop 
compared to conventional tillage, including Acremonium that could 
be contributing to the increase in saprotrophs_symbiotrophs. Also 
among those, 5 genera were significantly decreased with Siratro 

A

B

C

FIGURE 5

Funguild predictions of functional fungal guild ASV richness of the 
conventional tillage (CT), weed cover (WC) and Siratro cover (SC) 
treatments in the intercropping area in 2018 (A), 2019 (B) and 2020 
(C). Means within the same year followed by the same letters are not 
significantly different at p = 0.05 according to a protected LSD test.
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relative to conventional tillage, and Mortierella, Acrocalymma, 
Myrothecium and Exserohilum could be contributing to the decrease 
in pathotrophs_saprotrophs. However, less abundant fungal genera 
would also have an impact. Some other examples where cover crops 
affected the abundance of soil fungal guilds are Wei et al. (2021) where 
grass cover crops increased pathotrophs and decreased saprotrophs, 
Benitez et  al. (2016) where legume cover crops increased 
symbiotrophs, and Aiyer et al. (2022) where a sorghum–sudangrass 
cover crop decreased pathotrophs and increased symbiotrophs while 
an alfalfa cover crop increased pathotrophs. Thus, the effect of cover 
crops on soil fungal guilds appears to highly dependent upon the type 
of plant used. However, the use of the FUNGuild database in this and 
other studies has limitations as the existing literature on soil fungi is 
also limited with the functions of approx. 60% of soil fungi yet to 
be determined (Nguyen et al., 2016).

Among the 30 most abundant genera in the intercropping area, the 
Siratro cover crop significantly increased Mortierella, Acremonium, 
Plectophaerella, Metarhizium and Acrocalymma numbers relative to 
conventional tillage, which could impact banana production. Increased 
levels of Mortierella spp. could benefit banana, such as Mortierella 
capitata that increased available phosphorus and mycorrhizal 
populations with maize (Li et al., 2020) and Mortierella elongata that 
increased Populus biomass (Zhang et al., 2020). Increased levels of 
Acremonium spp. could benefit banana as many species can enhance 
plant insect resistance (Breen, 1994) and plant stress resistance, such as 
drought (Siegel, 1993). However, increased levels of Plectophaerella 

spp. might be harmful, such as Plectosphaerella cucumeria that causes 
root rot of banana (Kanakala and Singh, 2013). Increased levels of 
Metarhizium spp. might benefit banana as three entomopathogenic 
Metarhizium spp. increased maize yields by colonizing roots allowing 
seedlings to establish earlier (Liao et al., 2014). Increased levels of 
Acrocalymma spp. might also benefit banana as Acrocalymma vagum 
promoted growth of liquorice plants (He et al., 2019).

Compared to conventional tillage, the Siratro cover crop 
significantly decreased Fusicolla, Myrothecium, Exserohilum, 
Micropsalliota and Nigrospora in the 30 most abundant genera in the 
intercropping area. Decreased levels of Fusicolla spp. could 
be unfavorable for banana as Fusicolla violacea was shown to have 
suppressive activity against many fungal phytopathogens and a 
biocontrol agent of soft rot of kiwifruit (Li et al., 2021). Decreased 
levels of Myrothecium spp. could benefical as various Myrothecium 
spp. are broad host range foliar plant pathogens (Quezado Duval et al., 
2010) Decreased levels of Exserohilum spp., could also be favorable for 
banana as Exserohilum rostratum causes banana leaf spot in China 
(Lin et al., 2011). However decreased levels of Nigrospora spp. might 
not be beneficial as Nigrospora spp. are important for leaf decay fungi 
acting as primary colonists of fallen banana leaves (Meredith, 1962). 
Decreased levels of Micropsalliota spp. could also be negative as is it a 
common a saprotrophic basidiomycete (Hussain et al., 2022), which 
could be  involved in the decomposition of banana crop residues. 
However, potential positive or negative effects on banana are not 
conclusive until analysis can be done at the fungal species level.

A

B C

FIGURE 6

Co-occurrence networks with the conventional tillage (CT), weed cover (WC) and Siratro cover (SC) treatments in intercropping area. Modularity index 
and co-occurrence networks at the fungal phylum level in 2019 and 2020 (A). Number of positive and negative edges of two co-occurrences (B). 
Degrees of co-occurrences (C).
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Based on the co-occurrence network analysis, the Siratro cover 
crop resulted in a higher stability of the soil fungal community 
compared to the other treatments. It was also notable for the lowest 
number of positive co-occurrences among the treatments but had a 
similar number of negative co-occurrences as that with goosegrass, 
which was higher than with conventional tillage. Higher stability of 
the soil fungi could be  considered a positive effect for banana 
production as ecosystem stability and fungal plant pathogens are 
negatively correlated (Liu et al., 2022). A lower number of positive 
co-occurrences indicates reduced cooperative relationships, and a 
higher number of negative co-occurrences indicates increased levels 
of competition and antagonism (Coyte et al., 2015). One possibility is 
that this is a reflection of the rhizosphere effect with a cover crop 
compared to no rhizosphere effect with conventional tillage. However, 
there were no significant differences in soil fungal community 
complexity between treatments, which indicates that changes in soil 
fungi due to Siratro, goosegrass or conventional tillage reflected shifts 
in the soil fungal community rather than adding new fungal 
genera to it.

A major problem with cover crops in banana plantations is that 
banana leaves can greatly inhibit the cover crop due to shading. In this 
study, an intercropping area was created, which would be considered 
wider than the standard cropping method for commercial bananas. 
This permitted the Siartro cover crop to have less shading from the 
banana, at least in the first few years of growth. While the intercropping 
area is wider than in typical commercial production, it still resulted in 
sufficient banana planting density. Another benefit of a relatively wide 
intercropping area was that it allowed for mechanized tillage in the 
intercropping area. Soil fungal diversity showed that changes differed 
over the years of the study depending upon whether Siratro, 
goosegrass or bare soil was present in the intercropping area. Further 
work is needed to determine which of those changes might 
be  beneficial such as by decreasing pathogens and increasing 
symbionts, harmful such as by decreasing plant debris decay, or have 
no significant impact on banana production. However, there were no 
significant differences in soil fungal diversity in the intercropping area 
between the treatments in any particular year. Schmidt et al. (2019) 
reported that a mixture of cover crops including triticale, rye and 
common vetch significantly increased fungal community diversity in 
tomato-cotton rotations over 14 years. Also, soil fungal diversity was 
significantly increased with an alfalfa cover crop over 5 years in apple 
orchards (Wang et al., 2022). Thus, it may take more years to observe 
changes in soil fungal diversity than was used in this study. As well, it 
will take more years to observe if the treatments altered banana yield 
and quality. Despite this, this study shows that the combination of 
wide intercropping area with a Siartro cover crop does have an impact 
on soil fungi and shows potential to improve banana production.

5. Conclusion

In this study, a Siratro cover crop in the intercropping area of 
banana helped maintain the diversity of the soil fungal community, 
unlike bare soil. This correlated with higher saprotrophs-symbiotrophs 
and lower pathotrophs-saprotrophs compared to bare soil. This could 
benefit banana growth by increasing the potential for beneficial fungi 
forming mutualistic interactions with roots and reducing the potential 
for plant pathogenic fungi to damage roots. This would be beneficial 

for banana soil health. Based on this study, it appears that 
intercropping with Siratro could be a simple technique to maintain a 
soil supporting sustainable banana production. However, future work 
is needed to extend the study to understand the impacts on banana 
yield and quality as well as the occurrence of root diseases.
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