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E�cient traceless modification of
the P1 bacteriophage genome
through homologous
recombination with enrichment in
double recombinants: A new
perspective on the functional
annotation of uncharacterized
phage genes

Agnieszka Bednarek, Katarzyna Giermasińska-Buczek and
Małgorzata Łobocka*

Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland

The advent of high-throughput omic technologies has caused unprecedented
progress in research on bacteriophages, the most abundant and still the least
explored entities on earth. Despite the growing number of phage genomes
sequenced and the rejuvenation of interest in phage therapy, the progress in
the functional analysis of phage genes is slow. Simple and e�cient techniques
of phage genome targeted mutagenesis that would allow one to knock out
particular genes precisely without polar e�ects in order to study the e�ect of
these knock-outs on phage functions are lacking. Even in the case of model
phages, the functions of approximately half of their genes are unknown. P1 is an
enterobacterial temperate myophage of clinical significance, which lysogenizes
cells as a plasmid. It has a long history of studies, serves as a model in basic
research, is a gene transfer vector, and is a source of genetic tools. Its gene
products have structural homologs in several other phages. In this perspective
article, we describe a simple and e�cient procedure of traceless P1 genome
modification that could also serve to acquire targeted mutations in the genomes
of certain other temperate phages and speed up functional annotations of
phage genes.
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Introduction

Bacteriophage P1 is a model temperate tailed myovirus of known genomic sequence

(93.6 kb) isolated from Escherichia coli (Bertani, 1951; Yarmolinsky and Sternberg, 1988;

Łobocka et al., 2004). It can develop lytically or lysogenize representatives of different

genera of the Enterobacteriaceae and Rhizobiaceae families and can serve as a DNA

donor to certain infection-proficient bacteria even if they cannot support its propagation
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(Kaiser and Dworkin, 1975; Murooka and Harada, 1979; O’Connor

and Zusman, 1983; Yarmolinsky and Sternberg, 1988; Giermasińska

and Łobocka, 2016; Keller et al., 2021). In lysogens, P1 is

maintained as a unit-copy circular plasmid. P1-related prophages

or plasmids are prevalent in natural isolates of E. coli, Klebsiella,

Salmonella, and Shigella (Gilcrease and Casjens, 2018; summarized

by Łobocka and Gagała, 2021). Some of these prophages and

plasmids undergo frequent transmission among bacteria of human

gut microbiota or carry antibiotic resistance determinants, making

P1 a phage of clinical significance (Colomer-Lluch et al., 2011;

Billard-Pomares et al., 2014; Bai et al., 2017; Yang et al., 2017; Pfeifer

et al., 2022). Owing to its transducing potential, wide host range,

and the ability to form lysogens, P1 has played an important role in

the genetic mapping of E. coli chromosomes, in studies on basic

molecular processes, and acquisition or construction of genetic

engineering tools (Lennox, 1955; Tyler and Goldberg, 1976; Singer

et al., 1989; Schofield et al., 2001; Westwater et al., 2002; Lehnherr,

2006; Wachsman and Heidstra, 2010; Huang and Masters, 2014;

Yarmolinsky and Hoess, 2015). It is still among the most commonly

used tools for general transduction in bacterial genome engineering

(Thomason et al., 2007).

Early studies on P1 allowed mapping of certain mutations

abolishing or modifying P1 development, morphology, or

plasmid maintenance functions (summarized in Yarmolinsky

and Sternberg, 1988 and in Łobocka et al., 2004). However,

despite the determination of a complete P1 genomic sequence

and identification of major P1 virion components (Łobocka et al.,

2004; Gonzales et al., 2022), the functions of several P1 genes are

unknown. Meanwhile, the ability of P1 to lysogenize cells provides

a possibility to functionally analyze the P1 genome by knocking out

or modifying its genes one by one through targeted mutagenesis,

even if the constructed mutants could not be propagated as

phages. The progress in such analysis depends on the techniques

of mutant construction and the efficiency of mutant recovery.

The results should not only help in the functional assignment

of P1 proteins of unknown roles but also provide hints as to the

functions of similar proteins encoded by phages, which cannot be

easily studied.

Selection of double recombinants to
acquire P1 mutants without using
markers selective for the mutations

The introduction of any mutation to prophage DNA by

homologous recombination between the prophage and donor

DNA with a mutation, cloned in a plasmid, requires double

crossover between homologous regions flanking the target and

the mutant fragments. While a single crossover leads to plasmid

integration with phage DNA, the second crossover leads to plasmid

excision, which eventually results in the exchange of the wild-

type and mutant fragments. In the method described here, we

took advantage of the possibility of separating these reactions.

In addition, we found a way to distinguish lysogens with single

prophage recombinants from those in which the plasmid was

excised from the prophage. Using the latter for prophage induction

appeared to be a simple strategy to significantly increase the

frequency of desired mutant recovery, so there is no need to use

any selective marker in donor DNA.

In our attempts to construct targeted P1 mutants by

homologous recombination using the P1 DNA fragments with

mutations, cloned in high-copy number plasmids with an

ampicillin resistance determinant, we observed that while P1

lysogens containing a given plasmid with a P1 DNA insert (e.g.,

pUCP1/x or pBRP1/x, where x is the insert designation) in

a free form are resistant to ampicillin at high concentrations

(≥500µg/ml), lysogens containing such plasmid integrated with

the P1 prophage are sensitive to ampicillin at high concentrations

while remaining resistant to ampicillin at low concentrations.

We used this difference in the sensitivity to ampicillin to enrich

the population of P1 bacteriophages obtained by the induction

of thermosensitive lysogens containing different pUCP1/x or

pBRP1/x donor plasmids with the progeny of prophages in

which a given donor plasmid was initially inserted in the P1

genome as a result of single homologous recombination but

recombined out (as a result of second homologous recombination).

This strategy significantly increased the recovery of mutations

introduced to P1 progeny by the recombination between the P1

prophage and the P1 DNA fragment with a mutation cloned

in a plasmid (Figure 1, Table 1 and Supplementary Table S1). In

brief, the P1 bacteriophage obtained by the thermal induction

of P1 mod749::IS5 c1-100 IS1::Tn9 (cmR) lysogen, as described

previously (Bednarek et al., 2022), was used to infect cells of E.

coli containing a pUCP1/x or pBRP1/x plasmid with a desired

mutation in the cloned fragment of P1 DNA. Lysogens selected

on LB medium with chloramphenicol (12.5 µg/ml, selective

for the incoming phage) and ampicillin (100 µg/ml; selective

for the resident plasmid) were purified on the same medium.

Next, they were used to inoculate liquid medium with a lower

ampicillin concentration (50 µg/ml; selective for the integrated

as well as free plasmid), and served to induce a prophage.

The phages obtained were used to lysogenize E. coli cells. To

obtain only lysogens of phages that contained a desired plasmid

integrated with phage DNA, the lysogens were selected on LB

solid medium supplemented with chloramphenicol (12,5µg/ml)

and ampicillin (50µg/ml). In total, 8–10 single colonies of

lysogens were used to inoculate the LB medium (1ml) with

chloramphenicol (12.5µg/ml) and ampicillin (50µg/ml). The

cultures were grown overnight with shaking at 30◦C to increase

the chance of recombination and transferred to fresh portions

of LB medium (10ml) with chloramphenicol (12.5µg/ml) and

ampicillin (500µg/ml) permissive only for the growth of those

cells of lysogens in which the integrated plasmid recombined out

from the prophage genome. Cultures of lysogens that increased

their optical density in this medium after overnight incubation

were used for the thermal induction of the prophage. The obtained

phages were used to lysogenize E. coli cells. Lysogens were selected

on LB solid medium supplemented only with chloramphenicol

(12.5µg/ml) and screened for the ability to grow on a medium

supplemented with ampicillin (50µg/ml) to eliminate those that

contained the plasmid inserted in the prophage genome. Lysogens

that were sensitive to ampicillin were screened for the presence of

the desired mutation in the P1 genome upon thermal prophage

induction by restriction digestion or sequencing of the relevant P1

genome region amplicon.
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FIGURE 1

Scheme of P1-targeted mutation acquisition by homologous recombination and enrichment of recombinant pool in double recombinants. The P1
designation in the figure indicates the P1 c1-100 mod749::IS5 IS1::Tn9 mutant. E. coli strain N99 (galK2, strR) (Gottesman and Yarmolinsky, 1968) was
used as a host for the P1 prophage in all experiments. Black arrows indicate the order of laboratory procedures and red arrows indicate the revevant
changes in the content of cells at various stages of the experiment. Created with BioRender.com.

E�ciency of mutant recovery from the
phage progeny population enriched in
double recombinants

As a proof of the concept, when the aforementioned

enrichment method was used to insert the kanamycin resistance

cassette to the P1 lydD or pdcB gene, but without the use of

kanamycin for mutant selection, the efficiency of desired mutant

recovery was up to nearly 40 times higher than that with the use

of a similar procedure but without the enrichment step (Table 1,

Exp. 1). Consistently, various insertion and deletion mutations

(indels) in P1 genes were recovered with such high efficiency that

the screening of 10–30 lysogens obtained upon the enrichment step

was in most cases sufficient to recover the desired mutant (Table 1,

Exp. 3–6). Moreover, the efficiency of mutant recovery seemed

to correlate with the number of cultures grown upon transfer to

medium with high ampicillin concentration, indicative for plasmid

excision from the prophage. While typically cultures of most of

the 10 lysogens transferred to this medium grew, in the case of
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TABLE 1 Influence of the P1 population enrichment in double recombinants on the frequency of recovery P1 mutants created by homologous

recombination between prophage P1 and donor DNA in a plasmid.

Experi-ment Resident P1
c1-100

mod749::IS5

IS1::Tn9

mutationa

Introduced
mutatione

Flanking regions
of homology in

bp (L/R)b

Number of P1 mutants
recovered without

enrichmentc

Number of P1
mutants

recovered upon
enrichment

1 Unchanged lydD::kanR 221/648 1/100 36/100

2 Unchanged pdcB::kanR 367/443 0/100 7/100

3 Unchanged lydC112_13TG 434/1628 0/100 12/100

4 lydC112_13TG lydB118_420 603/272 NT 2/34

5 Unchanged lydA::195_196GATC 239/1526 NT 2/13

6 1lyz::Rλ lydA::195_196GATC 239/1526 NT 3/24

7 Unchanged lydD116_81 456/399 NT 1/80

8d Unchanged parAB::kanR 491/388 0/100 0/100

aThe P1 c1-100 mod749::IS5 IS1::Tn9 bacteriophage and its mutants used in this study to introduce additional mutations were the same as described in Bednarek et al. (2022).
bL/R—left/right.
cNT—not tested.
dNo ampicillin-sensitive colonies of this mutant lysogen could be recovered upon lysogenization of E. coli with phages obtained upon induction of P1 lysogens grown in the presence of

ampicillin at a high concentration.
eThe functional assignments of genes targeted in this study are the following: pinholin (lydD), unknown (pdcB), holin (lydC, lydA), antiholin (lydB), and plasmid partition (parAB).

experiment 7, when we recovered only one mutant per 80 tested

clones, only three cultures grew upon transfer (Table 1, Exp. 7).

Our procedure appeared to be unsuitable only for the recovery of

P1 mutant with the insertion of a kanamycin resistance cassette

inactivating the P1 partition operon parAB, which is essential for

the stable maintenance of P1 plasmid prophage (Table 1, Exp. 8)

(Austin and Abeles, 1983). Prophages that acquired the mutation

upon plasmid recombining out were in most cases immediately

lost from cells, when kanamycin was not used for their selection.

Consistently, we did not have problems with their recovery when

we used kanamycin for their selection.

Discussion and future perspectives

The development of simple methods of bacteriophage genome

engineering is a necessary step in studies on the functions of phage

genes and the construction of phages with new properties. Several

methods of phage-targeted mutagenesis have been implemented,

but even in the case of temperate phages, they have limitations

associated with them, e.g., low efficiency, the requirement of

specific genetic tools or sophisticated methodology, applicability

only to a single phage-host system, or the limited type of mutations

that can be introduced (Chen et al., 2019; Łobocka et al., 2021).

The method presented here is simple, efficient, does not require

any specific genetic tools, and allows the introduction of various

kinds of changes to phage DNA tracelessly, without the need to

use a selective marker for the introduced change. Like the previous

methods described, it is based on RecA-mediated homologous

recombination between phage DNA and donor DNA cloned in a

plasmid between sequences homologous to the flanks of a target

phage gene (Chen et al., 2019). In this system, the acquisition of

mutation by the phage requires plasmid insertion and plasmid

excision from phage DNA. As a result, some double phage

recombinants acquire the mutation. They can form a progeny if

the mutation does not abolish the function of the essential phage

gene. However, the progeny of phages released from cells used as a

recombination platform contains single and double recombinants,

as well as phages that did not participate in any recombination

event. Thus, in examples described previously, the desired mutants

were recovered with low efficiency (10−7-10−3), and their detection

required plaque hybridization with specific probes, which is too

tedious and too expensive to study a large number of genes (Sarkis

et al., 1995; Oda et al., 2004; Tanji et al., 2004; Namura et al.,

2008). Here, we show, using temperate phage P1 as an example,

that applying a high-copy number plasmid carrying the ampicillin

resistance marker as a vector for donor DNA enables selection from

among cells that served as a recombination platform, preferentially

the cells with double-phage recombinants. Our procedure appeared

to be so efficient in the enrichment of the phage population with

double recombinants that screening of 10–30 lysogens obtained

upon the enrichment was in most cases sufficient to recover a

desired mutant. A limitation of our method is that its success

depends on the lytic propagation of mutant phages. Thus, one

cannot use it to isolate lack-of-function mutants in essential genes

unless the cells used for the lysogenization in the last step contain a

relevant plasmid providing the complementing function. However,

mutants with slight modifications of certain essential proteins,

e.g., extending the recognition specificity of tail fibers, should be

possible to isolate.

Two methods were used previously for the targeted

mutagenesis of P1: the bacteriophage recombineering with

electroporated DNA method (BRED) and the Datsenko and

Wanner method (Datsenko and Wanner, 2000; Fehér et al., 2012;

Murphy, 2016; Piya et al., 2017; Gonzales et al., 2022). Both of

them are based on homologous recombination between the P1

genome and electroporated linear donor DNA with short (∼50

bp) regions of homology to flanks of the target P1 gene. The

recombination function and protection of donor DNA ends from

degradation are provided by the λ Red system proteins (Gam, Bet,
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and Exo), the genes of which are expressed from a plasmid. In the

BRED method, donor DNA and P1 phage DNA are electroporated

together into Red-producing cells, and the recombinants carrying

the desired mutation are recovered by the screening of plaques

(Fehér et al., 2012). The P1 mutant deprived of the IS1 insertion

sequence was constructed in this way, but the method required

tedious optimization and suffered from the low efficiency of

94-kb P1 DNA electroporation to cells (Fehér et al., 2012). The

method of Datsenko et al. was used to replace certain P1 genes

with the kanamycin resistance cassette (Piya et al., 2017; Gonzales

et al., 2022). Lysogens of P1, carrying a Red-expressing plasmid,

were electroporated with linear donor DNA and used for the

induction of P1 lytic development. The obtained phages were used

to lysogenize cells, but a selective marker in the donor DNA (the

kanamycin resistance gene) was required to select the lysogens

of mutants. It could be removed in cells expressing the yeast

FLP recombinase gene from a plasmid if the marker was flanked

by FRT sites—FLP recognition targets (Datsenko and Wanner,

2000). However, the removal requires an intracellular source of

FLP recombinase and always retains an 82–85-bp scar in place

of the disrupted gene, which may cause polar effects and limit

the use of this method to knockout the last genes in operons. In

our method, the mutation of interest in donor DNA needs to be

flanked by longer fragments of homology to a prophage compared

with the BRED method and the Datsenko and Warner method to

satisfy the requirement of RecA-mediated recombination (Table 1).

However, our method outperforms both of the aforementioned

methods in several other aspects. It is fast and simple. It can be

used to introduce subtle changes to phage DNA, such as nucleotide

substitutions and small and larger insertions or deletions. It does

not require any selective marker in the donor DNA or any extra

plasmids providing recombination functions. In addition, it does

not require tedious optimization and can serve to modify a phage

genome of any size.

In studies presented here, the acquisition of mutations in a

few genes of P1 served as an example of our method utility. In

further perspective, numerous other genes of P1 could be mutated

that way to elucidate their roles or to obtain P1 derivatives of

new properties. Our method can be potentially used also for the

modification of genomes of certain other phages. Its limitation

is the applicability only to temperate phages, the hosts of which

are sensitive to ampicillin and can be transformed with high-copy

number plasmids carrying an ampicillin resistance marker. The

criteria of suitable hosts are met not only by E. coli but by at least

some other Gram-negative bacteria, such as Shigella, Salmonella,

Klebsiella, and Yersinia. Several their strains could be transformed

with the pBR322 plasmid or its derivatives carrying an ampicillin

resistance marker (Gómez-Eichelmann, 1979; Corton et al., 1987;

Bukholm et al., 1990; O’Callaghan and Charbit, 1990; Shireen et al.,

1990; Trevors, 1990; Binotto et al., 1991; Roy et al., 1995). The use

of our method to acquire and study mutants of certain temperate

phages that infect these bacteria could significantly expand the list

of functionally annotated phage genes.
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