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Dictyophora indusiata (Vent. Ex Pers.) Fisch. (DI) is an edible and medicinal fungus 
widely used in East Asian countries. However, during DI cultivation, the formation 
of fruiting bodies cannot be regulated, which leads to yield and quality losses. The 
present study performed a combined genome, transcriptome, and metabolome 
analysis of DI. Using Nanopore and Illumina sequencing approaches, we  created 
the DI reference genome, which was 67.32 Mb long with 323 contigs. We identified 
19,909 coding genes on this genome, of which 46 gene clusters were related to 
terpenoid synthesis. Subsequent transcriptome sequencing using five DI tissues 
(cap, indusia, mycelia, stipe, and volva) showed high expression levels of genes in 
the cap, indicating the tissue’s importance in regulating the fruiting body formation. 
Meanwhile, the metabolome analysis identified 728 metabolites from the five 
tissues. Mycelium was rich in choline, while volva was rich in dendronobilin; stipe 
had monosaccharides as the primary component, and the cap was the main source 
of indole acetic acid (IAA) synthesis. We  confirmed the importance of tryptophan 
metabolism for DI fruiting body differentiation based on KEGG pathway analysis. 
Finally, the combined multiomics analysis identified three new genes related to IAA 
synthesis of the tryptophan metabolic pathway in the cap, which may regulate DI 
fruiting body synthesis and improve DI quality. Thus, the study’s findings expand our 
understanding of resource development and the molecular mechanisms underlying 
DI development and differentiation. However, the current genome is still a rough 
draft that needs to be strengthened.
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1. Introduction

Edible and medicinal fungi are known for their nutritional and 
medicinal values and are consumed by people worldwide (Buckley, 
2008; Lu et al., 2020). The edible and medicinal fungi promote human 
health and are considered functional foods (Hetland et al., 2008; Li et al., 
2019; Krakowska et al., 2020). Among the many edible and medicinal 
fungi distributed worldwide, Dictyophora indusiata (DI, Phallaceae) is 
widely used in East Asian countries as both medicine and food (Wang 
et al., 2021). Currently, DI is known for two primary uses; the stipe is 
used as a delicacy and has various medicinal properties, such as 
antitumor effects, eye benefits, lipofuscin resistance, cardiovascular 
protective, antibiosis, mental tranquilization, immunomodulatory, and 
antioxidant activities (Liao et al., 2015; Liu et al., 2017; Wang Y. et al., 
2019; Wang W. et  al., 2019). It is also a good source of fungal 
polysaccharides (Liu et al., 2017; Wang W. et al., 2019) and bioactive 
compounds (Huang et al., 2011), which enhance human health.

DI has been domesticated and produced artificially in the south of 
China; however, there are many problems in its cultivation, resource 
utilization, and development. The short mature stage (few hours) of DI 
fruiting bodies demands prompt harvesting; delayed harvest causes 
autolysis of fruiting bodies, leading to wastage. The mature fruiting 
bodies comprise four tissues (Figure 1A). In south China, usually only 
the stipe has been consume, while the other three tissues (cap, indusia, 
and volva) get discarded, which leading to a considerable waste of 
resources. Wang et  al. (2020, 2021), based on the transcriptome, 
proteome, and metabolome analyses, showed that the cell wall stress-
dependent MAPK pathway and a few other unique proteins and 
metabolites play critical roles in the morphological development of 

DI. However, the formation of DI fruiting bodies is not entirely explored 
due to the lack of a reference genome. Meanwhile, the crucial tissue 
regulating fruiting body formation remains unclear, and the DI 
mycelium remains less exploited for medicinal use. Moreover, DI has 
various bioactive compounds, and the genome harbors numerous 
functional genes related to metabolites with medicinal properties; 
however, research in this field is less. Therefore, addressing these issues 
and improving our understanding will promote the economic 
value of DI.

In recent years, advanced omics technologies have been applied to 
study fungi. A combination of second-generation and third-generation 
sequencing technologies has been widely used to analyze the genome of 
edible and medicinal fungi, such as Russula griseocarnosa, Agrocybe 
cylindracea, Hericium erinaceus, Auricularia heimuer, and Gloeostereum 
incarnatum (Wang X. et al., 2019; Yuan et al., 2019; Gong et al., 2020; 
Liang et al., 2020; Yu et al., 2020). Transcriptomic studies revealed the 
fruiting body formation of edible and medicinal fungi, such as 
Leucocalocybe mongolica, Lentinula edodes, and the peach-shaped and 
mature fruiting bodies of DI (Yoo et al., 2019; Wang et al., 2020; Duan 
et al., 2021). Meanwhile, metabolomic studies characterized the edible 
and medicinal fungi and their diverse medicinal components, such as 
bioactive metabolites, antibiotics, and agrochemicals (Alberti et  al., 
2020). These earlier studies indicated that combining various “omics” 
technologies would help elucidate DI fruiting body differentiation and 
explore resource value.

Therefore, the present study investigated the molecular mechanism 
underlying DI fruiting body differentiation and the resource value of 
medicinal compounds and gene resources based on sequencing and 
UHPLC-ESI-MS/MS. We present a reference genome of DI based on 

FIGURE 1

Apparent morphology of DI fruiting bodies and technical route of the study. (A) Different kinds of DI tissues used in this study. (B) Morphology of DI fruiting 
bodies at harvest. (C) The technical route of this study.
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third-generation sequencing. Then, transcriptome sequencing was 
performed using five DI tissues (cap, indusia, mycelia, stipe, and volva) 
to identify the tissues with the most significant influence on fruiting 
body differentiation. Further, a widely-targeted metabolome analysis 
was performed to explore the medicinal value of these five DI tissues 
and the metabolic processes affecting the DI fruiting body 
differentiation. Finally, the functional gene resources associated with the 
high value metabolites in the DI genome were mined based on multi-
omics association analysis. The findings of the study will lay a foundation 
for improving the quality and resource value of DI.

2. Results

2.1. De novo genome sequencing

2.1.1. Reference genome of Dictyophora genus
We constructed the reference genome of DI to advance our 

understanding of the molecular mechanisms underlying DI fruiting 
body development and differentiation. As shown in Table  1, third-
generation nanopore sequencing combined with NGS sequencing 
generated a reference genome of 67.32 Mb (Strain ID: ZS). The genome 
had 216 contigs, a GC content of 44.05%, a contig N50 of 0.79 Mb, L50 
of 20, and 19,909 genes. BUSCO analysis recovered 87.6% (254/290) of 
the core genes (Supplementary Table S1), indicating high integrity of the 
assembled genome.

2.1.2. Genome annotation based on public 
databases

We further annotated the DI genes using public databases. The 
predicted 19,909 genes of DI (Strain ZS; a total length of 31.88 Mb, 
47.35% of the genomic size) showed an average gene length of 1,601 bp 
and an average GC content of 47.25%. We annotated these genes using 
the four public databases, GO (Gene Ontology), KOG (Eukaryotic 
Orthologous Groups), KEGG (Kyoto Encyclopedia of Genes and 
Genomes), and CAZyme (Carbohydrate-Active enzymes). The 
preliminary comparison showed the annotation of 39.63% (7,891), 
16.98% (3,381), 51.22% (10199), and 4.14% (826) of genes in the GO, 
KOG, KEGG, and CAZyme databases, respectively. In the GO categories 
(Figure 2A), 3,815 genes enriched “metabolic process,” the predominant 
term in the biological process category; 999 genes enriched “cell part,” 
the predominant term in the cellular component category; 3,975 genes 
enriched “binding,” the predominant term in the molecular function 
category. KOG annotation (Figure 2B) assigned 1,143 genes to the code 

class “S: Function unknown,” which was the predominant class. The 
second most enriched code class was “U: Intracellular trafficking, 
secretion, and vesicular transport,” with 270 genes. Meanwhile, KEGG 
annotation (Level 2) predominantly enriched “Transport and 
catabolism” with 690 genes (Figure  2C). The annotation based on 
CAZyme divided the genes into 910 gene families (Figure 2D), of which 
135 belonged to AA (Auxiliary Activities), 126 to CBM (Carbohydrate-
Binding Modules), 161 to CE (Carbohydrate Esterases), 319 to GH 
(Glycoside Hydrolases), 151 to GT (Glycosyl Transferases), and 18 to PL 
(Polysaccharide Lyases).

2.1.3. Secondary metabolism-associated genes  
of DI

Further annotations based on FCPD (Fungal cytochrome P450 
database) and antiSMASH revealed genes associated with the secondary 
metabolites of DI. The FCPD pipeline identified 369 DI genes related to 
41 of P450 gene families (Supplementary Table S2). Meanwhile, 
antiSMASH showed that 64 gene clusters of DI were associated with 
secondary metabolism synthesis (Supplementary Table S3). Among 
them, 64 gene clusters were related to the terpene class, and the 
remaining were associated with the synthesis of indole, T1PKS (Type 
I PKS: Polyketide synthase), NRPS (Non-ribosomal peptide synthetase 
cluster), siderophore, and NRPS-like (NRPS-like fragment) metabolites.

2.2. Transcriptome sequencing of five DI 
tissues

2.2.1. Sequencing analysis and differentially 
expressed genes (DEGs)

Further, to reveal the differences in gene expression patterns 
between different tissue types of DI, transcriptome sequencing was 
performed using different fruiting body tissues (cap, indusium, 
mycelium, stipe, and volva) and the dikaryotic mycelium as control. As 
shown in Table 2, a total of 109.15 GB of NGS data were generated, with 
an average of 6 GB per sample; the lowest Q30 value was 91.87% 
(Stipe3), and the total mapped rate of all samples was at least 95.8% 
(Volva1), indicating the high quality of the transcriptome data.

We then identified the DEGs (Figure 3). The violin plots showed 
higher expression levels of genes in cap and mycelia but lower in indusia 
and volva (Figure 3A); the expression of genes was moderate in the stipe. 
Venn diagram showed that 2,670 DEGs were shared between all tissues, 
while 4,687 were common between mycelia and cap; 64, 67, 189, 283, 
and 1,550 DEGs were unique to the indusia, volva, stipe, cap, and 
mycelia (Figure 3B). The correlation heat map showed high association 
in the expression pattern of DEGs between indusia and volva (R = 0.69; 
Figure 3C). The subsequent pairwise comparison of tissues revealed two 
expression patterns of DEGs (Figure 3D); one group showed significantly 
downregulated expression in all comparisons with mycelia (mycelia vs. 
indusia, cap, stipe, and volva; e.g., mycelia vs. indusia with 10,958 and 
1,317 of downregulated and upregulated DEGs); another group had 
DEGs upregulated in cap compared with other tissues, except mycelia 
(stipe, indusia, and volva vs. cap). Another Venn diagram based on 
DEGs of different comparison groups showed that unique DEGs related 
to mycelia and cap were significantly higher than those between other 
tissues; mycelia vs. cap had 232 unique DEGs, but indusia vs. volva had 
only 5 unique DEGs (Figure 3E). Thus, the observations indicated that 
among all the five DI tissues, mycelium and cap were the most 
significantly active tissues with numerous DEGs, predominantly 

TABLE 1 Statistics of assembly of the DI genome.

Genome ID ZS

Genome assembly size (Mb) 67.32

GC content (%) 44.05

Contigs 216

N50 (Mb) 0.79

L50 20

Largest contig (Mb) 3.39

Gene number 19,909

Nanopore sequencing coverage 181×

NGS sequencing coverage 176×
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upregulated genes, suggesting their leading role in the differentiation of 
DI fruiting bodies; this confirmed mycelium and cap as critical tissues 
for the differentiation of DI fruiting bodies.

2.2.2. Go and KEGG differential genes enrichment 
analysis

To further determine the functions of these DEGs, we performed 
enrichment analysis based on GO and KEGG databases (Figure 4; 

Supplementary Figure S1). GO annotation showed that “cellular 
process (GO:0009987),” “metabolic process (GO:0008152),” and 
“biological regulation (GO:0065007)” were the top three enriched 
terms in the biological process category; “binding (GO:0005488)” and 
“catalytic activity (GO:0003824)” were the two significantly enriched 
terms in molecular functions; “cellular anatomical entity 
(GO:0110165)” and “protein-containing complex (GO:0032991)” 
were the two significantly enriched terms in cellular component 

A

B

C

D

FIGURE 2

Genome annotation based on public databases. (A) GO annotation. The upper horizontal axis shows the three GO categories (Biological Process – BP, 
Cellular Component – CC, and Molecular Function – MF), the lower horizontal axis shows the subclassification of these three categories, and the vertical 
axis represents the number of gene hits. (B) KOG annotation. The horizontal axis shows the KOG classes, and the vertical axis represents the number of 
gene hits. (C) KEGG (Level 2) annotation. The horizontal axis represents the number of gene hits, and the vertical axis shows the classes. (D) CAZyme 
annotation. The horizontal axis shows the classes, and the vertical axis represents the number of gene hits.
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(Figure 4). Meanwhile, KEGG enrichment analysis showed global and 
overview map (ko01100) as the most significantly enriched pathway 
in all comparison groups and level 1 class of metabolism 
(Supplementary Figure S1). In the indusia vs. cap comparison, the 
Metabolic pathway (ko01100) had 1,538 DEGs, while the translation 
(ko00970) pathway was enriched with 462 DEGs. Meanwhile, the 
translation (ko00970), transport and catabolism (ko04138), signal 
transduction (ko04011), and aging (ko04213) pathways were the most 
enriched in the level 1 class of Genetic In-formation Processing, 
Cellular Processes, Environmental Information Processing, and 
Organismal Systems. We found that the DEGs expression trend in the 
above two databases was consistent with distribution of DEGs across 
different DI tissues (Figure  3), indicating the reliability of 
the annotation.

2.3. Widely-targeted metabolome analysis of 
five DI tissue

2.3.1. Metabolite composition
We performed a widely-targeted metabolome analysis based on the 

UPLC-ESI-MS/MS approach to determine the metabolic composition 
of different DI tissues. We  determined the Z-scores to evaluate the 
categories and abundance of metabolites (Figure 5) and then analyzed 
the sample-sample correlation of metabolite distribution in the five 
tissues. As shown in Figure 5A, the cap, indusia, and stipe metabolites 
were highly correlated (R > 0.67). Further, based on public and 
commercial databases, 728 metabolites (grouped into ten classes), 
including 89 of alkaloids, 119 of amino acids and derivatives, 6 of 
flavonoids, 7 of lignans and coumarins, 130 of lipids, 71 of nucleotides 
and derivatives, 78 of organic acids, 109 of phenolic acids, 12 of 
terpenoids, and 107 of metabolites belong to others, were detected in the 
five DI tissues (Figure 5B). Detailed information on the metabolites is 
presented in Supplementary Table S4.

2.3.2. Differential metabolites
Furthermore, we compared the metabolite abundance among 

the five tissues and analyzed their distribution characteristics. 
K-means clustering was performed to group the metabolites based 
on the abundance in the different tissues (Figure  6A; 
Supplementary Table S5). A total of nine groups of metabolites were 
identified with specific expression trends. We  identified 91 
metabolites in mycelia (class 1), 138 in volva (class 4), 113 in indusia 
(class 2), 72  in cap (class 3), and 71  in stipe (class 6) with 
representative of the tissue types. Further, we analyzed the most 
abundant tissue-specific metabolites (Table  3). Choline, dibutyl 
phthalate*, and diisobutyl phthalate* were the top three tissue-
specific metabolites in mycelia, 13(S)-HODE;13(S)-
hydroxyoctadeca-9Z,11E-dienoic acid, 9S-Hydroxy-10E,12Z-
octadecadienoic acid, and punicic acid (9Z,11E,13Z-
octadecatrienoic acid) in volva, linoleic acid, D-Pantothenic acid, 
and naphthisoxazol A in indusial, succinyladenosine, isocitric acid, 
and quinic acid in the cap, and D-mannose*, inositol*, and 
D-glucose* in stipe. Furthermore, we  analyzed the relationship 
between the differential metabolites in each tissue compared with 
mycelia to screen metabolites related to DI fruiting body 
differentiation. As shown in Figure 6B, mycelia vs. volva (52) had 
the maximum unique, differential metabolites compared with 
mycelia vs. cap (24), mycelia vs. stipe (15), and mycelia vs. 
indusia (21).

We then analyzed the distribution of terpenoid metabolites in DI 
in detail. As shown in Figure 7, 12 terpenoids were detected from the 
five DI tissue types. Among them, Dendronobilin I-iso1 and 
Mansonone N were the top two terpenoids in terms of intensity, with 
Dendronobilin I-iso1 mainly synthesized in volva and Mansonone N 
in mycelia.

2.3.3. Tryptophan metabolism of DI
Transcriptome analysis detected the highest abundance of 

DEGs in the cap and mycelia, suggesting that these two tissues were 
critical for DI fruiting body differentiation. Therefore, 
we conducted metabolic pathway enrichment analysis for the cap 
and mycelia based on the KEGG database. As shown in Figure 8, 
three pathways, including Tryptophan metabolism (ko00380), 
Amino sugar and nucleotide sugar metabolism (ko00520), and 
Pentose and glucuronate interconversions (ko00040), were 
significantly (p < 0.05) enriched in the cap vs. mycelia comparison 
group. We  detected the highest enrichment intensity for 
Tryptophan metabolism, with the highest participation of 
metabolites. As shown in Figure 9, a large amount of L-Tryptophan 
was first synthesized and enriched in the cap, indusia, and stipe 
during mycelium differentiation into fruiting bodies, and most of 
the L-Tryptophan metabolized to tryptamine (Figures 9A,B). As 
Figure 9A, through a series of metabolic processes, tryptamine got 
metabolized to 3-indoleacetonitrile and then indole-3-acetic acid 
(IAA). Next, IAA got metabolized into a node metabolite 
anthranilic acid, which further converted into 2-aminophenol, 
2-amino-3-methoxybenzoic acid, quinolinic acid, 2-picolinic acid, 
and 2-oxoadipic acid. Finally, 2-oxoadipic acid got metabolized via 
the next metabolic pathway of glycolysis (ko00010). Thus, these 
observations indicated that during the formation of DI fruiting 
bodies from mycelium, the metabolite L-tryptophan and the 
Tryptophan metabolism pathway play significant roles.

TABLE 2 Statistics of the transcriptome sequences from five DI tissues.

ID Clean Data 
(GB)

Q30 (%) Total Mapped 
(%)

Cap1 6.64 92.85% 96.36%

Cap2 6.41 92.61% 96.18%

Cap3 6.52 92.60% 96.42%

Indusia1 7.76 92.24% 95.93%

Indusia2 7.51 92.55% 96.46%

Indusia3 7.38 93.02% 96.39%

Mycelia1 6.97 92.44% 96.89%

Mycelia2 7.78 93.19% 97.06%

Mycelia3 6.74 92.62% 96.95%

Stipe1 6.93 93.05% 96.69%

Stipe2 7.75 92.89% 96.46%

Stipe3 7.63 91.87% 96.20%

Volva1 7.55 92.54% 95.80%

Volva2 7.51 92.64% 96.29%

Volva3 7.99 92.38% 96.08%
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2.4. Combined multi-omics analysis

2.4.1. Transcriptome and metabolome correlation 
analysis

Furthermore, to understand the key genes and metabolites affecting 
DI fruiting body differentiation, we performed a correlation analysis 
based on the metabolome and transcriptome data and assessed the 

metabolite and gene expression similarity among the five tissue types. 
PCA based on mycelia’s metabolome and transcriptome data showed 
significant differences; the mycelia appeared separated from the other 
four tissue types. The transcriptome PCA showed clustering of the stipe, 
volva, and indusia (Figure 10A); however, the cap appeared separated 
from these three tissues. The metabolome PCA showed that the volva 
was separated, while the indusia, cap, and stipe were clustered together 

A B

C

E

D

FIGURE 3

Distribution of DEGs across different DI tissues. (A) The violin plots display the gene expression intensity in five tissue types of DI. The curves represent the 
probability curve of the data distribution. The number of data points is positively correlated with the width of the probability curve. The upper and lower 
ends indicate the maximum and minimum values of nonoutliers, respectively. The upper and lower edges of the vertical line indicate the 75th and 25th 
percentiles of the data, respectively; the central dot indicates the median. The horizontal axis represents different tissues, and the vertical axis represents the 
log10FPKM. (B) Venn diagram of DEGs in five tissues. Different colors represent different tissues. (C) Correlation heat map based on the expression of DEGs 
in five tissues. The abscissa and ordinate indicate the samples. The numbers in the grid are the Pearson correlation coefficient values. The different colors 
of the grid indicate different correlations. Red means a positive correlation; the darker the color, the stronger the correlation. (D) DEGs of each comparison 
group. The abscissa represents different comparison groups, and the ordinate represents the number of DEGs. (E) Venn diagram of DEGs of different 
comparison groups.
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(Figure 10B). These results indicated that the metabolite accumulation 
and the transcriptome expression were not wholly consistent among the 
different DI tissue types.

We further identified the transcriptome and metabolome elements 
associated with fruiting body differentiation based on O2PLS analysis. 

We selected the top 10 genes and metabolites based on the loading value 
of expression of the DEGs and the differential metabolites 
(Figures 10C,D). Further annotation and abundance analysis of these 
genes and metabolites showed that most of these DEGs were 
homologous to the hypothetical protein from Clathrus columnatus and 

FIGURE 4

GO enrichment of the differentially expressed genes of different comparison groups. Different colors indicate the number of upregulated and 
downregulated genes in multiple comparison groups. In the upper left corner is the figure legend.

A B

FIGURE 5

Metabolite composition of five DI tissues. (A) Pearson’s correlation heat map. The longitudinal and diagonal lines show the sample names, and different 
colors represent the different Pearson correlation coefficients; the key is shown on the right side. (B) Clustering heat map of all metabolites. Each column 
represents a sample, and each row represents a metabolite class. A color bar represents the metabolite abundance. Different shades of red and green 
represent the upregulated and downregulated metabolites, respectively.
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Sphaerobolus stellatus, except for MSTRG.18365, which may be involved 
in the synthesis of Proteophosphoglycan ppg4 (Supplementary Table S6). 
Meanwhile, the metabolites included four lipids (lysopc 17:1, lysope 

17:1, lysope 17:1(2n isomer), and dihydrosphingosine-1-phosphate), 
three nucleotides and derivatives (2′-deoxyadenosine, 2′-deoxyuridine, 
and 2′-deoxyinosine), two phenolic acids (3,4-dihydroxybenzoic acid, 
protocatechuic acid* and 2,5-dihydroxybenzoic acid, gentisic acid*), and 
one organic acid (3-methyl-2-oxobutanoic acid, Supplementary Table S7).

2.4.2. Identification of tryptophan 
metabolism-associated genes in DI

We also performed a KEGG association analysis of transcriptome 
and metabolome data associated with the tryptophan metabolism 
pathway (ko00380) to identify the DEGs associated with  
tryptophan metabolism. KEGG enrichment analysis of the genes related 
to tryptophan metabolism in the cap vs. mycelia group showed that  
50 were associated with the synthesis of 13 metabolites  

A B

FIGURE 6

Analysis of the distribution characteristics of metabolites in different DI tissue types. (A) K-means clustering of metabolites of five DI tissue types. The 
abscissa represents the sample group, the ordinate represents standardized relative metabolite content, and the class represents the metabolite category 
number with the same trend in five DI tissue types. M represents the number of metabolites in this class. (B) Venn diagram shows differential metabolites of 
different comparison groups.

TABLE 3 Top three metabolites in the DI tissues.

Tissue Class Formula Compounds Class type

Mycelia 1 C5H14NO+ Choline Alkaloids

1 C16H22O4 Dibutyl phthalate* Phenolic acids

1 C16H22O4 Diisobutyl 

phthalate*

Phenolic acids

Volva 4 C18H32O3 13(S)-HODE;13(S)-

Hydroxyoctadeca-

9Z,11E-dienoic acid

Lipids

4 C18H32O3 9S-Hydroxy-

10E,12Z-

octadecadienoic 

acid

Lipids

4 C18H30O2 Punicic acid 

(9Z,11E,13Z-

octadecatrienoic 

acid)

Lipids

Indusia 2 C18H32O2 Linoleic acid Lipids

2 C9H17NO5 D-Pantothenic Acid Others

2 C11H9NO2 Naphthisoxazol A Alkaloids

Cap 3 C14H17N5O8 Succinyladenosine Nucleotides 

and derivatives

3 C6H8O7 Isocitric Acid Organic acids

3 C7H12O6 Quinic Acid Organic acids

Stipe 6 C6H12O6 D-Mannose* Others

6 C6H12O6 Inositol* Others

6 C6H12O6 D-Glucose* Others

*Indicates the metabolite presence of isomer.

FIGURE 7

Distribution of terpenoids in different DI tissues. The abscissa 
represents the metabolite name, and the ordinate represents the peak 
area unit.
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(Figure 10E, p = 0.02). Further, we classified the association between 
these 50 DEGs and 13 metabolites based on Pearson’s correlation 
analysis. as shown in Figure 10F; Supplementary Table S8; 30 DEGs were 
significantly associated with four metabolites, including 

2-(formylamino)benzoic, indole-3-acetic acid (IAA), uinolinic acid, and 
2-amino-3-methoxybenzoic acid, of the tryptophan metabolism 
pathway. NR database-based annotation showed that most DEGs were 
homologous to the hypothesized proteins of Clathrus columnatus, 

FIGURE 8

KEGG pathway enrichment analysis of the metabolome between cap and mycelia. The abscissa represents the rich factor of each pathway, and the 
ordinate represents the pathway name (sorted by value of p). The color of the dots reflects the value of p; the redder the dots, the more significant the 
enrichment. The dot size represents the number of differential metabolites enriched in the pathway.

A B

FIGURE 9

Tryptophan metabolism pathway (ko00380) in five DI tissues. (A) The boxes represent metabolites involved in the pathway. Green boxes represent the 
detected metabolites, and white boxes represent the undetected metabolites. The color (red to blue) key in the green boxes represents the relative 
abundance of the metabolite in different tissues (Evaluated by z-value, the key is shown in the upper left corner). The alphabets used for the tissues are 
shown in the upper right corner. The solid arrows represent the metabolic process, and the dashed arrows leading to glycolysis represent the processes in 
which some metabolites are ignored; metabolites eventually end up in glycolysis. (B) Relative abundance of metabolites of the ko00380 pathway in 
different DI tissues. The abscissa represents the peak area unit of the metabolite, and the ordinate represents different metabolites. Different colors in the 
stack diagram indicate different tissues shown in the legend in the upper right corner.
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indicating that their gene functions have not been verified. In addition, 
among DEGs annotated as non-hypothetical proteins, we found that 
11736_g (amidase signature do-main-containing protein), 14112_g 
(aldehyde dehydrogenase domain-containing protein), 14365_g 
(pyridoxal phosphate-dependent transferase), 17896_g (amidase 
signature domain-containing protein), 1854_g (pyridoxal phosphate-
dependent transferase), 5389_g (FAD-binding domain-containing 
protein), and 7020_g (L-tyrosine:2-oxoglutarate aminotransferase) may 

be related to the synthesis of 2-(Formylamino)benzoic acid, and 5965_g 
(aldehyde dehydrogenase) may be associated with the synthesis of IAA.

2.4.3. Quantitative polymerase chain reaction 
validation

Finally, quantitative polymerase chain reaction (qPCR) (Figure 11) 
was performed for the five selected genes to verify the accuracy of the 
results of the combined multi-omics analysis presented in Figure 10. 

A B

C D

E F

FIGURE 10

Correlation between metabolome and transcriptome of DI. (A,B) Metabolome and transcriptome PCA analysis. The abscissa represents PC1, and the 
ordinate represents PC2. (C,D) Metabolome and transcriptome O2PLS analysis. The abscissa represents the one-dimensional gene (C)/metabolite 
(D) loading value, and the ordinate represents the two-dimensional gene (C)/metabolite (D) loading value. (E) KEGG pathway enrichment analysis of DEGs 
and differential metabolites between cap and mycelia. The abscissa represents the corresponding enrichment factor of each pathway, and the ordinate 
represents the pathway name (sorted by value of p). The color of the dots and the triangles reflects the value of p of the genes and corresponding 
metabolites; the redder the dots/triangle, the more significant the enrichment. The size of the dot/triangle represents the number of differential genes and 
metabolites. Figure legend is shown on the right side. (F) Pearson correlation network between DEGs and metabolites. Red represents DEGs, and the green 
represents metabolites.
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Among the five genes, three (5965_g, 5966_g, and 6182_g) were related 
to IAA synthesis (Figure  10F; Supplementary Table S8) and two 
(MSTRG.18365 and 15553_g) were identified based on O2PLS analysis 
(Figure  10C). We  found that four out of the five genes (except for 
MSTRG.18365) showed an expression trend in qPCR consistent with 
the transcriptome data, with higher expression in the cap than the other 
four tissues. These observations indicate that our transcriptome data 
are reliable.

3. Discussion

DI is a delicious edible fungus widely cultivated artificially in east 
Asia. However, due to the lack of understanding of the molecular 
mechanisms underlying fruiting body formation, its cultivation and 
breeding are limited. Moreover, in many regions, such as south China, 
all DI fruiting bodies are discarded during harvest except the stipe, 
leading to largescale waste of resources. Therefore, the present study 
investigated the molecular background and metabolic process of DI 
fruiting body differentiation.

3.1. Genome of DI

Initially, we  combined third-generation sequencing with high-
throughput sequencing and assembled the DI reference genome, which 
could be used to understand the molecular details of DI. However, due 
to dualnucleated strain sequencing, the assembly was not ideal 
(N50 < 1 Mb). In contrast, recent studies that used similar sequencing 
strategies for mononuclear edible strains, such as Leucocalocybe 
mongolica (Duan et al., 2021), Hericium erinaceus (Gong et al., 2020), 
Auricularia heimuer (Yuan et al., 2019), and Cordyceps guangdongensis 
(Zhang et al., 2018), published genomes with N50 values above 1 Mb. 
Meanwhile, our assembly results are similar to the genome generated for 
Russula griseocarnosa (Yu et al., 2020) and Agrocybe cylindracea (Liang 
et al., 2020) based on third-generation sequencing and from dikaryotic 
mycelium or fruiting body (N50 < 1 Mb). Therefore, the present study 
still provides a reference genome of DI to assemble high quality genomes 

and data for understanding the developmental details. These 
observations suggest mononuclear diploid sequencing to obtain a more 
accurate reference genome. Taken together, the current genome is still a 
rough draft that needs to be strengthened. Therefore, we plan to further 
improve the assembly quality and gene annotation level of DI genomes 
by mononuclear sequencing in the future.

We further predicted 19,909 genes from the DI genome. Due to the 
largescale diversity in fungal species, our results of predicted genes did 
not match well with the public databases. Only a small fraction of 
predicted genes (39.63%) was annotated based on the GO database, 
consistent with the low annotation rate reported for other edible fungi, 
such as Leucocalocybe mongolica (65.98%) (Duan et  al., 2021) and 
Russula griseocarnosa (22.63%) (Yu et al., 2020). These observations 
indicate space for future research on edible fungi, including DI. Further 
detailed analysis based on FCPD and antiSMASH annotations showed 
that 369 genes belonged to the P450 family and 64 belonged to the 
secondary metabolism gene cluster related to synthesizing secondary 
metabolites. These secondary metabolites, including the terpenes, have 
high medicinal value (Muszyńska et al., 2018), indicating significant 
potential for their application. Moreover, the genes associated with 
secondary metabolites have been annotated in the genomes of other 
edible fungi, including Russula griseocarnosa (Yu et  al., 2020) and 
Auricularia heimuer (Yuan et al., 2019). Therefore, our study provides 
insights into the potential ability of DI to synthesize terpenes and a 
genetic basis for the biosynthesis of medicinal compounds.

3.2. Transcriptome sequencing reveals cap 
as critical tissues for DI fruiting body 
differentiation

In DI transcriptome studies, selecting an appropriate tissue 
representing the fruiting body is often challenging as the structure 
of the DI fruiting body is complex. Therefore, in this study, 
we divided DI into four tissue types. Moreover, our transcriptome 
study (section 3.2) proved that DEGs varied greatly among the 
different tissue types and identified a representative tissue, Cap, for 
DI fruiting body studies.

A

B

FIGURE 11

qPCR validation of five genes of five DI tissues identified from transcriptome sequencing. (A) Transcriptome sequencing results of the five genes in five DI 
tissues. The abscissa represents the tissues, and the ordinate represents FPKM expression levels. (B) qPCR analysis of the five genes in five DI tissues. The 
abscissa represents the tissues, and the ordinate represents the 2-∆∆Ct values.
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Our study found that the expression intensity of the DEGs in the 
comparison groups associated with cap or mycelia were significantly 
higher than the other tissues (Figure  3A), and these groups had 
significantly more common DEGs than the other groups (Figure 3B); 
the comparison groups associated with cap or mycelia has a significant 
number of DEGs (Figure 3D). The GO and KEGG enrichment analysis 
of DEGs between different tissue types showed the same functional 
DEG distribution trend (Figure 4; Supplementary Figure S1), confirming 
cap as the primary gene-expressing tissue during DI fruiting body 
formation. Earlier, Wang et al. (2020) identified 1954 unigenes across 
the developmental stages of DI via a de novo transcriptome study using 
peach-shaped and mature fruiting bodies. Meanwhile, we found far 
more DEGs in the cap of the DI fruiting body. Thus, the present study 
suggests that the cap is a tissue type that represents the expression 
pattern of DI fruiting bodies and plays a vital role in fruiting 
body differentiation.

3.3. Metabolome reveals novel resource 
value of DI tissues

The fruiting body of DI has a complex structure. Presently, the 
edible part of DI is the stipe, and the other four tissues are discarded. 
Therefore, we assessed the resource value of five DI tissues by analyzing 
the metabolite composition based on a widely-targeted metabolomic 
approach. We detected 729 metabolites from the five tissues, more than 
those (529) detected from the peach-shaped tissue of DI (Wang et al., 
2021). In addition, we identified choline as the predominant metabolite 
in mycelia. Choline is essential for cell membranes’ structural integrity 
and signaling functions (Zeisel, 2006; Wiedeman et al., 2018). Studies 
have also detected choline in other medicinal fungi, such as Morchella 
(Yang et al., 2021), Poria cocos (Sun, 2014), and Sanghuangporus baumii 
(Zheng et al., 2021); however, it is usually extracted from the fungal 
fruiting bodies, unlike mycelium in the present study. Thus, the present 
study’s findings suggest that DI mycelium may be  a potential raw 
material for extracting the medicinal ingredient after fermentation. 
We also found monosaccharides as the major metabolites in the primary 
edible tissue of DI, the stipe, suggesting presence of polysaccharides 
(Table  3). Polysaccharides are active components with antioxidant 
capacity and medicinal use (Liu et al., 2017). The present study also 
detected fungal polysaccharides as the main medicinal components of 
the edible fraction of DI, confirming the importance of DI stipe in 
exploiting fungal polysaccharides.

Additionally, we  detected terpenoids in five tissue types of 
DI. Terpenoids are important medicinal components of higher fungi 
with promising economic value (Xiao and Zhong, 2016). Genome 
annotation based on the antiSMASH database identified 64 terpenoid 
synthesis related gene clusters (Supplementary Table S3), and 
metabolome analysis identified 12 kinds of terpenoids. Terpenoid 
biosynthetic genes and corresponding metabolites identified in the 
present study provide a reference for developing terpenoids from 
DI. Interestingly, we  found that Dendronobilin I-iso1, the major 
terpenoid of DI, was mainly distributed in the volva but not in the stipe, 
the main edible part of DI. The sesquiterpenoid dendronobilin, a 
medicinal ingredient usually extracted from the Dendrobium genus and 
found in the traditional Chinese herbal medicine “Shi Hu,” has 
antitumor, antimutagenic, and immunomodulatory activities (Zhang 
et  al., 2007; Meng et  al., 2017). Therefore, our study suggests the 
development of terpenoid components from DI volva, previously 

considered agricultural waste. Taken together, the present study 
proposes a novel value of DI and promotes the development of mycelia 
and volva as resources for medicinal use.

3.4. Tryptophan metabolism in regulating DI 
fruiting body differentiation

Understanding the factors controlling fruiting body formation helps 
improve the quality and yield of DI through manual intervention. The 
transcriptome study revealed that mycelia and cap are the key parts 
affecting DI fruiting body differentiation (Figure 3). Further comparative 
metabolome analysis (mycelia vs. cap) revealed the importance of 
tryptophan metabolism in regulating DI fruiting body differentiation 
(Figure 7). Earlier, Yan et al. found that in Lentinula edodes, tryptophan 
metabolism affects fruiting body development (Yan et al., 2021), while 
Kück et  al. reported that disrupting the signaling of amino acids, 
including tryptophan, delayed Sordaria macrospora fruiting body 
development (Kück, 2005). Our study also found that glycolytic 
metabolism occurs post tryptophan metabolism in DI (Figure 9). Thus, 
we infer that tryptophan metabolism may help extract energy from the 
vegetative mycelia during fruiting body formation, and this hypothesis 
is worth testing in the future. Moreover, we found specific enrichment 
of IAA in the cap during DI tryptophan metabolism. The plant growth 
hormone IAA is classified as an indole derivative of the auxin family 
(Nutaratat et al., 2016). It is one of the metabolites produced by rhizobia 
to promote plant growth (Sun et al., 2018). Therefore, our study suggests 
that the cap of DI, so far used as agricultural waste, has the potential to 
be developed into fertilizer to promote plant growth, and this requires 
detailed investigation.

3.5. Metabolite synthesis related genes 
affect DI fruiting body differentiation

Multi-omics study revealed that the distribution of metabolites in 
DI tissues was not consistent with the trend observed in gene 
expression (Figures 10A,B), probably because gene expression is a 
phased event, while metabolites have the property of accumulation. 
However, we  identified through O2PLS analysis that the top  10 
metabolites and DEGs with the most significant influence correlated 
with each other (Figures  10C,D; Supplementary Tables S6, S7). 
However, little is known about the function of these metabolites and 
genes; therefore, we  hope to elucidate their relationship with DI 
fruiting body differentiation in future studies. In addition, we found 
that four metabolites of the tryptophan metabolic pathway, including 
IAA, were associated with DEGs identified by transcriptome 
sequencing, which indicates novel ways to regulate IAA synthesis. 
We identified three novel genes (Figure 10F; 5965_g, 5966_g, and 
6182_g) related to IAA synthesis. The genes 5966_g and 6182_g were 
annotated as hypothetical proteins in the NR database, indicating a 
novel pathway to regulate endogenous IAA synthesis in plants; 
however, this needs to be  investigated using model crops, such as 
Arabidopsis. Meanwhile, the gene 5966_g is associated with aldehyde 
dehydrogenase. A previous study reported that an aldehyde 
dehydrogenase from the bacterial plant pathogen Pseudomonas 
syringae produces IAA (Koren et al., 2017), which also suggests the 
significance of our finding. These genes may be valuable resources for 
improving plant growth.
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4. Materials and methods

4.1. Materials

The DI variety Gutian-1 obtained from the Guangxi Academy of 
Agricultural Sciences, Nanning City (Guangxi, China), was used in this 
study. The material used for de novo genome sequencing was derived 
from a binucleated mycelial strain of fruiting body of Gutian-1, named 
ZS. Materials of five tissue types (Figure 1A) used for transcriptome and 
metabolome analyses (Figure 1B) were obtained from the production 
site of Guangxi Dan Gui Xian Agricultural Technology Co. Ltd., Guilin 
City (Guangxi, China). All materials were frozen in liquid nitrogen 
immediately after sampling and stored in a freezer at-80°C since 
Aug. 2021.

4.2. Methods

As shown in Figure 1C, we performed de novo sequencing of the DI 
genome. Then, we performed transcriptome and metabolome analyses 
using the five DI tissues. Finally, based on the multi-omics approach, 
we  elucidated the molecular mechanism of DI fruiting body 
differentiation and the metabolites of importance in the different tissues.

4.2.1. De novo genome sequencing
Genomic DNA was extracted from 0.1 g of ZS fresh mycelium using 

MabioFungal DNA Extraction Mini Kit B (Guangzhou, China), 
following the manufacturer’s instructions. The next-generation 
sequencing (NGS) libraries were generated from the extracted genomic 
DNA using NEB Next® Ultra™ DNA Library Prep Kit for Illumina® 
(NewEngland Biolabs, USA), following the manufacturer’s 
recommendations, and sequenced on a Novaseq6000 platform to obtain 
150 bp paired-end reads. Meanwhile, genomic DNA was fragmented 
with g-TUBES (Covaris, USA) and end-repaired to prepare fragments 
with size >20 Kb. These DNA fragments were enriched by BluePippin 
size selection (Sage Science, USA), and the sequencing libraries were 
prepared using the SQK-LSK109 Sequencing Kit (Oxford Nanopore 
Technologies, Oxford Science Park, OX4 4DQ, UK), following the 
manufacturer’s protocol. Finally, the libraries were sequenced on a 
Nanopore MinION platform at the Guangdong Magigene Biotechnology 
Co., Ltd. (China).

The Illumina raw data and Nanopore raw data were filtered by fastp 
(v0.21) (Chen et al., 2018) and quast (Gurevich et al., 2013), respectively, 
using default parameters. The filtered reads were assembled to generate 
contigs without gaps using Canu (v1.8) (Koren et  al., 2017). The 
hierarchical genome assembly process (HGAP) pipeline was used to 
correct for random errors in the long seed reads (seed length threshold 
6 Kb) by aligning shorter reads from the same library against them with 
Pilon (v1.23) (Walker et  al., 2014). Then, we  used SSPACE (v1.1) 
(Boetzer et al., 2011) with preassembled reads for the final de novo 
assembly. GeneMark-ES (v4.69) (Lomsadze et al., 2014) and Augustus 
(v2.7) (Stanke et al., 2008) were used to retrieve the related coding genes 
in the DI genome. BUSCO (v5.4.3) analysis was used to assess the 
genome integrity (Manni et al., 2021).

We then used both software and merged result from GeneMark-ES 
and Augustus to obtain the final list of coding genes. Then, the gene 
functional annotation was carried out using GO (Gene Ontology; (Gene 
Ontology Consortium, 2021), KEGG (Kyoto Encyclopedia of Genes and 
Genomes) (Kanehisa and Goto, 2000), and KOG (Eukaryotic 

Orthologous Groups) (Tatusov et al., 2003). Meanwhile, the secondary 
metabolism-associated gene clusters were identified using antiSMASH1 
(Blin et al., 2021) with the default parameters, and FCPD2 (Park et al., 
2008) with the parameters of e-value <1e-10 and identity >40%. The 
Carbohydrate-Active enzymes (CAZymes) were predicted for the 
genome using dbCAN (Yin et al., 2012), with an e-value ≤1e-5.

4.2.2. Transcriptome sequencing
Total RNA was extracted from 0.1 g of fresh DI tissues (stipe, cap, 

indusium, volva, and mycelium) using TRIzol reagent (Invitrogen, 
Carlsbad, CA, USA) according to the manufacturer’s protocol and 
sequenced on an Illumina Novaseq6000 system at the Gene Denovo 
Biotechnology Co. Ltd. (Guangzhou, China).

The raw reads were filtered to obtain high-quality reads using fastp 
(v0.18.0), which removed reads containing adapters, more than 10% 
unknown nucleotides (N), and more than 50% low-quality bases (Q-
value ≤20) (Chen et al., 2018). These filtered reads were then aligned to 
the reference genome generated in this study. An index of the reference 
genome was built, and paired-end clean reads were mapped to the 
reference genome using HISAT (v2.2.4) (Kim et  al., 2015) with 
“-rna-strandness RF” and other default parameters. The mapped reads 
of each sample were assembled using StringTie (v1.3.1) (Pertea et al., 
2015, 2016). An FPKM (fragment per kilobase of transcript per million 
mapped reads) value was calculated for each transcription region to 
quantify the expression of genes and variations among different 
comparison groups using RSEM (v1.3.3) (Li and Dewey, 2011). Finally, 
DESeq2 (v1.36) (Love et al., 2014) was used to analyze the differential 
expression of genes between two groups and(Li et al., 2021) between two 
samples. The genes with a false discovery rate (FDR) <0.05 and an 
absolute fold change ≥2 were identified as the differentially expressed 
genes (DEGs). Venn analysis was performed to compare the DEGs 
between the different comparison groups using the VennDiagram 
package (v1.6.16) in R (Chen and Boutros, 2011).

Further, GO (Gene Ontology Consortium, 2021) and KEGG 
(Kanehisa and Goto, 2000) enrichment analyses were performed for the 
DEGs. The DEGs associated with specific GO terms and KEGG 
pathways compared to the genome background were filtered using the 
FDR ≤ 0.05 threshold. Finally, the Pearson’s correlation between DEGs 
of each tissue type was analyzed using the OmicShare tools3 to assess the 
reliability of the experimental results and the operational stability. A 
correlation coefficient closer to 1 indicates better repeatability between 
two experiments. Meanwhile, the correlation coefficient between two 
replicas was calculated to evaluate the repeatability between samples.

4.2.3. Widely-targeted metabolome analysis
A widely-targeted metabolome analysis based on ultra-high-

performance liquid chromatography-electrospray ionization-tandem 
mass spectrometry (UHPLC-ESI-MS/MS) was performed to identify 
the metabolites and their differences among the five tissues of DI at the 
Metware Biotechnology Co., Ltd. (Wuhan, China), as described earlier 
(Li et al., 2021). The DI different tissue samples were freeze-dried for 
48 h and ground into powder. Approximately 100 mg of the powder was 
extracted with 70% aqueous methanol (0.6 ml), and the extract was 
analyzed on a UHPLC-ESI-MS/MS system (UHPLC, Shim-pack UFLC 

1 antismash.secondarymetabolites.org

2 http://p450.riceblast.snu.ac.kr/index.php?a=view

3 https://www.omicshare.com/tools
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SHIMADZU CBM30A system, Kyoto, Japan; MS, Applied Biosystems 
4,500 Q TRAP, Framingham, MA, USA). Three biological replicates 
were maintained for each tissue. Meanwhile, all the sample extracts were 
mixed to prepare the quality control (QC) sample used to test the 
measurement accuracy after every six samples.

The qualitative analysis of the primary and secondary mass 
spectrometry data was performed using a self-built database MWDB 
(v2.0; Metware Biotechnology Co., Ltd. Wuhan, China) and the publicly 
available databases, such as MassBank4, HMDB (Human Metabolome 
Database5), and METLIN6. Meanwhile, the quantitative analysis of the 
metabolites was performed using the multiple reaction monitoring 
mode (MRM) of triple quadrupole mass spectrometry. MultiQuant 
(v3.0.2) was used to access the mass spectrometry files and to integrate 
and correct the peaks. The area of each chromatographic peak 
represented the relative content of the metabolite; the mass spectra were 
integrated and corrected to determine the content of each metabolite in 
the different samples. Further, the levels of each metabolite in the 
various samples were compared based on the retention time and 
peak pattern.

The raw data were processed using the Analyst 1.6.3 software (AB 
Sciex, Framingham, MA, USA). The original abundance of the 
metabolites was log-transformed to normalize the data and decrease the 
variance. Principal component analysis (PCA), cluster analysis, and 
orthogonal projections to latent structures-discriminant analysis (OPLS-
DA) were conducted for the metabolite data in R7, following the 
previously described methods (Li et al., 2021). Variable importance in 
projection (VIP) values of all metabolites from the OPLS-DA were 
extracted using the first component. Finally, the differential metabolites 
among the pairwise comparisons of different DI tissue types (such as 
mycelia vs. cap) were screened based on the following criteria: (i) 
VIP ≥ 1 (high confidence in pairwise comparisons); (ii) a fold change ≥2 
and ≤ 0.5. Further, KEGG annotation and metabolic pathway analysis 
were performed for the differential metabolites. A hypergeometric test 
was used to identify the significantly enriched pathways (p < 0.05).

4.2.4. Multi-omics analysis
Unsupervised principal component analysis (PCA) of transcriptome 

and metabolome data was performed using the statistics function 
prcomp within R8 after scaling the data. Two-way orthogonal partial 
least square (O2PLS) analysis was also performed to screen the genes 
and metabolites with a strong influence on DI tissue differentiation with 
R (OmicsPLS v1.2.0) (Bouhaddani et al., 2018). Further, the correlation 
between the transcriptome and metabolome data was analyzed by 
calculating the Pearson correlation coefficient in R (v4.7, base package), 
and the correlation network of genes and metabolites was built in R 
(igraph v1.3.49).

4.2.5. Quantitative polymerase chain reaction
Total RNA was extracted from five DI tissue types using TRIzol 

reagent (Section 2.2.2) and reverse transcribed (2 μg of RNA with an 

4 http://www.massbank.jp

5 http://www.hmdb.ca

6 http://metlin.scripps.edu/index.php

7 http://www.r-project.org/

8 www.r-project.org

9 https://CRAN.R-project.org/package=igraph, access on 2022.08.18

OD260/OD280 of 1.9–2.0) into cDNA using the iScript cDNA 
Synthesis Kit (Bio-Rad). Real-time quantitative PCR to validate the 
expression of five genes in the transcriptome data was performed with 
SYBR Green Master Mix (Thermo Fisher Scientific, MA, 
United  States) on a QuantStudio™ Flex Real-Time PCR System, 
maintaining three technical repeats per sample. The housekeeping 
gene (reference genes) 5711_t was used to normalize mRNA 
expression levels, and the fold change in expression levels was defined 
using the 2−ΔΔCt equation. The melting curve for each gene was 
generated to validate the specificity of the amplicon. The qPCR 
primers were designed using Primer Premier 5 and are listed in 
Supplementary Table S9.

5. Conclusion

The present study reveals the DI reference genome for further 
functional research. Transcriptome and metabolome analyses of the 
four tissues of the DI fruiting bodies and mycelium revealed the 
mechanism underlying DI fruiting body differentiation. However, 
future studies should aim to generate high-quality genomes by 
mononuclear sequencing. Our analysis also detected new 
metabolites from the mycelium (choline) and volva (dendronobilin) 
that expand the economic, medicinal, and agricultural values of 
DI. Additionally, unraveling the significance of tryptophan 
metabolism and novel genes related to IAA synthesis in regulating 
fruiting body formation proposes candidates for manipulating 
DI. The study thus raises new scientific questions on the 
developmental use of DI.
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