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The housecleaning enzyme of Mycobacterium tuberculosis (Mtb), MazG, 
is a nucleoside triphosphate pyrophosphohydrolase (NTP-PPase) and can 
hydrolyze all canonical or non-canonical NTPs into NMPs and pyrophosphate. 
The Mycobacterium tuberculosis MazG (Mtb-MazG) contributes to antibiotic 
resistance in response to oxidative or nitrosative stress under dormancy, making 
it a promising target for treating TB in latent infection patients. However, the 
structural basis of Mtb-MazG is not clear. Here we describe the crystal structure 
of Mtb-MazG (1–185) at 2.7 Å resolution, composed of two similar folded spherical 
domains in tandem. Unlike other all-α NTP pyrophosphatases, Mtb-MazG has 
an N-terminal extra region composed of three α-helices and five β-strands. 
The second domain is global, with five α-helices located in the N-terminal 
domain. Gel-filtration assay and SAXS analysis show that Mtb-MazG forms an 
enzyme-active dimer in solution. In addition, the metal ion Mg2+ is bound with 
four negative-charged residues Glu119, Glu122, Glu138, and Asp141. Different 
truncations and site-directed mutagenesis revealed that the full-length dimeric 
form and the metal ion Mg2+ are indispensable for the catalytic activity of Mtb-
MazG. Thus, our work provides new insights into understanding the molecular 
basis of Mtb-MazG.
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Introduction

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the infectious 
killers globally that accounts for about 1.4 million deaths worldwide each year (Dartois and 
Rubin, 2022; Yang et al., 2022). Introducing the Mycobacterium bovis bacille Calmette-Guérin 
(BCG) vaccine in newborn babies has dramatically decreased the threat of Mtb (Lange et al., 
2022). However, BCG is less effective for preventing pulmonary tuberculosis in adults and may 
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have side effects in the immunocompromised hosts (Furin et  al., 
2019). In addition, Mtb can evade the host immune system in a 
dormant way in latently infected patients, making the antibacterial 
drug development challenging (de Wet et al., 2019). Therefore, it is 
particularly important to understand the molecular events of growth 
control and metabolic adaptation of non-growing Mtb for developing 
new therapeutic strategies.

Cellular metabolism is precisely regulated by various 
housecleaning enzymes, especially the NTP pyrophosphatases, which 
hydrolyze wasted compounds into cellular metabolites, therefore 
preventing the non-canonical NTPs-triggered mutagenesis and DNA 
damage (Gad et  al., 2014; Fan et  al., 2018). Housecleaning NTP 
pyrophosphatases include four structural superfamilies: trimeric 
dUTPase, ITPase (Maf/HAM1), Nudix-box containing hydrolases, 
and all-α NTP pyrophosphatases (Galperin et al., 2006). In addition, 
structure-based analysis reveals that the all-α NTP pyrophosphatases 
include the dimeric dUTPase, the phosphoribosyl-ATP 
pyrophosphatase HisE, and the NTP pyrophosphatase MazG (Moroz 
et al., 2005). All the enzymes specifically target non-canonical NTPs, 
including 5-OH-dCTP, dUTP, dITP, 2-oxo-dATP, and 8-oxo-dGTP, 
with high affinities (Galperin et  al., 2006; Lu et  al., 2010; Lyu 
et al., 2013).

MazG, identified initially as a downstream gene of the toxin-
antitoxin complex MazEF in E. coli, exists in different bacteria and 
many phages (Zhang and Inouye, 2002; Huang et al., 2021). Previous 
studies showed that Mtb-MazG is able to hydrolyze all canonical (d)
NTPs and 8-oxo-dGTP (Lu et  al., 2010). Furthermore, MazG 
eliminates 5-OH-dCTP and regulates pyrimidine metabolism, 
safeguarding the genetic stability of Mtb during oxidative stress 
conditions (Lyu et al., 2013). On the other way, MazG is required for 
the persistence of Mtb during chronic infection of mice and 
contributes to antibiotic tolerance of stationary-phase culture and 
intracellular Mtb (Shi et al., 2019). Currently, the structures of MazG 
from Bacillus anthracis, E. coli, and Deinococcus radiodurans reveal a 
quite similar dimeric or tetrameric all-α-helical architecture (Lee 
et al., 2008; Goncalves et al., 2011; Kim and Hong, 2016). However, 
Mtb-MazG shows not only a certain extent of sequence similarity with 
bacterial homologs, but also has one extra region at the N-terminal 
domain, which may contribute to the antibacterial resistance in the 
dormant stage.

Here, we  report the crystal structure of MazG (1–185) from 
M. tuberculosis at 2.7 Å resolution, forming a dimer through the 
interaction of two repeated MazG-like domains. Structural alignment 
and mutation studies revealed that the magnesium-ion-binding sites 
and full-length dimeric protein are necessary for the catalytic activity 
of MazG. The structural basis of MazG might provide insights into 
understanding the diverse functions of MazG in dormant Mtb.

Results

The purification and crystallization of 
Mtb-MazG

To reveal the structure of Mtb-MazG, we expressed the 6xHis-MazG 
fusion protein in Escherichia coli BL21(DE3) cells and further purified 
with different chromatographies as previously described (Zhan et al., 
2022). The purified Mtb-MazG came out at the peak of ~71 mL on a 

Superdex200 16/600 column, corresponding with a molecular weight of 
~75 kD. As the theoretical molecular weight of Mtb-MazG is 35 kD, it 
showed that MazG was a dimer in solution (Figures  1A,B). Next, 
we screened more than 1,000 crystallizing conditions for the high purity 
(>95%) full-length Mtb-MazG protein. However, no crystals were grown, 
which probably resulted from the intrinsic disorder property (Chen et al., 
2022). Thus, to identify the suitable regions for crystallization, 
we performed limited protease digestion for Mtb-MazG. The results 
showed that Mtb-MazG was cleaved into two stable fragments by 
endoproteinase Glu-C (Supplementary Figure S1A). Further mass 
spectrometry (MS) experiment showed that the upper band and lower 
band in SDS-PAGE might be a partial fragment of the N-terminal part 
(1–185) and the C-terminal part (186–325) of Mtb-MazG, respectively 
(Supplementary Figures S1A,B). To check whether the two parts 
interacted with each other, we performed the gel-filtration analysis with 
the endoproteinase-digested Mtb-MazG protein in vitro. However, 
endoproteinase digestion resulted in more than two fragments less than 
15 kDa, and this could have hindered the formation of a stable complex 
of the two parts of MazG (Supplementary Figures S1C,D). In addition, 
we constructed a series of truncated versions, including MazG (1–185), 
MazG (1–231), MazG (1–281), MazG (1–305), MazG (186–305), MazG 
(186–325), and MazG (85–325) for crystallization. Specifically, MazG 
(1–185) came out at the peak of ~78 mL on the Superdex200 16/600 
column, corresponding with a molecular weight of ~40 kD. Therefore, 
MazG (1–185) was a dimer in solution, as the theoretical molecular 
weight of MazG (1–185) is 20 kD (Figures 1C,D). Also, the dynamic light 
scattering (DLS) experiment showed that the radius and estimated 
molecular weight of full-length Mtb-MazG and Mtb-MazG (1–185) were 
3.6 Å and 3.0 Å, 69.2 kD and 41.2 kD, respectively, indicating both of they 
possessed good homogeneities in solution (Figures 1E,F).

The overall structure of MazG (1–185)

Mtb-MazG mainly contains three domains, an extra N-terminal 
region (NE, residues 1–85) that is absent in other bacterial homologs, 
the N-terminal domain (NTD, residues 86–253), and the C-terminal 
domain (CTD, residues 254–325; Figure  2A; Mota et  al., 2016). 
Despite failing in the crystallization of full-length MazG, we succeeded 
in obtaining the MazG (1–185) protein crystals and solved the 2.7 Å 
resolution structure using molecular replacement of the AlphaFold2-
predicted structure (AF-P96379-F1). There are six MazG molecules 
in an asymmetrical unit with a cell dimension of 109 × 109 × 242 Å, 
which includes two monomers and two dimers consisting of two 
identical chains. The Mtb-MazG (1–185) monomer contained eight 
α-helices and five β-stands, comprising two globular domains, 
including a primary three-layered α/β/α sandwich domain (named 
domain 1) and an entirely α-helices-composed domain (named 
domain 2; Figure 2B). Domain 1 was composed of three α-helices (α1, 
α2, and α3) and five β-sheet strands (β1, β2, β3, β4, and β5), which was 
absent in other NTP pyrophosphatases, including B. anthracis, E. coli, 
and D. radiodurans MazGs (Lee et al., 2008; Goncalves et al., 2011; 
Kim and Hong, 2016). Domain 2 included five α-helices (α4, α5, α6, 
α7, and α8), which showed a higher B-factor than that in domain 1, 
indicating this region exhibited more flexibility (Figure 2C). The two 
domains were connected with a short linker (Ala78-Gly84). Helices 
α3, α4, α5, α6, and α7 flanked one side of the β-sheet, while α1, α2, 
and α8 were located on the opposite side (Figure 2B). Also, Mtb-MazG 
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(1–185) forms a dimer in crystal packing, with a stable conformation 
in the interaction region (Figure 2C). The dimeric Mtb-MazG (1–185) 
is with an approximate dimension of 45 × 47 × 60 Å (Figure 2D). The 
interface-involved residues of the swapped-dimeric MazG were 
located in α1 of domain 1, and α4, α6, and α8 of domain 2, of which 
fifteen residues formed multiple hydrogen bonds and salt bridges in 
relative distances within 3.5 Å (Figure 2D). These residues included 
D7, R10, T12, V14, V16, I19, R23, G84, E85, R86, T120, Y121, R136, 
E154, D164, D168, and T169 (Figure 2D).

Next, we investigated the solution status of MazG (1–185) and 
full-length MazG by the small-angle X-ray scattering (SAXS) 
method (Figure 3). MazG (1–185) and full-length MazG behaved 
well in solution, evidenced by the Guinier plots and intensity 
profiles (Figures  3A,B,F,G). The maximum dimensions (Dmax) 
from the distance distribution function p(r) of MazG (1–185) and 
full-length MazG were around 68 Å and 120 Å, respectively 
(Figures 3C,H). Moreover, when superimposed the crystal structure 
of MazG (1–185) with the ab initio envelope obtained from the 
de-novo DAMMIN model of SAXS, MazG (1–185) showed high 
similarities, confirming that the purified MazG (1–185) in vitro was 
indeed the active dimeric form (Figures  3D,E). For full-length 
MazG, we constructed the dimeric structure from the AlphaFold2 
model (AF-P96379-F1; Figure  3I). Also, the dimeric structure 

overlapped well with the ab initio envelope obtained from the 
de-novo DAMMIN model of SAXS (Figure 3J).

The magnesium-binding sites and 
enzymatic activity

The two-metal-ion mechanism is conserved in the MazG 
family across bacteria to phages (Mota et al., 2016; Huang et al., 
2021; Wood et  al., 2021). In the MazG (1–185) structure, one 
magnesium ion was present per subunit. The Mg2+ was coordinated 
by three glutamate residues (Glu119, Glu122, and Glu138) and one 
aspartate (Asp141; Figure 2B). Surface charge and electron density 
map analysis showed that Mg2+ was surrounded by negative 
charges, which are conserved in the NTP pyrophosphatase 
superfamily (Figures 4A,B). The four residues were mutated into 
alanines to unveil further the critical roles for enzymatic activity 
(Figure 4C). Compared with the wild-type (WT) MazG protein, 
the mutants came out at the same peak on gel-filtration profiles, 
indicating they were also dimer in solution (Figure 4D). Also, given 
that mutants were essential for catalysis, to exclude the possible 
reason that mutations affect the enzyme activity by changing the 
original structural conformation of the protein, we  performed 

A B

C D

E F

FIGURE 1

Characterization of Mtb-MazG and mutant (1–185) by gel-filtration and DLS methods. (A,C) Gel-filtration profiles of MazG and MazG (1–185) on a 
Superdex 200 16/600 column. (B,D) SDS-PAGE of the corresponding elution fractions in A,C. M: protein markers. (E,F) The DLS distributions of MazG 
and MazG (1–185).
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circular dichroism spectra (CD) analysis with the WT MazG and 
mutant proteins. The CD results showed that the four mutants did 
not change the structural conformation of the MazG (Figure 4E).

The hydrolase activity of Mtb-MazG was assayed with a 
spectrophotometric method using GTP as the substrate, as previously 
described (Lyu et al., 2013). The wild type Mtb-MazG possessed a kcat 
value of (0.83 ± 0.06) s−1 and a Km value of (0.4 ± 0.1) mM, respectively. 
The catalytic efficiency (kcat/Km) of the MazG protein toward GTP 
was 2.1 mM−1  s−1. Also, the NTP-PPase activity was significantly 
lowered for the mutants of E119A, E122A, E138A, and D141A 
(Figures  4F,G). Among the four mutants, E119A has the lowest 
enzymatic activity, whereas E122A, E138A, and D141A possess 
20 ~ 40% relative activities with that in WT MazG. Moreover, the 
enzyme activities toward different truncations (1–185, 1–231, 1–281, 
1–305, 186–305, 186–325, and 85–325) were measured and found to 
be  significantly lower in all cases compared to WT MazG 
(Figures 4H,I), which showed similar enzyme activity to our previous 
reported (Lyu et al., 2013). Taken together, the metal ion and full-
length protein are indispensable for the activity of MazG in Mtb.

Structural comparison of Mtb-MazG with 
its homologs

To further identify the critical configuration elements of MazG in 
cell metabolism, we  performed a structural-based alignment for 
Mtb-MazG with its different bacteria orthologs with Clustal X 
software (Figure 5). The results showed that the NTD and CTD of 
MazG are conserved in different bacteria, including M. tuberculosis, 
M. marinum, M. smegmatis, M. avium, and E. coli. However, the 
mycobaterial MazGs possess one specific N-terminal extra region, 
while E. coli MazG does not (Figures 2A,B, 5). When superimposing 
the crystal structure of Mtb-MazG with the AlphaFold2-predicted 
model, the RMSD value was only 1.207 Å, indicating the two 
structures were very similar (Figures 6A,B). Also, Mtb-MazG showed 
different overall folds with homologs from different species. Although 
the amino acid sequence showed high similarity (~39%) between 
E. coli MazG (EcMazG) and Mtb-MazG, the overall structure was 
dramatically different, evidenced by that the RMSD value was 32.275 Å 
when superimposing the Mtb-MazG structure with the EcMazG (PDB 

A C

D

B

FIGURE 2

The overall structure of MazG (1–185) from Mycobacterium tuberculosis. (A) Schematic of the Mtb-MazG protein. Mtb-MazG is composed of the 
N-terminal domain (NTD), the C-terminal domain (CTD), and the N-terminal extra region (NE). (B) The crystal structure of Mtb-MazG (1–185) is 
represented by a cartoon model, which is composed of eight α-helices and five β-strand. The magnesium is bound with four residues that are located 
on α6 and α7 of MazG (1–185). Cyan: α-helix; magenta: β-strand; green: magnesium ion. (C) The B-factor distribution of Mtb-MazG protein. The wider 
and redder tubing indicated a higher B-factor. (D) The binding interface between the swapped-dimeric Mtb-MazG (1–185). The dashed black box (left) 
denotes the interface between the swapped dimeric structure. The key residues (right) involved in the interface are shown in stick models. Magnesium 
ions are shown in green spheres.
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ID: 3CRC; Figure 6C; Lee et al., 2008). Interestingly, MazG proteins 
from different mycobacterial species might have conserved structures, 
as superimposing the Alphafold-predicative MazG models of the 

M. marinum, the M. avium, and the M. smegmatis with Mtb-MazG 
showed that the RMSD values were 1.723 Å, 0.670 Å, and 0.500 Å, 
respectively. Moreover, superimposing the C. jejun dUTPase structure 

A

D

F

I J

G H

E

B C

FIGURE 3

SAXS analysis of Mtb-MazG and its truncation MazG (1–185). (A–C) Guinier plot, intensity profile, and the P(R) curve of MazG (1–185). (D) The dimeric 
structure of MazG (1–185). The two subunits are colored cyan and green, respectively. (E) The de-novo DAMMIN model was overlapped with the 
crystal structure of MazG (1–185; PDB code: 7YH5, grey). (F–H) Guinier plot, intensity profile, and the P(R) curve of full-length Mtb-MazG. (I) The 
AlphaFold2 predicted-dimeric structure of full-length MazG. Chains A and B are shown in cyan and green, respectively. The region (1–185) is shown in 
wheat. (J) The de-novo DAMMIN model was overlapped with the AlphaFold2-predicted structure of full-length MazG (AF-P96379-F1).
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(PDB ID: 1W2Y; Moroz et al., 2004), the S. solfataricus MazG (PDB 
ID: 1VMG), and the D. radiodurans MazG (PDB ID: 2YFD; Goncalves 
et  al., 2011) with Mtb-MazG showed that the RMSD values were 
2.165 Å, 5.332 Å, and 13.52 Å, respectively (Figures 6D,F).

Discussion

MazG belongs to the all-α NTP pyrophosphatases (Galperin et al., 
2006), which exist from viruses and bacteria to humans (Song et al., 
2015; Rihtman et al., 2019; Zaide et al., 2020; Huang et al., 2021; Wood 
et al., 2021; Han et al., 2022). As a housecleaning enzyme, MazG 
functions at the cell nucleotide metabolism by degrading the 
non-canonical NTPs, preventing mutagenesis and DNA damage. 
Moreover, MazG helps bacteria in response to oxidative stress in E. coli 
(Han and Eiteman, 2018), B. anthracis (Zaide et  al., 2020), and 
Mycobacterium (Shi et al., 2019). In addition, many studies show that 
MazG is critical in regulating the DNA damage response in 
mycobacterium (Lu et al., 2010; Lyu et al., 2013; Fan et al., 2018; Shi 
et al., 2019). Deletion of MazG in mycobacteria resulted in a 20-fold 
increase in the frequency of genomic CG-TA mutation both under 

oxidative stress and the stationary phase of growth (Fan et al., 2018). 
This suggests that MazG plays an important function in Mycobacterium 
tuberculosis infection.

In the current study, we solved the crystal structure of Mtb-MazG 
(1–185), which shows distinct overall architecture with other all-α NTP 
pyrophosphatases. The specific NE domain of Mtb-MazG comprises 
α-helices and β-stands (Figure  2), which is indispensable for its 
enzymatic activity (Figure 4). We found that the 1–85 sequence deletion 
significantly impacts MazG enzyme activity. The formation of dimeric 
MazG is related to multiple amino acid sites (Figure 2D). Therefore, 
we  speculated that the deletion of the 1–85 sequence might have a 
negative impact on MazG dimeric formation, thus affecting the overall 
enzyme activity. The NTD domain is composed of α-helices and has a 
typical EEXX (E/D) motif, which forms the magnesium ion binding sites 
with four residues Glu119, Glu122, Glu138, and Asp141 (Figure 4). The 
four potential active site residues, the EEXX(E/D) motif, are frequently 
found in different enzymes, requiring magnesium or manganese ions for 
their activities (Peters and Croteau, 2002; Lee et  al., 2008). Also, 
Campylobacter jejuni dUTPase coordinates a magnesium ion with acidic 
Glu46, Glu49, Glu74, and Asp77, and hydrolyzes the substrate using 
basic residues of Lys175, Arg182, and Lys194 (Moroz et al., 2004). The 

A
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FIGURE 4

The magnesium binding sites and enzymatic characterizations of Mtb-MazG. (A) The surface potential charge of MazG (1–185) structure. Red: negative 
charge; blue: positive charge. (B) The electron density map (2Fo-Fc, level = 1.0) of magnesium-bound residues in MazG. (C) SDS-PAGE of MazG and 
different mutants. (D) The gel filtration profiles of MazG and different mutants. (E) CD spectra of MazG and its mutants measured at 18°C. Each 
spectrum reported here is an average of three scans. (F) Schematic diagram of the enzymatic reaction. MazG hydrolyzes GTP into GMP and 
pyrophosphoric acid. (G) The relative activities of WT and different mutants of Mtb-MazG. The activity of WT was taken as 100%. (H) SDS-PAGE of WT 
MazG and its various truncations. Notably, MazG (1–281), MazG (1–305), and MazG (186–305) showed degradation during the purification process. 
(I) The relative activities of WT MazG and different truncations. The activity of WT was taken as 100%.
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active site of EcMazG contains six conserved acidic residues (Glu171, 
Glu172, Glu175, Glu192, Glu193, and Asp196). However, only three 
(Glu172, Glu193, and Asp196) are involved in the magnesium 
coordination for NTPase activity. The NTD and CTD of Mtb-MazG 
show a high similarity with other bacterial homologs in amino acid 
sequences. All of them are composed of α-helices that play essential roles 
for (d)NTPs hydrolysis. However, the overall structures are quite 
different (Figure 6). Thus, the specific 3D structure of Mtb-MazG may 
contribute to the antibacterial lethality and coordinate the metabolic 
adaption of dormant Mtb. Further studies targeting MazG could benefit 
us in identifying potential compounds in the treatment of TB.

Materials and methods

Protein expression and purification

The gene encoding Mtb-MazG (NP_215537) of M.tuberculosis 
H37Rv was synthesized and constructed into the pSMT3 vector 
to produce the N-terminal 6× His-SUMO tagged fusion protein. 
The expression and purification processes were similar to 
previous works (Chen et al., 2020; Gao et al., 2021). In brief, Mtb-
MazG was expressed in Escherichia coli BL21(DE3) cells. Cell 
cultures in LB medium were induced with 0.5 mM 

FIGURE 5

Sequence alignment of Mtb-MazG with its orthologs. Sequence alignment was performed using the ClustalX and ESpript v.3.0 programs. Identical and 
similar residues are shown in white text on a red background and in red text on a white background, respectively. The magnesium binding domain was 
highlighted with a green box. The star denotes residues that are bound with magnesium.
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isopropyl-β-D-thiogalactoside (IPTG) at 16°C for 20 h when 
OD600 reached 0.6. Then, cells were suspended in buffer A 
(50 mM Tris–HCl, pH 8.0, 300 mM NaCl, 5% glycerol, 10 mM 
Imidazole) and lysed by a high-pressure homogenizer. Mtb-MazG 
was then purified by Ni-NTA affinity chromatography, and the 
His-sumo tag was removed by ULP1 enzyme cleavage, followed 
by an additional Ni-NTA affinity chromatography. The target 
protein was then applied to a Superdex 200 16/600 gel filtration 
column pre-equilibrated in buffer B (20 mM Tris–HCl, pH  
8.0, 150 mM NaCl, 2 mM DTT). Finally, 10 ~ 20 mg per liter  
LB medium of the target protein with purity above 95% 
was obtained.

Site-directed mutants were constructed according to the standard 
QuikChange Site-Directed Mutagenesis protocol (Stratagene, 
United States) using the wild-type (WT) Mtb-MazG as the template. 
All the constructs were confirmed by DNA sequencing. The expression 
and purification of truncations and mutants were the same with the 
WT Mtb-MazG.

Limited proteolysis

The full-length MazG was incubated with different proteases 
(Hampton Research, Proti-Ace • Proti-Ace 2, HR2-432) at 37°C 
for 2 h in the reaction buffer (20 mM Tris–HCl, pH 8.0, 150 mM 
NaCl, 5 mM MgCl2). The reaction was stopped by heating at  
95°C for 10 min. The ratio of enzyme to protein is 1:1000 
(mol: mol).

Dynamic light scattering measurement

The Dynamic light scattering (DLS) data were collected on the 
DYNAMICS software from DynaPro NanoStar (Wyatt Technology), 
operating at a light source wavelength of 658 nm and a fixed scattering 
angle of 90°. The fresh proteins were diluted to 1 mg/mL with a buffer 
containing 20 mM Tris–HCl (pH 8.0), 150 mM NaCl, 2 mM DTT 
at 25°C.

A B

C D

E F

FIGURE 6

Structure superimposition of Mtb-MazG and its homologous proteins. (A) The AlphaFold2-predicted structure of MazG is shown in the cartoon model 
with different colors. The crystal structure of MazG (1–185) is shown in green color. Different numbers denote the truncated fragments. (B) The 
structural superposition of Mtb MazG (1–185; cyan) and AlphaFold2-predicted full-length MazG (green). (C) The AlphaFold2-predicted full-length 
MazG (cyan and green) was superimposed with E. coli MazG (PDB code 3CRC; wheat). (D–F) Structural superimposition of Mtb MazG (1–185; cyan) 
with S. solfataricus MazG (PDB code 1VMG; orange), C. jejuni MazG (PDB code 1W2Y; purple), and D. radiodurans MazG (PDB code 2YFD; yellow).
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Crystallization and data collection

Mtb-MazG (1–185) protein (~20 mg/mL) in a buffer with 20 mM 
Tris pH 8.0, 150 mM NaCl, 2 mM DTT, and 5 mM MgCl2 was crystallized 
at 18°C using the vapor-diffusion method by mixing with equal volume 
reservoir solution (0.1 M HEPES pH 7.5, 10% W/V PEG8000, 8% 
ethylene glycol). Crystals grew out at 18°C after 3 days. Diffraction data 
were collected with crystals flash-frozen in the crystallization buffer 
supplemented with 20% (v/v) glycerol. Integration, scaling, and merging 
of the diffraction data were performed using the HKL2000 suite.

Structure determination and refinement

The Mtb-MazG structure was determined by the molecular 
replacement method using the structure (ID: AF-P96379-F1) 
predicted by AlphaFold2 as the search model (Tunyasuvunakool et al., 
2021). Crystal structure refinements were performed with the 
program PHENIX (Adams et al., 2010). COOT and PyMOL software 

were used for model building and analysis (Emsley et al., 2010). The 
collected data and refinement statistics are summarized in Table 1.

Structure-based sequence alignment

Multiple alignments of amino acid sequences of different MazG 
proteins were performed using ClustalX v.2 program. Secondary 
structure alignment was generated by DSSP v.2.0 and ESpript v.3.0.1

Small-angle X-ray scattering analysis

The MazG Small-angle X-ray scattering (SAXS) data were 
collected at beamline BL19U2 of the Shanghai Synchrotron Radiation 
Facility with a radiation wavelength of 1.03 Å. The protein samples 
were prepared at concentrations of 1 mg/mL in 20 mM Tris–HCl (pH 
8.0), 150 mM NaCl. Each blank or sample was measured in triplicate, 
and the sample measurements were adjusted by subtracting the 
scattering from the buffer alone. SAXS data analysis program ATSAS 
2.84 suite was used to process and analyze the MazG scattering curve 
(Manalastas-Cantos et  al., 2021). The radius of gyration (Rg) of 
globular, rod shape (Rc), and flat shape (Rf) were determined by 
applying the Guinier approximation equation in primusqt. GNOM 
software coupled with ATSAS was used for the evaluation of the 
maximum particle dimension (Dmax) and the distance distribution 
function plot (P(R)). The SAXSMow program was used to determine 
the molecular mass of MazG. DAMMIF program was used to 
construct 10 independent ab initio models. The software PyMol was 
used to show the model shape.

Enzymatic activity measurement

The NTP-PPase activity of Mtb-MazG was assayed by measuring 
the hydrolyzed product, PPi, by an enzyme-coupled colorimetric assay 
(Molecular Probes) with a detection limit of 0.2 μM. The standard 
NTP-PPase assay was carried out in a 20 μl reaction buffer (20 mM 
Tris–HCl, pH 8.0, 150 mM NaCl, 5 mM MgCl2) containing 1 μg of 
Mtb-MazG and an appropriate amount of nucleoside triphosphates at 
37°C for 10 min. The reaction was stopped by heating at 70°C for 
10 min, and 5 μl of the reaction product was applied for the PiPer 
pyrophosphate assay (Molecular Probes) according to the 
manufacturer’s instructions. The reaction without Mtb-MazG or 
substrates was carried out as a background control.

Circular dichroism spectrometry

The Circular dichroism (CD) spectra were measured on a 
Chirascan Plus spectropolarimeter in the far-ultraviolet region 
(260 nm-190 nm) in a step of 1 nm. Records on protein solutions 
(0.2 mg/mL in PBS) employing a cell with a path length of 1 mm at 

1 http://espript.ibcp.fr/ESPript/ESPript/

TABLE 1 Data collection and refinement statistics.

Items MazG (1–185)

PDB code 7YH5

Data collection

  Space group P4212

  Cell dimensions a = 109.31 Å, b = 109.31 Å, c = 242.91 Å

α = 90°, β = 90°, γ = 90°

  Resolution (Å)a 35.86–2.70 (2.796–2.70)

  R merge (%)b 1.654 (35.19)

  / 17.90 (1.88)

  CC1/2 1 (0.729)

  Wilson B-factor 87.7

  Completeness (%) 99.85 (99.98)

Refinement

  No. reflections 41,349 (4072)

  Rwork (%)c 25.80 (32.82)

  Rfree (%)d 29.62 (38.06)

  Macromolecules 7,077

  Protein 984

  Ligand 6

  Water 35

RMSD

  Bond lengths (Å) 0.010

  Bond angles (°) 1.01

Ramachandran analysis (%)

  Favored 95.93

  Allowed 4.07

aValues in parentheses are for the highest resolution shell. bRmerge = Σ|Ii − <I > |/Σ|I|, where Ii is 
the intensity of an individual reflection and is the average intensity of that reflection. 
cRwork = Σ||Fo| − |Fc||/Σ|Fo|, where Fo and Fc are the observed and calculated structure factors 
for reflections, respectively. dRfree was calculated as Rwork using the 5% of reflections that were 
selected randomly and omitted from refinement.
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18°C were obtained. Each spectrum reported is an average of 
three scans.

Statistical analysis

Each experiment was performed at least three times. All 
experiment data were analyzed using GraphPad Prism 7.0 (GraphPad 
software Inc. United States) and were presented as mean values ± 
SD. Statistical analysis was performed using a t-test (*: p < 0.05; **: 
p < 0.01; ***: p < 0.001).
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