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Introduction: Coronavirus disease 2019 is an infectious disease caused by

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Influential variants

and mutants of this virus continue to emerge, and more e�ective virus-

related information is urgently required for identifying and predicting new

mutants. According to earlier reports, synonymous substitutions were considered

phenotypically silent; thus, such mutations were frequently ignored in studies of

viral mutations because they did not directly cause amino acid changes. However,

recent studies have shown that synonymous substitutions are not completely

silent, and their patterns and potential functional correlations should thus be

delineated for better control of the pandemic.

Methods: In this study, we estimated the synonymous evolutionary rate (SER)

across the SARS-CoV-2 genome and used it to infer the relationship between

the viral RNA and host protein. We also assessed the patterns of characteristic

mutations found in di�erent viral lineages.

Results: We found that the SER varies across the genome and that the variation

is primarily influenced by codon-related factors. Moreover, the conserved motifs

identified based on the SER were found to be related to host RNA transport and

regulation. Importantly, the majority of the existing fixed-characteristic mutations

for five important virus lineages (Alpha, Beta, Gamma, Delta, and Omicron) were

significantly enriched in partially constrained regions.

Discussion: Taken together, our results provide unique information on the

evolutionary and functional dynamics of SARS-CoV-2 based on synonymous

mutations and o�er potentially useful information for better control of the SARS-

CoV-2 pandemic.

KEYWORDS

binding motif, codon usage, dominant variants, SARS-CoV-2, synonymous evolutionary

rate

Introduction

Since its first appearance 3 years ago, coronavirus disease 2019, which is caused by

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been declared a

global pandemic, and influential variants continue to emerge and spread globally. For

better monitoring and research (Tao et al., 2021; Kumar et al., 2022), the World Health

Organization has listed some of the key viral variants or lineages with importantmutations as

variants of concern. Variants with different mutation combinations can emerge within short

periods and have different effects. Therefore, it is crucial to understand this process from

the evolutionary perspective for better prevention and control of the epidemic. Currently,

whether a mutation is deleterious is primarily determined by comparing the relevant lineage
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with reference sequences through multiple sequence alignment

or evidence from biological experiments (Badua et al., 2021;

Lauring and Hodcroft, 2021). For example, Nextstrain uses the

number of mutations at each site or the entropy of change to

represent the site’s degree of variability based on phylogenetic trees

and some viral infection experiments assessing specific mutations

(Hadfield et al., 2018; Zhang L. et al., 2020; Motozono et al.,

2021; Tao et al., 2021). However, whether new mutants truly

increase virus transmissibility and infectivity depends not only

on the accumulation of mutations but also on the recurrence or

rapid removal of mutations and their epistatic effects. Traditional

analytical methods based on fixed mutations can elucidate the

importance of mutations; however, owing to the time-consuming

experimental verification and the rapidity of viral mutations, new

methods are warranted for better and timely acquisition of updated

critical information.

The dN/dS (Ka/Ks) value, where dN or Ka represents

the number of non-synonymous substitutions/number of non-

synonymous sites and dS or Ks represents the number of

synonymous substitutions/number of synonymous sites, is always

used to determine whether there is evidence for the selection

of species, lineages, or proteins and gene areas (Duffy et al.,

2008; Wilson et al., 2020; MacLean et al., 2021). In reality,

the majority of the observed mutations are a result of natural

selection and genetic drift. The aforementioned dN/dS indicator

can also be used to determine the direction of selection. dN

is more impacted by natural selection because amino acid

alterations are always generated through selection; by contrast,

dS is more related to the background mutation rates because

such mutations do not directly cause amino acid changes.

However, whether synonymous mutations represent the complete

viral background remains a matter of debate in recent years.

Some studies have suggested that a substantial proportion of

synonymous alterations are not silent; selection, codon usage,

and other factors can influence synonymous variations (de

Oliveira et al., 2021; Mordstein et al., 2021; Rahman et al., 2021;

Shen et al., 2022). However, it remains unclear how data on

synonymous mutations in the SARS-CoV-2 genome can offer

additional, in-depth knowledge on evolutionary processes and

inform rules and guidelines for the precise prevention and control

of the pandemic.

Furthermore, a viral infection of host cells is a complex,

multistep, and often specific process. Like other RNA viruses,

SARS-CoV-2 relies on regulators to effectively utilize host cellular

factors at many biochemical levels, including RNA stability,

processing, localization, and translation, to facilitate replication

and progeny production (Flynn et al., 2021). Although existing

studies have explored the proteins that can bind viral RNA and

their downstream regulatory metabolic pathways from the host’s

perspective (Flynn et al., 2021; Khan et al., 2021; Schmidt et al.,

2021), the viral genome is known to mutate faster than the

host genome. This feature jeopardizes the efficacy of vaccines

and drugs. Moreover, different regions of viral genomes evolve

at different rates, with some regions being hypervariable and

others being conserved. Until now, few studies have assessed the

conservation of the virus and its relationship with the interaction

patterns between viruses and hosts, especially from the perspective

of synonymous mutations; more studies are needed to explore

this further.

Based on the foregoing questions, it is important to explore the

synonymous evolutionary rate (SER) in the open reading frames

(ORFs) of the SARS-CoV-2 genome, the factors that influence

the SER, and what rules can be drawn through comparison of

fixed-characteristic amino acid mutations with different lineages.

To answer these questions, using a mutation network approach

(Zhang C. et al., 2020; Wang Y. et al., 2021), we described the

distribution of the SER across the SARS-CoV-2 genome along with

its influential factors and explored the conserved motifs based on

the SER and the motifs’ potential functional relationships with

the host by performing enrichment analyses. We also assessed

the potentially important and functional amino acid mutations

based on the SER for identifying future dominant variants to better

control the pandemic.

Materials and methods

Sequence data

A total of 2,537,286 original SARS-CoV-2 genomic sequences

were downloaded from the Global Initiative on Sharing All

Influenza Data system (Elbe and Buckland-Merrett, 2017; Shu and

McCauley, 2017; Khare et al., 2021) as of 15 September 2021.

Sequences were excluded if they met any of the following criteria:

(1) genome size of <29,000 nucleotides; (2) >5% of undetermined

nucleotides; (3) non-human host. To further ensure sequence

quality, sequences with complete collection date, region details

(specific to the country), and a gap length of <400 bp were

included. The sequences were first aligned using MAFFT v7.310

(Katoh and Standley, 2013), with Wuhan-Hu-1 (MN908947.3) as

the reference. The alignment command was as follows: mafft-

−6merpair—thread-12—keeplength—addfragments othersequences

referencesequence > output. Moreover, the redundant sequences,

which are sequences with identical nucleotide compositions, were

filtered out; however, the redundant sequence with the earliest

collection time was included because the connected edges of the

mutation network are based on the mutation probability. If two

sequences were the same (without any mutation), the probability

between them was 1. Therefore, we believed that only transmission

and no evolution occurred between the two sequences and that

they could not provide more evolutionary information. Next, we

conducted stratified sampling per country (region) per day. Finally,

a total of 10,089 sequences were included in this study (accessible at

10.55876/gis8.230130ru; also, in Supplementary Table 7). We also

masked the problematic sites to avoid artificial errors using the

methods outlined at https://virological.org/t/masking-strategies-

for-sars-cov-2-alignments/480 (Oliver et al., 2021). Finally, we

filled the undetermined nucleotides or gaps with the element with

the highest frequency at the corresponding position based on

the top 10 closest sequences measured by the Hamming distance

(Wang Y. et al., 2021). Subsequently, except for stop codons and

non-coding sites, sites corresponding to protein-coding ORFs were

mapped to the reference sequence alignment and eventually used

to construct the mutation network.
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SER estimation

Following the methods outlined by Zhang C. et al. (2020),

a directed and weighted mutation network was constructed

with the nodes representing strains and links which represent

pairs of strains, and a mutation probability of no more than

the predetermined threshold (>10th percentile). The baseline

mutation probabilities among A, T, G, and C were extracted

from pairs of sequences with single-nucleotide differences in the

corresponding data. The mutation probabilities between pairs of

strains with different numbers of mutations were calculated as the

product of probabilities of the single mutations (Zhang C. et al.,

2020; Wang Y. et al., 2021) (Supplementary Figure 1). Paths on

the network were extracted using the random walk method. First,

20,000 start nodes were randomly chosen that have descendants

(out-degree 6= 0), and second, a random walk was executed from

selected start nodes. The paths yielded by the repeated randomwalk

were considered evolutionary paths in the real world. Moreover,

the nodes on the path had an evolutionary ancestor–descendant

relationship. To ensure sufficient divergence, only paths with more

than 1 month were included. Python package NetworkX v2.8.4 was

used for the analysis (Hagberg et al., 2008). In summary, for the

final mutation network, the input was 10,089 sequences and the

output was the evolutionary paths got from random walks.

Different ORFs in the SARS-CoV-2 genome have different

lengths (Supplementary Table S1). To avoid biases caused by the

ORF length, we used a codon-based sliding window approach;

a 600-bp window and 3-bp step were maintained. The 600-bp

window was set after considering the upper limit of the substitution

rate of the virus to ensure sufficient observation of substitutions

along any chosen path. The KaKs_Calculator v2.0 software MLWL

model was used to calculate the dS value (Tzeng et al., 2004; Wang

et al., 2010). The following command was used: KaKs_Calculator

-i input -o out -m MLWL. Next, a linear regression analysis of dS

on the collection time interval was performed, and the regression

line slope was represented as the SER for the start position of the

window (Ho and Duchene, 2014; Kim et al., 2022). The Kruskal–

Wallis test and Mann–Whitney U-test were used to compare the

statistical differences between the ORFs. Based on the SER (10th

percentile, 50th percentile, and 90th percentile), the genome was

divided into four regions: (1) the free region (the region with an

upper 90th percentile SER); (2) the slightly free region (the region

with an SER between the 50th percentile and 90th percentile); (3)

the partially constrained region (the region with an SER between

the 10th percentile and 50th percentile); and (4) the constrained

region (the region with an SER lower than the 10th percentile SER).

Motif identification and function
association analysis

With the constrained regions set as the target and three other

groups set as the background, we used STREME v5.5.0 and a zero-

order Markov model for background model creation in the MEME

suite server to find conserved sequence patterns (motifs) with a

sequence length of 3–30 bp (Bailey et al., 2015; Bailey, 2021), a P-

value of <0.001, and coverage of >70%. Next, we used the find

individual motif occurrence (FIMO v5.5.0) program to locate the

motif position with a P-value of <1e−4 for double chains in the

sequence (Grant et al., 2011).

The RNA motif data recognized by RNA-binding proteins

(RBPs) were obtained from a previous study (Ray et al., 2013);

only records from Homo sapiens were included. The Tomtom

motif comparison tool v5.5.0 in the MEME suite server is

used to compare motifs against a database of known motifs. In

this study, we used this tool to compare motif similarity and

identify host-associated proteins with default settings (Gupta et al.,

2007). Cytoscape v3.8.0 was used to visualize the protein–motif

relationships (Shannon et al., 2003). We also conducted Gene

Ontology (GO) enrichment analysis based on the hypergeometric

distribution using clusterProfiler v4.6.0 package in R with default

parameters (Yu et al., 2012).

Feature collection and model construction

To determine the dinucleotide composition (CpG and UpA),

we divided the dinucleotide frequency within the sequence by the

product of the frequency of each nucleotide (Mordstein et al.,

2021). All codon usage index types, including the codon bias index,

the effective number of codons, GC content and GC content in

the third codon (GC, GC3), and silent base composition (A3, T3,

G3, and C3), were calculated using CodonW v1.4.4 with default

parameters (Peden, 2000); the protein hydrophobicity was also

calculated using CodonW. The ω (dN/dS) value, which represents

the selection of entire ORFs, was estimated using the BUSTED

method in HyPhy v2.5.2 with default parameters (Murrell et al.,

2015). By contrast, the non-synonymous evolutionary rate (NER),

which represents the selection in codon sites, was calculated

similarly to SER by fitting the regression line of dN and the

collection time interval. The normalized van der Waals volume

and relative mutability for each window were extracted and

calculated using the AAindex2 database (Kawashima et al., 2008).

The minimum free energy of the RNA secondary structure in the

windows was determined using RNAstructure Fold server v6.4 with

the default parameters (Reuter and Mathews, 2010). Based on the

absolute difference between the two sequences, the aforementioned

features were used for the following analysis: for motif information,

“0” was assigned if the motif did not exist; “1” was assigned if the

motif existed in one sequence; and “2” was assigned if the motif

existed in both sequences.

Features were filtered based on the results of Spearman’s

correlation analysis. Based on the aforementioned features, a

light gradient-boosting machine (LightGBM) regression model

was constructed for determining the SER, and R-squared values

were used to measure any explicable variations (Meng and Liu,

2017). Next, 80% of the randomly selected data were used as

the training set, and the remaining 20% were set as the test

set. The GridSearchCV technique and 10-fold cross-validation

were employed to determine the best hyperparameters for model

construction (Pedregosa et al., 2011). Subsequently, the SHapley

Additive exPlanations (SHAP) value was used to explain the output

of the constructed machine learning model to evaluate feature

importance (Lundberg et al., 2020). The feature value represents the
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value of each feature in the model, ranging from small to large and

from blue color to red. The SHAP value represents the direction

and size of the SER affected by each sample; a value >0 indicates a

positive impact, and any other value indicates a negative impact.

LightGBM v3.3.3, scikit-learn v1.0.2, and shap v0.41.0 packages

were used for these analyses.

Comparison of fixed-characteristic
mutations in di�erent lineages

Fixed-characteristic amino acid mutations, including deletions

accumulated in different lineages, were downloaded from the Cov-

Lineages repository (https://cov-lineages.org/lineage_list.html).

Characteristic mutations in the lineages Alpha, Beta, Gamma,

Delta, and Omicron (sub-lineages: BA.1, BA.2, BA.2.12.1, BA.2.75,

BA.4, and BA.5) were used in our analysis (Supplementary Table 6;

Figure 4C).

Statistical analysis

The Kruskal–Wallis, Mann–Whitney U, and chi-square

tests (α = 0.05) were used with the stats.kruskal function,

stats.mannwhitneyu function, and stats.chi2_contigency function,

respectively, in SciPy 1.5.2 package in Python 3.8.5. Furthermore,

the ggplot2 3.3.5 package in R 4.1.1 and matplotlib 3.3.2 in Python

3.8.5 were used to generate most figures.

Results

SER landscape for the SARS-CoV-2 genome

We constructed the mutation network such that it was scale-

free (Supplementary Figure 2). Based on the created mutation

network, random walks were executed 20,000 times, and the

potential paths between sequence pairs were extracted. Because

of the strong similarities among SARS-CoV-2 viruses, only paths

between paired nodes with a time interval of >1 month were

included in the following analysis.

In general, the SER distribution across the whole genome was

extremely skewed and lopsided, displaying the characteristics of

Gamma distribution, with a median (Q1, Q3) of 6 × 10−4 (4 ×

10−4, 1.1 × 10−3) per site per year across all regions (Figure 1A).

The SER was highly variable, with averages ranging from 5 ×

10−4 to 2 × 10−3 per site per year (Figure 1B). Moreover, the

SERs of different ORFs (H = 982.1478, P < 0.001) and between

any of the ORFs (adjusted P < 0.05) were significantly different.

The SERs within the SARS-CoV-2 genome were also substantially

different (Figure 1C). The fluctuations were obvious, as indicated

through traditional diversity cues, implying that the SERs varied

widely and the synonymous substitutions tended to be enriched

or reduced in specific genomic regions. Based on the SERs (10th

percentile, 50th percentile, and 90th percentile), the genome was

divided into four regions, as explained in the Methods section

(Figures 1A, D). The overall SER for the S gene was low and

mostly located within the partly constrained region (Figure 1C),

which was different from that identified in the traditional diversity

analysis (Supplementary Figure 3). This difference was not caused

by the increased NER (Supplementary Figure 4). Moreover, the

SER in the ORF1ab region tended to have more freedom toward

a greater variation.

Characteristics of the conserved motifs in
the constrained region

To check whether conserved sequences (motifs) existed in

the constrained region (Supplementary Table 2), we performed an

enrichment analysis for comparing sequences in the constrained

region using other regions as the background. After strict filtering,

we obtained 10 motifs with a length of ∼9–15 bp (Figure 2A;

Supplementary Table 8). The Kruskal–Wallis test results indicated

that the base composition was statistically significant and that the

A + T content in the motifs was higher than the G + C content

(P = 6e−4) (Figure 2B). Furthermore, these motifs were found in

various ORFs throughout the genome (Figure 2C).

Previous studies have revealed that some regions of the viral

genome are preferred by host proteins (Flynn et al., 2021; Khan

et al., 2021; Lu et al., 2021; Schmidt et al., 2021). In other

words, the host RBPs could specifically bind certain sequences

such as motifs on the viral genome. The identified motifs

from the viral genome were thus compared with some known

binding motifs of the host RBPs. A total of 30 host protein

genes were found to be associated with the 10 identified motifs

(Figure 2D). Of note, some motifs may be targeted by more

than one host protein, and the same host protein may bind

different motifs in the viral genome. Remarkably, YBX1, which

was identified to bind Motifs3 and Motif6, was found to be

associated with viral infections, including SARS-CoV-2 and Zika,

and previous experiments have shown that knockout of this gene

can reduce the infection intensity (Zhang et al., 2022). Some other

associated host proteins were also found in some experimental

studies assessing viral infection; for example, SFPQ was found to

interact with the SARS-CoV-2 genome and promote viral RNA

amplification (Labeau et al., 2022). Functional GO annotation

revealed that these genes are involved in metabolic RNA regulation

(Figure 2E).

Factors contributing to the SER variations

To further investigate the factors that may contribute to the

variations in the SERs in the SARS-CoV-2 genome, the codon

usage index, the dinucleotide composition, the selection index,

the structure index, and the motif information were included

and fed into the model. The features were classified into five

groups: the codon usage index, selection index, dinucleotide

composition, structure index (Resch et al., 2007; Callens et al.,

2021; McGrath, 2021; Mordstein et al., 2021; Pintó and Bosch,

2021), and conserved motifs were identified in this study

(Supplementary Table 3). G3, gravy, van der Waals volume, and

aa mutations were excluded owing to high collinearity based on

the correlation coefficients (R2 > 0.9, Supplementary Figure 5),
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FIGURE 1

Landscape of synonymous evolutionary rate (SER) of the SARS-CoV-2 genome. (A) SER density distribution in all ORFs of SARS-CoV-2. (B) Violin plot

of SER distribution for representative ORF1a, ORF1b, S, and N regions. (C) SER across the whole genomes based on sliding windows. Black dotted

lines were 90th, 50th, and 10th percentile levels of SER. (D) Percentiles are used to divide regions. The greater the SER, the more freedom; the smaller

the SER, the greater the constraint.

whereas the other features were included and used in the

LightGBMmodel.

Based on cross-validation, the best model after grid search

(Supplementary Table 4) had an adjusted R2 of 0.72 on the training

dataset and 0.69 on the test dataset, indicating good performance

(Supplementary Table 5). According to the final model, factors

from the codon usage index group contributed the most to the

variations in the SERs (80.37%). GC3 (36.32%) was the most

important single feature, followed by the non-SER (16.60%) from

the group of selection (Figure 3).

Association between the accumulated
characteristic mutations and SERs

The characteristic mutations accumulated in the five main

lineages (Alpha, Beta, Gamma, Delta, and Omicron) were mapped

onto the SER landscape of the SARS-CoV-2 genome to investigate

their associations (Figure 4). Based on the classification of the four

regions across the genome based on the SER landscape, because

most mutations exist in the middle region, the chi-square test was

used to compare the number of characteristic mutations between
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FIGURE 2

Characteristics for the conserved motifs. Length (A) and Base composition (B) of identified motifs enriched in the constrained regions. The

identification indexes are defined by sorting by P-value from the smallest to the largest. (C) Positions of identified motifs on the genome. The

location of identified motifs was indicated by short black blocks in the ORFs. The vertical axis represents the credibility of the motif. (D) Motifs and

related human RBPs. Motifs are colored in blue, and RBPs are colored in red. (E) GO terms enriched for motif-related human RBPs, including

biological process, molecular function, and cellular component.
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FIGURE 3

Feature SHAP value and contribution. (A) SHAP value for the top 20 features. Each point represents a sample. A SHAP value greater than 0 contributes

to a higher SER, while a value less than 0 contributes to a lower SER. Feature value represents the value of each sample. (B) Feature importance pie

chart. The outer ring represents the grouping, while the inner ring represents each specific feature. Percentage represents the proportion of the total

interpretability.

the middle two groups, and the total number of positions in the

two groups was found to be consistent and comparable. From a

statistical viewpoint, the results of the four lineages that appeared

first (Alpha, Beta, Gamma, and Delta) and were used to estimate

the SER herein revealed that the characteristic mutations were

significantly preferred in the partially constrained region than in

the slightly free region (adjusted chi-square, P = 0.036) (Table 1).

For the Omicron lineages, the sequences of which were not

included in the SER estimation, characteristic mutations from the

BA.2, BA.2.12.1, BA.4, and BA.5 sub-lineages showed a significant

preference in the partially constrained regions, whereas the trend

was not significant for BA.1 (adjusted chi-square, P = 0.449).

For BA.2.75, a marginal P-value of 0.054 was obtained, indicating

insufficient significance.

Discussion

Viral synonymous changes are considered phenotypically

silent, not functionally important, and frequently ignored;

however, considering the continuing emergence of variants,

it is necessary to speculate the significance of each type of

mutation and its functional associations from the standpoint of

synonymous substitutions, which are generally less studied. In

this study, we found variations in the SERs across the SARS-

CoV-2 genome. These variations can be partly explained by

some factors, including the codon usage index, selection index,

dinucleotide composition, structure index, and conserved motifs.

Relevant motifs with extremely low SERs and potential functional

constraints were identified in the constrained regions. Possible

RBPs and their functions were also explored. The most important

factor influencing the SER is the codon usage index. Fixed

amino acid mutations are more likely to occur in partially

constrained regions with potentially important functions and better

adaptability. Our results indicated that the synonymous changes

in the SARS-CoV-2 genome are not completely random and may

be impacted by some fundamental functions and linked to the

adaptation of future dominant variants.

Overall, the SERs in the SARS-CoV-2 genome vary across

different regions. Their substitution rates (0.4–1.0 × 10−3 per

site per year) (Figure 1A) are slightly lower than the traditionally

observed substitution rates (approximately 10−4-10−3 per site per

year) based on the observed diversity (Boni et al., 2020; Chaw

et al., 2020; Sharun et al., 2021; Singh and Yi, 2021), and the SER

still follow the gamma distribution pattern (Kelly and Rice, 1996).

The SERs were estimated using data from the first 2 years after

SARS-CoV-2 infected the population. To achieve a certain level of

adaptability after the virus has just infected the population, the virus

will ensure a higher substitution rate than that in the equilibrium

state, and this equilibrium state level may be closer to the estimated

rate from synonymous sites. Statistically different SER distributions

were also observed in several ORFs (Figure 1B) and different SER

Frontiers inMicrobiology 07 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1136386
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Sun et al. 10.3389/fmicb.2023.1136386

FIGURE 4

Characteristic mutations in five lineages. (A) Accumulated characteristic mutations in Alpha, Beta, Gamma, and Delta lineages. (B, C) Accumulated

characteristic mutations in the Omicron lineage and their specific positions.

levels (Figure 1C) for positions. Discrepancies in the SERs between

ORFs were also consistent with previous findings on dS estimation

for other coronaviruses and SARS-CoV-2 (Singh and Yi, 2021;

Wang H. et al., 2021).

In addition to the very high and very low SER values owing to

the strong selection, we divided the middle 80% of the SERs into

two groups. In contrast to the results obtained using traditional

methods, where mutation events and entropy are considered,

SER was found to be low in the S region in which diversity

was previously thought to be high (compare Figure 1C and

Supplementary Figure 3). The S protein is the most important

surface protein in coronaviruses and is closely related to the virus
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TABLE 1 Statistical test for positions of characteristic mutation accumulated in lineages.

Region Number of characteristic mutations Number of not characteristic mutations P value∗

Alpha, Beta, Gamma and Delta

Slightly free region 15 3,307 0.036

Partly constrained regions 30 3,292

Omicron-BA.1

Slightly free region 19 3,303 0.449

Partly constrained regions 25 3,297

Omicron-BA.2

Slightly free region 13 3,309 0.005

Partly constrained regions 33 3,289

Omicron-BA.2.12.1

Slightly free region 15 3,307 0.010

Partly constrained regions 34 3,288

Omicron-BA.2.75

Slightly free region 16 3,306 0.054

Partly constrained regions 30 3,292

Omicron-BA.4

Slightly free region 17 3,305 0.018

Partly constrained regions 35 3,287

Omicron-BA.5

Slightly free region 13 3,309 0.003

Partly constrained regions 34 3,288

∗Adjusted chi-square test.

infectivity and pathogenesis (Andersen et al., 2020; Li Y. et al.,

2021). The S protein has important evolutionary functions and

functional constraints. However, owing to host switching and the

long-term arms race with the host, this region experiences a certain

degree of freedom, with a lot of changes occurring when it retains

its original functions. Moreover, the higher diversity in the S region

when counting mutation events or entropy may also be linked to

the slightly deleterious mutations, which can later be removed by

purifying selection. Furthermore, these measurements of diversity

do not consider the rate of changes over time. However, from the

SER viewpoint, the S protein region has important functions and

certain adaptabilities, mostly in the partially constrained regions.

All of these observations indicate that S protein changes impact the

virus and could be related to adaptation.

Viruses have a simple structure, and they interact with

appropriate hosts to cause infections. The viral genome plays

a significant role when infecting a host (Ma-Lauer et al., 2012;

Getts et al., 2013). The characteristics of conserved motifs from

the constrained regions may indicate their functional importance

during their interaction with a host. When matching the binding

motif sites of human RBPs (Figure 2D), the identified motifs

become associated with human RBPs, and some of the associated

host RBPs have been identified and studied in previous coronavirus

disease 2019-related studies. The knockdown of YBX1, which

is associated with Motif3 and Motif6, reduces the viral RNA

levels in both SARS-CoV-2 and Zika virus (Zhang et al., 2022).

Together with YBX1, ELAVL1, which is found in viral RBP

interactomes of SARS-CoV-2, is an IGF2BP1-related protein and

a known mRNA stabilizer in humans, contributing to the stable

translation of its target genes (Zhou and Pan, 2018). SFPQ,

which interacts with the SARS-CoV-2 genome and promotes viral

RNA amplification (Labeau et al., 2022), has been experimentally

proven as a host factor required for the transcription of influenza

virus; this can improve the transcription efficiency of viral mRNA

polyadenylation (Landeras-Bueno et al., 2011). Furthermore,

several RBM family proteins were involved in various steps of host

RNA metabolism, including splicing, transportation, translation,

and stability (Li Z. et al., 2021); moreover, the RBM family

proteins were associated with the motifs identified in this study

(Figure 2D). Functional annotation of these genes demonstrated

their roles in RNA stabilization, binding single-stranded RNA,

and translation regulation (Figure 2E). Our findings related to the

conserved motifs from the constrained region and their potential

functional importance provide a better understanding of the

complete interaction landscape between the pathogen and host

and may provide useful information for identifying novel drug or

vaccine targets.

The features included in our model explained 72% of the SER

variation. Among all the identified factors, sequence nucleotide

and codon usage preferences were found to play a significant role
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(Figure 3). Previous experiments in eukaryotes and prokaryotes

have shown that codon usage bias is associated with gene expression

and translation efficiency (Frumkin et al., 2018; Yang et al., 2019).

The SARS-CoV-2 genome is AU-rich and has a clear preference

for AU-rich codons over GC-rich codons; a similar trend has been

observed in other coronavirus genomes, where UpA and CpG

dinucleotides were strictly avoided. This may be attributable to

the fact that viruses need to use host tRNA for translation and

that the relative abundance of tRNAs in humans is inconsistent.

Preference toward a certain nucleotide composition could improve

viral translation efficiency in the host (Dilucca et al., 2020). Another

explanation is that this bias may help viruses evade the innate

immune response in humans (Roy et al., 2021). The significant

number of synonymous transitions from C to U, which were

reported in previous studies of the SARS-CoV-2 genome (De

Maio et al., 2021; Morales et al., 2021) as well as observed in

our study, was consistent with this phenomenon. The selection

index substantially contributes to the variations in SERs (17.16%),

with the single feature of the non-SER contributing the highest,

indicating the importance of the contribution of selection pressure

from the function requirement.

As new variants continue to emerge, previous studies have

identified some characteristic mutations (including deletions)

that are associated with viral transmissibility or infectivity

(Bhattacharya et al., 2021; Kannan et al., 2021; Kumar et al.,

2022; Papanikolaou et al., 2022). We found that the accumulated

characteristic mutations mostly occurred in the partly constrained

regions (Figure 4; Table 1); for example, the well-known P681H,

Y505H, and E484K mutations occurred in the S region of many

lineages. The location of the mutations in the partly constrained

regions may play important roles; for example, they may alter

the transmission rates and pathogenicity but simultaneously have

the flexibility for tolerating mutations. Given that the Omicron

genomes form a new monophyletic group (Kandeel et al., 2021),

Omicron-related comparisons are more meaningful only when

their sub-lineages are compared. For example, mutations are not

significantly present in the partly constrained regions of Omicron

BA.1; however, the opposite is observed for BA.2. Relevant studies

have shown that BA.2 is more infectious than BA.1 (Elliott et al.,

2022; Lyngse et al., 2022) and that the strains BA.2.75 and BA.2.12.1

exhibit the same phenomena as BA.2 (Table 1). These observations

indicate that BA.1 may not be fully adapted as compared with the

other lineages, owing to its sudden emergence. Mutations were

indeed enriched in the partly constrained regions of BA.4 and

BA.5. These strains are expected to become popular dominant

strains and subsequently evolve into some new sub-lineages. One

should pay careful attention to these sub-lineages, especially to

BA.5, because the majority of their accumulated mutations have

important functions. Thus, an estimate of the genomic SER

can help quickly determine whether a mutation has significant

impacts on circulation and could uniquely contribute toward rapid

decision-making for preventing epidemics by compensating for the

limitations of time-consuming laboratory tests.

Our study also has some limitations. (1) Our results are only

based on the SARS-CoV-2 genome, and similar investigations

in other viruses are warranted in the future. (2) The conserved

motifs and their potential binding relationships with the host

RBPs were mainly inferred through computational analyses, which

require further experimental validation. (3) Some factors may not

have been included in the SER variation analysis, which may

have biased the understanding presented herein, and therefore,

further investigation is warranted. (4) To identify important

variants, other clues still need to be found and explored. Taken

together, rather than ignoring synonymous mutations, one must

pay further attention to them and explore the relationship between

the synonymous mutations and other factors and the underlying

mechanisms. All the relevant evidence gathered over time will

ultimately help us to better prevent and control existing and future

infectious diseases.
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