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Antimicrobial Resistance (AMR) raises a serious concern as it contributes to the 
global mortality by 5 million deaths per year. The overall impact pertaining to 
significant membrane changes, through broad spectrum drugs have rendered the 
bacteria resistant over the years. The economic expenditure due to increasing 
drug resistance poses a global burden on healthcare community and must 
be dealt with immediate effect. Nanoparticles (NP) have demonstrated inherent 
therapeutic potential or can serve as nanocarriers of antibiotics against multidrug 
resistant (MDR) pathogens. These carriers can mask the antibiotics and help 
evade the resistance mechanism of the bacteria. The targeted delivery can 
be fine-tuned through surface functionalization of Nanocarriers using aptamers, 
antibodies etc. This review covers various molecular mechanisms acquired by 
resistant bacteria towards membrane modification. Mechanistic insight on ‘NP 
surface-bacterial membrane’ interactions are crucial in deciding the role of NP as 
therapeutic. Finally, we highlight the potential accessible membrane targets for 
designing smart surface-functionalized nanocarriers which can act as bacteria-
targeted robots over the existing clinically available antibiotics. As the bacterial 
strains around us continue to evolve into resistant versions, nanomedicine can 
offer promising and alternative tools in overcoming AMR.
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1. Introduction to AMR

The emergence of antimicrobial resistance is rendering antibiotics ineffective for an ever-
increasing number of infections. World Health Organization (WHO) reported in 2019, the 
pipeline of 32 new antibiotics against the priority pathogens, amongst which only 6 of them were 
found to be novel. A study published in The Lancet 2022, suggests 4.95 million mortalities can 
be attributed to cases concerned with resistant bacterial infections (Murray et al., 2022). Out of 
which, 1.27 million fatalities were solely due to AMR. Hence, antimicrobial resistance poses a 
global threat and requires concerted actions with immediate effects by the healthcare community 
and the policy makers. Bacterial resistance arises mainly due to the lack of proper stewardship 
of the available drugs. The broad range antimicrobials generally prescribed to treat wide 
spectrum of bacterial infections and the ease of availability of the drugs became the root cause 
of drug resistant infections. Till date, the pace of discovery and approval of novel therapeutics 
is a limiting factor.
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WHO enlists a category of fatal pathogens as ESKAPEE which 
includes Enterococcus faecium, Staphylococcus aureus, Klebsiella 
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, 
Enterobacter spp., and Escherichia coli species reported to have become 
MDR pathogens. Broadly, the antibiotic-sensitive strains undergo 
genomic mutation or acquire antibiotic-resistant genes through 
horizontal gene transfer. These strains result in pathogenic MDR 
phenotype and the culprit behind most nosocomial infections. Plenty 
of clinical data into the mechanisms of antibiotic resistance obtained 
from isolated pathogenic microorganisms across hospitals is being 
reported routinely (Wang et al., 2020b; Murray et al., 2022). Hence, it 
is imperative to thoroughly explore potential targets both at the 
genotypic and phenotypic level. Membrane-based targets being the 
first line of defence should be  closely investigated, especially in 
ESKAPEE subgroup as they have the potential to respond towards 
novel therapeutics and reverse AMR.

Emerging technologies such as nanomedicine have potential as 
alternative therapeutics in mitigating AMR. Nanoparticles exhibit 
innate anti-bacterial potential or can serve as a ‘Trojan-horse’ to deliver 
antibiotics to drug resistant bacteria. Antibiotics administered in bulk 
can cause tissue-toxicity, but is administered nonetheless in increased 
doses to mitigate the pathogen and achieve its therapeutic effect. At the 
physiological level, utilizing nanocarriers as antibiotic-delivery vehicle 
have shown promising outcomes mainly due to improved 
pharmacokinetics in terms of lowering the volume of distribution of 
antibiotic at the site of infection and extending serum half-life due to 
slow antibiotic release. These nanocarriers can be further improvised 
by decorating their surface with molecules like antibodies, aptamers 
etc. specific to targets on the bacterial membrane and reduce the 
undesirable systemic toxicity in patients.

This review covers the different mechanisms used by the MDR 
pathogens for membrane modification. In our research for this review 
article, we came across few articles highlighting the mechanism of 
bacterial death. Therefore, we have mainly included recent articles 
which elaborated on the mechanistic insights into bacterial 
membrane-nanoparticle surface interaction. We believe, this can have 
implications in establishing the significant role of NPs as an alternative 
or synergist to antibiotic therapy. Since the bacteria continue to 
develop resistance to the available antibiotics, nanomedicine can prove 
to be  a boon as a targeted molecular therapy in combating 
MDR pathogens.

2. General mechanism of 
membrane-mediated AMR

Antimicrobial resistance is the ability of the bacteria to resist the 
action of an antimicrobial hence making the treatment unsuccessful. 
The problem is aggravated due to the ability of many pathogenic 
bacteria to form biofilms and the presence of persister cells in the 
population. These cells occupy around 1% of the bacterial population 
in the culture that is in the dormant phase (Keren et al., 2004; Wood 
et al., 2013). The bacterial resistance mechanisms could be intrinsic, 
i.e., the inherent nature of some bacterial species to possess functional 
or structural modifications providing resistance to the antibiotic. 
Acquired resistance, however, is the resistance developed over time 
from selection pressure or through horizontal transfer from other 
bacterial strains. The overall resistance mechanisms can be categorized 

as: (a) limiting drug uptake, (b) target modification, (c) drug 
inactivation, and (d) activated efflux pumps (Figure 1).

 (a) Limiting drug uptake

The limited drug uptake arises due to certain structural 
components of the Gram-positive and the Gram-negative bacterial 
cell walls that provide a barrier to the uptake of many antimicrobial 
agents. The presence of an additional outer layer with increased lipid 
content in case of mycobacteria, allows the passage of hydrophobic 
drugs with ease but limits the access of hydrophilic drugs (Lambert, 
2002). Gram negative bacteria possess an additional outer membrane 
that permits the passage of the hydrophilic drugs through β-barrel 
protein channels called porins (Gill et al., 1998; Blair et al., 2014). 
Drug uptake through these channels is often restricted by 
downregulation of these porins. Recently, it was identified that 
K. pneumoniae mediates resistance against carbapenem, considered as 
a drug of last resort, via mutations that constrict the outer membrane 
porins (OmpK35) and (OmpK36; Wong et  al., 2019) and restrict 
uptake of the antibiotic.

 (b) Target modification.

Of the most common modifications used by the Gram-positive 
bacteria towards the beta lactam antibiotics are the variation in the 
penicillin binding proteins (PBPs). The altered PBP2a protein acquired 
by methicillin resistance gene (mecA) present on Staphylococcal 
cassette chromosome mec (SCCmec) mobile genetic element in 
S. aureus (Reygaert, 2009) confers resistance to methicillin. 
Vancomycin resistance is acquired through van genes, resulting in the 
altered metabolites of peptidoglycan synthesis, causing decreased 
binding to the antibiotic (Beceiro et al., 2013; Cox and Wright, 2013).

 (c) Drug inactivation.

Yet another mechanism of resistance is through drug inactivation 
that occurs in majorly two ways: by complete degradation or by 
surface modification. Actual degradation of a drug can be  done 
through hydrolyzing enzymes such as beta-lactamase. There are over 
7,000 characterized β-lactamases. Carbapenamases such as 
K. pneumoniae carbapenemase (KPC), New Delhi metallo-β-
lactamase (NDM) and oxacillinase (OXA) are known to inactivate 
multiple antibiotics such as cephalosporins and penicillins apart from 
carbapenems (Queenan and Bush, 2007). However, tetracycline class 
of antibiotic can be inactivated through tetX gene (Kumar et al., 2013; 
Blair et al., 2015). TetX catalyzes resistance through oxygen mediated 
drug destruction, depending on flavin adenine dinucleotide (FAD) for 
its monooxygenase activity (Yang et al., 2004). Bacteria also produce 
enzymes that are capable of altering the drug molecule. Enzymes such 
as phosphotransferases can modify drugs such as aminoglycosides 
and macrolides (Golkar et al., 2018).

 (d) Activated efflux pumps.

Other category includes the genes encoding efflux pumps, which 
are present on the bacterial chromosomes. Some of these genes 
exhibit constitutive expression while others are induced through a 
stimulus or a specific substrate. The primary purpose of these efflux 
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pumps is to eject out the toxic substances out of the cell (Blair et al., 
2014). Some recent studies in resistant Acinetobacter nosocomialis, 
showed that AdeRS two component system (TCS) confers resistance 
to tigecycline, eravacycline antibiotics through Ade ATP binding 
cassette (AdeABC) efflux pump (Lee et al., 2020) therefore, AdeRS 
system can be a prospective drug target against tigecycline resistance. 
Similarly, these broad-spectrum antibiotics of last resort have also 
been targeted in the Gram-positive Staphylococcus species, through 
a variation in Tet(L) efflux pump leading to a compromise in the 
effective treatment with these drugs (Wang et  al., 2021). Other 
significant impact of resistance to tetracyclines and ciprofloxacins is 
through CmeABC efflux pump in Campylobacter jejuni. The cmeA 
gene was found to be  highly expressed in tetracycline resistant 
isolates hence, conferring resistance (Sharifi et al., 2021). Evolution 
has paved a way for many efflux pumps to become major mediators 
of antimicrobial resistance.

3. Resistance via bacterial membrane 
modification

Bacterial membranes form an accessible target for majority of the 
antimicrobials. The outer membrane in Gram-negative bacteria 
performs a vital role in forming an additional protective layer without 

compromising on the exchange of components important for 
sustainability. The modification of the lipid bilayer with certain porin 
proteins of specific size makes it a permeability barrier. The impact of 
this lipid bilayer is crucial to the antibiotic susceptibility of the 
microorganisms. The hydrophilic drugs like beta-lactams, make use 
of pore formation through porin proteins to breach and enter the cell 
whereas, the hydrophobic drugs including the macrolides diffuse 
across the cell. Following are the kinds of membrane alterations 
responsible for acquiring resistance:

3.1. Membrane remodeling

In Gram-negative bacteria like E. coli the overall composition of the 
membrane can be  altered by degrading the existing proteins and 
incorporating the molecules into new proteins present in the outer 
membrane. Certain proteases present in the outer membrane such as 
BepA, DegS, YcaL degrade the damaged proteins (Chang, 2016; Daimon 
et  al., 2017; Soltes et  al., 2017). At the level of transcription, porin 
encoding genes are controlled by two-component systems, non-coding 
RNAs and other regulatory molecules. These systems work under the 
regulatory control of environmental stimuli (Pratt et al., 1996; Chen 
et al., 2004; De La Cruz and Calva, 2010) hence, working at the systemic 
level. Upon sensing the environmental osmolarity or the ethanol levels, 

FIGURE 1

Mechanisms of membrane-based drug resistance in Gram positive and Gram negative bacteria. Figure created in Biorender.
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EnvZ-OmpR TCS gets triggered to re-establish the composition of porin 
proteins present in the outer membrane (Fernández and Hancock, 2012; 
Chang, 2016; Kenney and Anand, 2020). CpxR member of the envelop 
stress response also sense the environmental osmolarity or the 
antimicrobials (Raivio, 2014; Delhaye et al., 2016). Treatment with the 
drug increases the levels of micC (small non-coding RNA) which work 
in concert with the cpxR gene to remodel the bacterial membrane 
against the β-lactams (Dam et al., 2017).

3.2. Lipid glycosylation using amine-sugars

The positively charged sugar residues attach to the lipidA 
molecules present as a component of LPS in the bacterial membrane, 
thus neutralizing the negative charge conferred by the phosphate 
groups. Such modifications prevent the binding of cationic 
antimicrobials leading to resistance. One such example was identified 
in resistant Gram-negative Salmonella typhimurium, E. coli and 
P. aeruginosa species, where 4-amino-4-deoxy-l-arabinose (l-Ara4N) 
moiety having positively charged amine group at C-4 position is 
attached to the negatively charged phosphate group of lipidA(C-4; 
Trent et al., 2001; Zhou et al., 2001). The phoPQ TCS in Salmonella 
transcribes pmrCAB locus conferring polymyxin resistance. This 
system controls activation of genes responsible for modifying lipidA 
with Ara4N (Trent et al., 2001; Zhou et al., 2001; Zavascki et al., 2007). 
A recent study identified pmrAB system in P. aeruginosa that is 
involved in lipidA modification through Ara4N (Moskowitz et al., 
2004). Besides arabinose modification, galactosamine residues were 
also found to be  responsible for developing resistance to the 
antibiotics. Such as in case of A. baumannii with colistin resistance 
features a D-galactosamine attachment to lipidA 1-phosphate residue 
(Pelletier et al., 2013).

3.3. Membrane lipid modification via amino 
acids

Human colonizing pathogens such as Staphylococcus aureus 
acquires resistance to Cationic antimicrobial peptides (CAMPs) by 
expressing mprF (multiple peptide resistant factor; Ernst and 
Peschel, 2011). mprF catalyzes the addition of Ala or Lys residues on 
phosphatidyl glycerol moieties. This leads to the transition of charge 
on the phospholipid to positive with the addition of lysine or neutral 
with alanine. The other domain of mprF is a flippase that flips the 
peptidoglycan alanine (PG-Ala) and peptidoglycan lysine (PG-Lys) 
residues to the outer membrane (Ernst et  al., 2009; Klein et  al., 
2009). This translocation of the charged residues reduces the overall 
negative charge on the membrane and hence, decrease the binding 
affinity of the cationic antibiotics. The decrease in the affinity of the 
positively charged membrane disintegrants can also arise from the 
incorporation of D-alanyl residues mediated via the dlt operon 
(Neuhaus et al., 1996; Kovács et al., 2006). GraSR, TCS overexpresses 
the dlt operon system, which is subjected to resistance development 
in Staphylococcus aureus to anionic daptomycin (Li et al., 2007a; 
Yang et al., 2009). In a recent study, the resistant Vibrio cholerae to 
polymyxin B was found to alter lipidA via glycine amino acids on 
the acyl chain residue of glucosamine (Hankins et  al., 2012; 
Henderson et al., 2014).

3.4. Addition of phosphoethanolamine

LipidA modification with pEtN residue on 1-phosphate, leads to 
resistance in Gram negative pathogens. This surface change brings 
upon positive charge to the lipidA while lowering the interaction of 
positively charged antibiotics to the membrane. This change is brought 
about by pmrC enzyme which works under the stringent control of 
pmrAB TCS. Colistin resistance in A. baumannii arises due to the 
modification of lipidA group by pEtN residues (Pelletier et al., 2013). 
Additionally, pEtN can also be  incorporated on LPS kdo sugar 
subunits of Gram-negative E. coli and Salmonella species (Kanipes 
et al., 2001; Raetz et al., 2007).

3.5. Efflux pumps

Efflux pumps are membrane transporters which work to expel 
out smaller molecules like antibiotics which targets the 
intracellular organelles/ biomolecules, hence developing resistance 
to them. The ATP binding cassette (ABC) transporters, and 
membrane bound efflux pumps, couple the energy of ATP 
hydrolysis to expel out the substrate. VraFG transporter promotes 
resistance in S. aureus and Staphylococcus epidermidis species to 
CAMP (Li et al., 2007a,b). In S. epidermidis expression levels of 
the homologues of vraFG are high in presence of human cationic 
antimicrobial peptide human beta defensin 3 (hCAMP hbD3) 
under regulation of the aps operon (Li et al., 2007b). Whereas 
S. aureus expresses vraFG system under high levels of hCAMP 
stress (Li et al., 2007a) resulting in resistance against these CAMPs 
besides the anionic antimicrobials or neutral peptides (Li et al., 
2007a,b). Alternately, these ABC transporters permits the passage 
of the antimicrobials inside the cell for them to get degraded by 
the proteases (Li et al., 2007b). Such mechanism was reported in 
S. typhimurium for melittin / protamine residues.

3.6. Remodeling lipid acyl tail

Remodeling of the acyl group of lipids leads to modification in 
membrane thickness and fluidity, which aids in developing resistance 
to various antimicrobial agents as has been seen in bacteria such as 
Enterococcus faecalis (Aricha et al., 2004; Kumariya et al., 2015; Maria-
Neto et al., 2015). Such alterations in the bacterial membrane lipids 
include modification in the content of unsaturated fatty acids, the 
length and proportion of the acyl tail that incorporates the branched 
tail lipids and cyclopropane (Sohlenkamp and Geiger, 2016; López-
Lara and Geiger, 2017). Previous studies suggest, that a less branched 
lipids in the bilayer membrane having a long and saturated chain 
assists in forming a thick and ordered lipid structure along with slow 
diffusion of lipids (Filippov et al., 2007; Kučerka et al., 2011; Poger 
et al., 2014; Marquardt et al., 2016; Levental et al., 2020). Such changes 
in the lipid composition of bacteria leads to development of resistance 
against the antimicrobial peptides (AMPs). For example, increasing 
unsaturated lipid moieties potentially inhibit the construction of 
daptomycin oligomers followed by varied pore formation by 
daptomycin (Taylor et al., 2017; Beriashvili et al., 2018). Similarly, Tao 
et al., 2021 reported that Gram negative bacteria exhibited membrane 
plasticity and suggested significant impact on glycerolipids in response 
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to colistin treatment (Tao et al., 2021). Apart from modifications in 
the physio-chemical properties of the membrane, remodeling of acyl 
tail can occur in response to change in enzymatic pathways which 
ultimately develops resistance (MacDermott-Opeskin et al., 2022). For 
example, Hines group reported that pgsA mutation resulted in 
reduced PG content, aggregation of fatty acids upstream and 
successive reassembling the profiles of fatty acids (Hines et al., 2017).

4. Potential membrane targets to 
facilitate drug targeting

The presence of the peptidoglycan layer on the bacterial cell wall, 
as well as other unique features such as specific ion channels and 
proteins that are not found on the host cells make the bacterial cell 
wall a preliminary target to the available therapeutic options. Over the 
years bacteria have evolved ways to develop resistance to almost every 
available antimicrobial. It has been anticipated that AMR will emerge 
to be one of the leading causes of death by 2050 if the problem is not 
dealt with immediate effects (O’Neill, 2016). To facilitate drug 
targeting, bacterial membrane provides a platform for directed 
interaction of a metabolite in the form of a protein, enzyme, or any 
surface receptor to that of a drug. Table  1 summarizes the list of 
potential drug targets present in the resistant ESKAPEE pathogens.

In this section, we have tabulated membrane proteins that play a 
role in the antimicrobial resistance mechanism of ESKAPEE strains. 
Preference was given to the membrane proteins and the plasmid 
encoded genes as they can be  acquired through horizontal gene 
transfer. ESKAPEE pathogens account for majority of the nosocomial 
infections including catheter associated bloodstream and urinary tract 
infections, with E. faecium being one of them. EfrAB a heterodimeric 
transporter in E. faecium, confers resistance to antibiotics and 
biocides. Studies report that toxic substances like ethidium bromide, 
4′, 6-diamidino-2-phenylindole (DAPI), doxycycline, novobiocin, 
doxorubicin amongst others were pumped out using the efflux pump 
activity of EfrAB (Davis et al., n.d.; Lubelski et al., 2007). Linezolid 
resistance arises as a result of inhibition of bacterial translation 
pathway (Diekema and Jones, 2000). A study suggests a plasmid 
encoding gene, optrA exhibiting resistance to phenicols and 
oxazolidinones (Wang et al., 2015).

Next, in the ESKAPEE list is Staphylococcus aureus, a superbug 
known to have developed resistance to nearly all the drugs of last 
resort. MRSA (Methicillin resistant Staphylococcus aureus) and VRSA 
(Vancomycin resistant Staphylococcus aureus), emerges as the most 
pathogenic strains due to the plasmid encoded mecA gene present on 
the mobile genetic element SCCmec (Jevons, 1961; Katayama et al., 
2000; Olsen et al., 2006) and the presence of vanA operon (Arthur 
et al., 1993; Périchon and Courvalin, 2009) on the bacterial plasmid, 
respectively. Apart from these Gram-positive commensals, the Gram-
negative bacteria have also turned out to be extremely resistant species 
responsible for high mortality rate worldwide. Through literature 
analysis, we enlist some membrane bound efflux pumps (Mehmood 
et al., 2020; Singh et al., 2022) and porin proteins (Chen et al., 2010; 
Singh et al., 2022) accountable for bacterial virulence and resistance 
to antibiotics belonging to carbapenem class of antibiotics against 
drug resistant K. pneumoniae. Further the problem is aggravated due 
to the biofilm forming capabilities of some of these pathogens. Studies 
report a few outer membrane proteins to be present at the helm of 

developing resistance and promoting biofilm formation in strains of 
Gram negative, A. baumannii (Labrador-Herrera et  al., 2020; Nie 
et al., 2020).

Certain two-component regulatory systems also help in 
promoting virulence and outer membrane vesicles (Kim et  al., 
2019); which help the bacteria to adapt to the unfavorable 
environment conditions. Another harmful microbe, P. aeruginosa 
reportedly brings about resistance to macrolides and 
aminoglycosides via membrane proteins MphE, MsrE and a TCS 
AmgS (Ho-Fung Lau et al., 2013; Chen et al., 2020) respectively and 
via efflux pumps (mexAB-oprM, mexAB-oprJ; Azimi et al., 2015). 
Amongst the Enterobacteriaceae species they have conferred 
resistance through NDM beta-lactamases (Pedersen et al., 2018), 
mcr genes (Liao et al., 2022) and quinolone resistance genes (Cano 
et  al., 2009). The last in the list is E coli, conferring kanamycin 
resistance through outer membrane mltA interacting proteinA 
(MipA) protein, i.e., responsible for interaction with MltA 
(membrane bound lytic transglycosylase) alongside TolC protein 
(Zhang et al., 2015). Also, AcrAB efflux pump with the New Delhi 
metallo beta-lactamase 1 (blaNDM-1) mediated resistance to 
carbapenems have been reported to be membrane proteins which 
can lead to potential drug candidates as specific targets (Chetri 
et al., 2019). Potentially both plasmid encoded and the membrane 
bound genes confers resistance to the bacterial species therefore, 
targeting these specific genes might serve to be an important drug 
candidate in overcoming the multi drug resistance problem.

5. Nanocarriers in overcoming AMR

Nanoparticles (NPs) represent alternatives in addressing AMR as 
not just drug delivery vehicles but also, they are capable of exerting 
inherent antimicrobial efficacy. Together they can generate an overall 
robust synergistic response (Vallet-Regí et al., 2019). Last few decades 
have seen significant applications in both disease diagnosis and 
therapeutics (Castillo et al., 2019). In terms of size, nanocarriers can 
range from 10 nm metal oxides of silver (silver NP or AgNP) and gold 
(gold NP or AuNP) to polymer-based nanoparticles 200–400 nm. 
Lipid NPs, nanoemulsions, polymer-lipid hybrid NPs or nanomicelles 
all represent myriad forms of nanocarriers which although differ in 
composition, can be utilized towards antimicrobial activity. Antibiotics 
can be conjugated to inorganic NPs or loaded (entrapped or adsorbed) 
onto organic NPs like liposomes or nanoemulsion. NPs can be tailor-
made keeping in view the route of administration and the ensuing 
pathophysiological barrier- systemic through intravenous injection, 
aerosolized NPs for lung delivery, oral delivery for gastrointestinal 
infections (Kirtane et al., 2021). Nanocarriers can potentially improve 
the therapeutic index of encapsulated drugs or antibiotics by (1) 
Sustained or controlled release from nanocarriers and (2) minimizing 
the systemic drug concentration and consequently adverse effects. NP 
encapsulated drugs are protected from unwarranted enzymatic 
degradation or oxidation in vivo compared to their free drug 
counterparts (Moreno-Sastre et al., 2015).

NPs can exert their antimicrobial activity on the virtue of their 
surface charge, size and shape or a combination of all of these factors 
(Makabenta et al., 2020). Nanoparticles can potentially interact and 
interfere with proteins structure and integrity rupturing cellular 
membrane causing leakage and cell death. Antimicrobials-loaded 
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nanoparticles, also referred to as “nanobiotics” can affect metabolic 
processes such as inhibition of transmembrane ATP formation, alter 
signal transduction, interfere with ribosomal subunits and their 
functioning, cause mitochondrial dysfunction and DNA damage in 
pathogens (Chakraborty et al., 2022a). In this review, however, as the 
cell wall/ cell membrane is the first line of bacterial defence system, 
the focus will be on the mechanisms of cell death based on interaction 
between nanoparticle and bacterial membranes.

5.1. Inorganic nanoparticles

Several inorganic nanoparticles are well established 
antimicrobial agents as well as drug delivery vehicles (Giner-
Casares et al., 2016). Inorganic nanoparticles are used either in the 
form of metal like silver (Ag), gold (Au), zinc (Zn) or as metal 
oxide such as Zinc oxide (ZnO), Titanium oxide (TiO2) etc. 
Interestingly, akin to antibiotics, metallic nanoparticles can 

TABLE 1 Potential targets for resistant ESKAPEE pathogens.

Location Gene Role/function Organism References

Cell Membrane efrAB ABC transporter, Tolerance and 

resistance to biocides

E. faecium Lavilla Lerma et al. (2014)

Genes responsible for 

encoding LPS-O-antigen

Bacterial capsule retention, 

immunogenic

Resistant K. pneumoniae Singh et al. (2022)

bfmS TCS sensor kinGase, Production of 

outer membrane vesicles

A. baumannii Kim et al. (2019)

amgS Function as a part of envelope 

stress response to aminoglycoside 

induced abberant polypeptides

Resistant P. aeruginosa Ho-Fung Lau et al. (2013)

mphE and msrE Macrolide resistance genes. mphE 

encodes macrolide-2′-

phosphotransferase. msrE belongs 

to ABC-F subfamily of ATP 

binding cassett protein

Resistant P. aeruginosa Chen et al. (2020)

mexAB-oprM, mexCD-oprJ, 

and mexXY-oprM

Efflux pumps Resistant P. aeruginosa Azimi et al. (2015)

Periplasmic Fe+2 Enterobactin ABC 

transporter substrate 

binding protein

Iron enterobactin transporter Carbapenem resistant K. 

pneumoniae

(Mehmood et al., 2020)

Outer membrane ompK37 Outer membrane porin protein N Carbapenem resistant K. 

pneumoniae

Mehmood et al. (2020)

ompA Virulence factor, mediate biofilm 

formation, Eukaryotic cell 

infection, immunomodulation

A. baumannii Nie et al. (2020)

carO Responsible for cell adherence and 

virulence

Carbapenem resistant A. 

baumannii

Labrador-Herrera et al. (2020)

Outer Membrane protein mipA (mltA interacting 

protein)

Kanamycin resistance E. coli Zhang et al. (2015)

Membrane proteins acrAB-tolC efflux pump and 

blaNDM-1

Carbapenem resistance E. coli Chetri et al. (2019)

Mobile Genetic element 

SCCmec

mecA Methicillin Resistance Methicillin resistant 

Staphylococcus aureus (MRSA)

Jevons (1961), Katayama et al. 

(2000), Olsen et al. (2006)

Van operon present on 

transposons/ chromosomes

vanA Vancomycin resistance Vancomycin resistant 

Staphylococcus aureus (VRSA)

Arthur et al. (1993) and 

Périchon and Courvalin (2009)

On Chromosome encoded 

by plasmid

optrA Resistance to oxazolidinones E. faecium Wang et al. (2015)

ISEcp1-blaCTX-M AMR E. cloacae Shawa et al. (2021)

Plasmid mediated IncR plasmid

With blaNDM-1

Azithromycin resistance E. hormaechei Doualla-Bell et al. (2021)

qnrA, qnrB, qnrS Quinolone resistance Enterobacter spc. Cano et al. (2009)

mcr-9/10 Enterobacter spc. Liao et al. (2022)

bla NDM-1 and GES-5 Enterobacteriaceae Pedersen et al. (2018)
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distinguish bacterial cellular system from eukaryotic cellular 
(mammalian cells) system through bacterial specific transport 
system and metalloproteins. But unlike antibiotics with specific 
mechanisms of action (against protein, ion channel, enzyme etc.), 
metal NPs are more efficient as they can mediate bactericidal 
activity through multiple mechanism such as membrane 
integration and damage, inhibition of drug efflux pumps, blocking 
electron transport, denaturing protein or mimicry and sequestering 
of endogenous ions (Lemire et al., 2013; Rumyantceva et al., 2019). 
This can have implications in breakdown of multiple pathways/ 
cellular components simultaneously leaving little or no time for 
bacteria to develop resistance mechanisms.

Therefore, metal-based nanoparticles present attractive antibiotic-
alternatives against bacteria. Metal NPs such as Ag-NPs 
(Abbaszadegan et  al., 2015), Au-NPs (Li et  al., 2020), Cu NPs 
(Chatterjee et al., 2014; Sánchez-López et al., 2020), ZnO NPs (Kim 
et al., 2020; Vihodceva et al., 2021), αFe2O3 NPs (Vihodceva et al., 
2021), TiO2 NPs (Siwińska-Stefańska et  al., 2018) etc. have been 
reported extensively for their ability to either kill bacteria or to inhibit 
their proliferation.

Metal nanoparticles can be synthesized following sol–gel process, 
chemical vapor deposition (CVD) as bottom-up approach. Top-down 
approach include pyrolysis for synthesis of bimetallic NPs (Arora 
et al., 2020) or thermolysis for metal-polymer nanocomposites (Pal 
Singh Chauhan et al., 2019). Chemical reduction of metal salts is the 
most routinely employed technique for synthesis of metal NPs. Either 
strong reductants such as Sodium borohydride (NaBH4) and sodium 
hydrophosphite (NaH2PO4) or mild reductants such as plant extracts 
can be used as reducing agents for chemical or biological synthesis of 
NPs, respectively, (Kharissova et al., 2019). Furthermore, surfactants 
can be mixed to coat NP surface and to prevent aggregation. Examples 
of metal ions reducing to NPs include both noble and non-noble 
metals such as silver, gold, cobalt, nickel, copper and lead (Reverberi 
et al., 2016).

Inorganic NPs can be utilized either alone or with appropriate 
antibiotics for both additive or synergistic effect for pronounced 
bactericidal activity (Hari et al., 2014; Haji et al., 2022). Mahsa 
et al. conjugated antibiotic Vancomycin, which is a known inhibitor 
of cell wall synthesis to Ag NPs and evaluated against E. coli 
(MDR), S. aureus (Methicillin and vancomycin intermediate), 
S. epidermidis (MDR), P. aeruginosa (MDR) and E. faecalis (MDR, 
vancomycin resistant; Esmaeillou et al., 2017). Vancomycin-capped 
Ag NP treatment led to lower minimum inhibitory concentration 
(MIC) than free Vancomycin and exhibited overall stronger anti-
bacterial activity against Gram positive than Gram negative 
bacteria. The authors suggested a synergistic effect of both 
Vancomycin and Ag NP in inhibiting cell wall synthesis and its 
structural disintegration.

Nanoparticles demonstrating robust properties in terms of small 
size (Suttiponparnit et al., 2011), high surface area to volume ratio and 
ease of preparation are suitable for theranostic purpose (Dadfar et al., 
2019; Erkey and Türk, 2021). Due to having significant bactericidal 
activity, metal nanoparticle-based treatment of bacterial infections has 
attracted the interest of researchers to explore and understand it 
extensively (Yuan et  al., 2017; Sánchez-López et  al., 2020). While 
bactericidal activity is desirable, the widespread use of metal NPs is 
limited by its unwarranted accumulation and toxicity towards human 
tissues at high concentrations (Duval et al., 2019).

5.2. Organic nanoparticles

Organic nanoparticles referred to as polymeric or lipid-based 
nanoparticles are synthesized using natural or synthetic polymer, 
lipids, excipients as carrier constituents and acts as multifunctional 
delivery vehicles for antibiotics. Usage of organic NPs is growing 
exponentially due to their ability to deliver vast array of cargoes 
including- drugs, genes, peptides and other bioactive molecules. 
Additionally, organic nanoparticles are better than their inorganic 
counterparts owing to superior properties in terms of biocompatibility, 
biodegradability, enhanced cargo delivery with minimal systemic 
toxicity. Polymer-based nanocarrier can be  further classified into 
polyester, polyamides etc. and have been known for effective delivery 
of antibacterial drug as well to targeted cells via pathway such as 
endocytosis, adsorption, ligand-receptor or contact-release etc. (Huh 
and Kwon, 2011; Ranjan et al., 2012). Methods of synthesis such as 
solvent diffusion, polymer precipitation, emulsion polymerization 
have been covered extensively for different class of organic 
nanomedicine such as lipid-based nanoparticles (Wang et al., 2020a), 
solid-lipid nanoparticles (Wang et al., 2020a), polymeric (Spirescu 
et al., 2021), lipid polymer hybrid nanocarriers (Shah et al., 2022).

There are various amphiphiles (Mehta et al., 2021), lipids (Fischer, 
2020) and polymers (Qiu et al., 2020) which are known for exhibiting 
inherent antibacterial activity. This is especially important as the outer 
layer of nanocarrier is the first point-of-contact while encountering 
bacteria and can be tailor-made depending on target- in this case 
Gram-positive, Gram-negative or Mycobacterial cell wall. This can 
further enhance the functional activity of the nanoparticles. For 
example, Sarah et al., (Richards et al., 2018) recently showed that the 
polymer poly(dimethylaminoethyl methacrylate; PDMAEMA) having 
different degree of polymerization can act as antibacterial agent 
against E. coli and M. tuberculosis (model organism of TB). 
Mechanistic analysis further showed that in E. coli PDMAEMA can 
lead to cell membrane disruption followed by cell death whereas in 
M. tuberculosis it showed bacteriostatic effect.

In another recent work, Luo et al. prepared and characterized 
dialdehyde nanocrystalline cellulose (DNC) and evaluated in S. aureus 
(ATCC 6538P), S. epidermidis (ATCC 12228) and S. pneumoniae 
(ATCC 6305; Luo et al., 2021). Strong antibacterial activity against 
MRSA correlated with higher aldehyde content in DNC as observed 
in vitro. The bioactive nanomaterial significantly reduced MRSA 
infection on the skin of mice model, exhibited excellent skin 
compatibility, low cytotoxicity and no acute oral toxicity. The 
underlying mechanism was suggested to be disruption of membrane 
protein and leakage of cellular content. Harnessing such bioactive 
polymers (Wang et  al., 2022b) or NP components can render 
nanocarrier additional bactericidal properties.

6. Mechanisms leading to bacterial 
death based on 
nanoparticle-membrane interaction

6.1. Interaction with cell wall

Cell wall is the outermost cellular component present in 
bacterial and archaeal species (Pasquina-Lemonche et al., 2020). 
The primary structural component of the cell wall comprises of 
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peptidoglycan, which essentially provides structural integrity and 
acts as constraint to the integral turgor (Turner et  al., 2014). 
Peptidoglycan is a macromolecule made of glycan units, 
crosslinked by peptide chain and therefore is a well-established 
crucial target of multiple antibiotics (Rojas et al., 2018). Several 
studies reported interaction of NPs with outer cell wall component 
led to breakdown of structural integrity of microbe followed by cell 
leakage and death.

In this context, shape of nanocarrier plays crucial role in its 
interaction with bacterial surface or biofilm. In a recent study 
(Acharya et al., 2018), shape dependent physical mutilation and 
lethal damage was observed in different bacterial species by 
sphere-shaped in contrast to rod-shaped silver NPs. AgNP-sp. 
showed enhanced antibacterial activity when exposed to bacterial 
strains- E. coli (MIC = 190 μg/ml), and S. aureus (MIC = 190 μg/ml), 
B. subtilis AST5-2 (MIC = 195 μg/ml), P. aeruginosa AL2-14B 
(MIC = 188 μg/ml) and K. pneumoniae AWD5 (MIC = 184 μg/ml). 
K. pneumoniae exhibiting the lowest MIC was further analysed 
using Field emission scanning electron microscopy (FESEM) and 
showed silver NP interaction with cell wall as the cause of bacterial 
death. The same group recently reported comparative evaluation 
of antibacterial activity of nanospheres with nanorods, 
nanotriangles and nanohexagons against Gram positive and Gram 
negative bacteria (Acharya et  al., 2021). The authors attributed 
highest bactericidal effect in nanospheres owing to maximum 
release of silver ions over nanoparticles of other shapes.

Detailed analysis suggested that besides vancomycin, Ag NPs 
interacts with cell wall and rupture its architecture leading to cell 
death. In a similar work, instead of metal NP, chitosan-based 
polymeric NPs were formulated encapsulating ampicillin and tested 
against S. aureus strains (ATCC25923, ATCC29213, and ATCC43300; 
Ciro et al., 2019). It was observed that the positively charged chitosan 
in the outer NP layer interacted electrostatically with outer surface of 
bacteria specifically with lipoteichoic acid and ruptured its integrity 
followed by cell wall that led to loss of cellular integrity and cell death 
(Caudill et al., 2020).

6.2. Interaction with lipopolysaccharide

LPS is the outer most layer present in Gram negative bacteria. 
Functionally it imparts protection from foreign invaders and is 
involved in immune modulation. Cytoplasmic division requires the 
synthesis and transport of millions of new LPS molecules 
continuously (Clairfeuille et al., 2020). LPS comprises of lipid A 
membrane-anchor, core oligosaccharide and O-antigen (Shrivastava 
and Chng, 2019; Clairfeuille et  al., 2020). Due to its 
immunostimulatory properties, LPS has been traditionally 
considered as potential target for antibiotics like polymyxin 
(colistin; Van Langevelde et al., 1998; Cano et al., 2009). Metals used 
in their nanoparticle form allow its absolute interaction with the 
LPS components and being smaller in size, are easy to bypass 
through channel proteins. Furthermore, the negative charge on 
bacterial LPS allows its electrostatic interactions with metal-based 
NPs and can disrupt membrane integrity (Beyth et  al., 2015). 
Hence, these ionic interaction potentially generate oxidative stress 
via free radicals leading to cell membrane disruption followed by 
cell death (Lee et al., 2019; Mammari et al., 2022).

Khan et  al. (2013) and Ansari et  al. (2014a) studied the 
antibacterial activity of Ag NPs on 80 Gram negative clinical isolates 
of E. coli samples and investigated the mechanism of action behind 
therapeutic effect of NP. This investigation was confirmed by using 
Attenuated Total Reflectance-Fourier transform infrared (ATR-FTIR) 
spectroscopy. It was observed that IR spectra of membrane-based lipid 
polysaccharide (LPS) and Phosphoethanolamine (PE) changes 
significantly after exposure to Ag NPs. Moreover, it was also found 
that on one hand, the interaction of the O-antigen of LPS with Ag NPs 
leads to formation of hydrogen bond, on the other side, exposure of 
Ag NPs to membrane PE led to disruption of its phosphodiester bonds 
into phosphomonoesters and ultimately results in highly distorted 
alkyl chain.

Another similar study has shown that exposure of Al2O3 NPs to 
clinical isolates of E. coli significantly inhibited the proliferation of 
bacterial population. Investigation of antibacterial mechanism as 
observed by ATR-FTIR, suggested that interaction of membrane 
phospholipid especially L-α-Phosphoethanolamine (PE) and 
O-antigen of LPS with Al2O3 NPs led to the disruption of cellular 
integrity. Additionally, formation of H-bond, interfering with 
membrane ligands led to change in the amphiphilicity of membrane 
and hence caused cell leaking and cell death (Ansari et al., 2014b; 
Figure 2).

6.3. Interaction with membrane proteins of 
bacteria

Bacterial membrane is considered as one of the most prominent 
targets for any anti-bacterial drug or antibiotic as the outer structure 
acts as a physical barrier and mediator between outer environment 
and inner cellular components. The membrane proteins and their 
components including transport protein (Li et  al., 2016), anchor 
proteins (Sun et al., 2021), structural proteins (Lyu et al., 2022), efflux 
proteins (Soto, 2013; Sun et al., 2014; Du et al., 2018) and ion channels 
(Prindle et al., 2015) play essential role towards cell physiology and 
metabolic regulation. Outer leaflet of plasma membrane has 
architecture of LPS while inner leaflets incorporate mixture of 
approximately 25 phospholipid type and various protein complexes 
too. Many metals in nanoparticulate form can exert their antimicrobial 
activity by destabilizing these membrane proteins (Rudramurthy 
et al., 2016).

Hamida et  al. (2020) showed that biogenic Ag NPs cause the 
bacterial cell death via the generation of ROS and experimental result 
concluded that exposure of Ag NPs show biofilm inhibition and 
virulence activities in MRSA. Mechanical analysis suggested that 
disruption of membrane proteins mediated via several mechanisms 
including generation of free radicals leading to oxidative stress, lipid 
peroxidation interferes with fluidity and stability of membrane leading 
to cell death. In another recent study, Jiang et al. (2022) exhibited that 
when nanoparticle-pinched polymer brushes (NPPBs) consisting 
chemically inert silica nanospheres (covalently grafted with 
hydrophilic polymer brushes) were exposed to Gram negative strains 
including E. coli, tobramycin and gentamycin-resistant P. aeruginosa 
PA14, and Gram Positive S. aureus and S. aureus MU50 (methicillin, 
oxacillin, and vancomycin-resistant S. aureus), it induced pore 
formation in the membrane followed by cell death (Nikaido, 2009). 
Although it was suggested that smaller sized NPPBPs had more 
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intensified antibacterial potential against both Gram positive and 
Gram negative bacteria compared to larger NPPBs (dsilica > 50 nm).

Gabrielyan et al. (2019) noted antibacterial effect of Fe3O4 NPs on 
two resistant strains of Gram negative bacteria- ampicillin resistant 
E. coli DH5α-pUC18 and kanamycin resistant E. coli pARG-25 strains, 
respectively, and further evaluated the mechanism of action. It was 
observed that Fe3O4 NPs, although in a concentration dependent 
manner, significantly started reducing the bacterial growth and 
increased the latent lag phase at the concentration of 50 μg/ml and 
exhibited maximum inhibition at concentration of 250 μg/ml. 
Although kanamycin resistant E. coli pARG-25 was found to be more 
susceptible than ampicillin resistant E. coli DH5α-pUC18 but exposing 
100 μg/ml of Fe3O4NPs to E. coli DH5α-pUC18 either in the absence 
or presence of antibiotic ampicillin or Kanamycin decreased the cell 
viability by 5- to 7-fold, respectively. They further determined H+ flux 
and H+ membrane conductance as an indicator of bacterial membrane 
function. The production of H2, interestingly suggested that Fe3O4 
decreased energy dependent H+ efflux by E. coli DH5α-pUC18 by ~1.2 
and ~1.5-fold, respectively, when grown in the absence and presence 
of ampicillin. Interestingly, exposure of Fe3O4 to E. coli grown in the 

absence of antibiotics led to ~1.7-fold decrease in H+ flux in the 
presence of N,N-Dicyclohexylcarbodiimide (DCCD), inhibitor of 
F0F1 ATPase (Vardanyan et al., 2015). Besides this, approximately 
~1.2-fold H+ conductance of E. coli was enhanced, in the absence of 
ampicillin while in the presence of ampicillin ~1.9 fold increased 
when compared to control. Lastly, they estimated the H2 production, 
and observed that besides reducing the redox potential (Eh) to 
negative value, H2 production was also reduced (Poladyan et al., 2012; 
Sargsyan et al., 2016).

Trchounian et al. (2017) has reported that H2 production is 
directly related to the membrane associated formate hydrogen lyase 
(FHL) complexes that functions to split formate into H2 and CO2. 
Post exposure to Fe3O4 (in absence of antibiotic), it was observed 
that H2 production was decreased ~1.2-fold as compared to control. 
Through this work, including decrease in H+ fluxes in the absence 
of FoF1 ATPase author concluded that Fe3O4 NPs potentially 
interact with membrane associated proteins including FHL, 
membrane transport channel protein etc. which ultimately distort 
the membrane integrity by enhancing the membrane permeability 
and leads to cell death.

A B

C D

FIGURE 2

Antibacterial mechanisms of different class of nanoparticle: Mechanistic insight into the nanoparticle interaction with bacterial membrane to overcome 
AMR. (A) depicts the general membrane targets of the NPs through the activity of efflux pumps, reactive oxygen species (ROS), ion channels and 
membrane lipid destabilisation serving as antibacterial agents: (B) depicts the mycobacterial membrane and the interaction of PDMAEMA 
[poly(dimethylaminoethyl) methacrylate] polymeric NPs with the LPS layer of the mycobacterium, leading to cell membrane disruption; (C) represents 
the precise membrane interaction of the NPs with the Gram- negative bacteria- Ag NPs interact with LPS whereas AuNPs and Fe NPs binds with 
different targets through specific membrane transport proteins including the porin channels and the F0-F1 ATPase respectively; (D) shows the specific 
targets of different types of NPs on the Gram-positive bacterial membrane-Ag NPs, chitosan (polymeric) NPs, solid-lipid NPs: These interact with 
peptidoglycan layer of the cell envelop to exert antimicrobial activity. Others, including micelle or liposome-based NPs serves as a carrier to enhance 
the penetration of the antibiotic by interacting with the thick peptidoglycan of the bacterial membrane. Figure created in Biorender.
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6.4. Efflux proteins

Beside targeting global membrane proteins, NPs can also exert 
bactericidal effect upon interaction with particular protein present 
in the membrane. We  found very few studies to have evaluated 
specific NP-membrane protein interaction, and these have been 
included in this review. Efflux pumps are transport proteins which 
essentially play role in extrusion of substances from inner to exterior 
environment. In bacterial system, at least 6 different drug efflux 
pumps have been identified that contribute towards the efflux 
pathways (Du et al., 2018). Among them, there is one ATP-binding 
cassette (ABC) which directly utilises ATP as an energy source to 
drive transport, while rest type of efflux pump known as secondary 
active transporters including major facilitator superfamily (MFS), 
the multidrug and toxin extrusion (MATE) family, the small 
multidrug resistance (SMR) family, the resistance-nodulation-cell 
division (RND) superfamily and the proteobacterial antimicrobial 
compound efflux (PACE) etc. empowered by electrochemical energy 
generated in membrane ion transport gradient (Hassan et  al., 
2013, 2015).

Interestingly, NPs can easily bypass efflux pumps by two 
mechanisms – (1) act as Trojan horse and deliver antibiotics 
intracellularly and (2) interact with efflux pump causing irreversible 
blockage. Several studies have reported effective antibacterial 
activity when bioactive molecule(s) delivered by encapsulating into 
nanoparticles. For example, Padwal et al. (2014) and Padwal et al. 
(2015) studied the antibacterial effect of iron oxide functionalized 
by polyacrylic acid in the presence of rifampicin antibiotic (PLA-
MNP). Exposing Mycobacterium smegmatis to the combination of 
rifampicin and PLA-MNP led to 4-fold reduction in bacterial 
proliferation as compared to either of the treatments. Further 
mechanistic analysis suggested that beside enhanced cell 
permeability, efflux pump disruption was responsible.

In another study, it was observed that Copper Nanoparticles (Cu 
NPs) exhibited bactericidal activity by inhibiting norA pump 
through generation of Cu which directly blocked the efflux pump 
(Ashajyothi et  al., 2016). Similarly, Au NPs functionalized with 
pyrimidine showed antibacterial activity by sequestering ions such 
as magnesium and calcium present in the cell. Further analysis 
suggested that use of vancomycin and Au NPs together led the 
inhibition of E. coli and P. aeruginosa proliferation by directly 
targeting efflux pump (Zhao et al., 2010).

In another study, Christena et al. (2015) showed that Cu NPs 
have potential to act as antibiofilm inhibitor as well as the efflux 
pump inhibitor. Study revealed that exposure to Cu NPs (0.065 mM) 
exhibited remarkable inhibition in wild type strains of both S. aureus 
and P. aeruginosa and less but significant efflux inhibitory effect 
against MRSA and drug resistant mutant strains of S. aureus. 
Exposure to and increased concentration of 0.13 mM Cu NPs led to 
significant inhibition of biofilm formed by S. aureus and 
P. aeruginosa. Efflux pump inhibition and antibacterial effect of Cu 
NPs is suggested partly by particles’ effects and ionic effects, 
respectively. In support of their hypothesis on efflux pump 
inhibition, the authors performed cartwheel assay, real time efflux 
and membrane permeable related studies.

In another recent study, it was shown that the magnetite 
nanoparticles (MNP) coated with polyacrylic acid (PAA) treated 
together with rifampicin (a first line anti-TB drug) exhibited 

synergistic effect including 4-fold growth inhibition of M. smegmatis 
mc2 155 and 3-fold enhanced intracellular aggregation of rifampicin. 
Through mechanistic study, it was concluded that MNP-PAA 
formulation blocked the efflux system of mycobacterium (Padwal 
et al., 2014). These studies suggest that combination of inorganic 
NPs together with antibiotics can be  a promising strategy in 
blocking efflux pump inhibitors and deliver antibiotic dose within 
pathogens at therapeutic levels.

6.5. Ion channels

Ion channels are the membrane component that play vital role 
in maintaining physiological balance and homeostatic condition. 
Different types of ion-specific channels have been identified based 
on voltage gated and non-voltage gated. Membrane ion channels like 
Na+, K+ and Cl− are well characterized at structural and functional 
level (Booth et al., 2003). Altogether, ion channel functions include 
uptake of particular ions and small molecules etc. (Booth et al., 
2003). Upregulation of membrane ion channels have been reported 
in MDR bacteria (Nikaido, 2009). Interestingly, several studies have 
suggested good affinity of NPs towards ion channels either through 
ionic or electrostatic interaction (Yin et al., 2019).

Au NPs functionalized with pyrimidine (Au-DAPT) 
4,6-Diamino-2-pyrimidinethiol experimented clinical isolates, 
MDR E. coli and MDR P. aeruginosa hospitals in China showed 
effective bacterial cell death. Further, mechanistic analysis suggested 
that Au-DAPT interact with outer membrane vesicles (OMV) 
especially sequester and chelate the ions Mg2+ and Ca2+ which 
caused disturbance in membrane potential, enhancement in cell 
membrane permeability and thereby cell death (Zhao et al., 2010). 
Similarly, Song et  al., found that exposing Chlorohexidine 
nanoemulsion against MRSA caused K+, Mg2+ ions leakage which 
increased the membrane electrical conductivity and thereby 
exhibited strong ability to damage membrane proteins and increased 
overall cellular permeability (Song et al., 2016).

6.6. ROS-mediated bacterial killing

ROS is a stress response wherein reactive oxygen species 
generated using photosensitizers (photosensitive compounds/ 
metals) which interacts with bacterial biomolecules such as lipids, 
fatty acids, proteins, DNA, ribosomes etc. eventually leading to cell 
death (Hong et al., 2019; Li et al., 2021). Although microbes possess 
antioxidant system to maintain or neutralize the cellular ROS 
response but an excessive ROS generation can potentially disrupt 
cellular homeostasis. Nanomaterials having potential to interact 
with biomolecules, proteins or other macromolecules generate ROS 
through lipid peroxidation, generation of free radical (1O2), 
superoxide radicals (O2−), and hydroxyl radicals (.OH). 
Nanomaterials especially certain metal-based NPs (such as Copper, 
Tellurium, Titanium) are known to cause ROS development owing 
to pro-oxidant functional group which allow more ultra-reactive 
surface, secondly, the involvement of transition metal ion 
nanoparticles providing multivalent sites for interaction and after 
that, post-internalisation interaction of NPs with cellular 
components (Chakraborty et al., 2022b).
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Several studies have shown promising antibacterial activity 
due to ROS generation. Alhadrami and Shoudri (2020) studied the 
effect of TiO2 NPs on MRSA, E. coli, and P. aeruginosa. The 
authors observed effective ROS generation with TiO2 due to 
interaction with membrane lipid and proteins leading to cell 
death. Similarly, Pramanik et al. (2012) showed that exposure of 
Copper Iodide (CuI) to Bacillus subtilis (ATCC 6633), Shigella 
dysenteriae (ATCC 12039) and E. coli DHF 5α (ATCC 10536) 
cause ROS generation. Further, mechanistic analysis concluded 
that interaction of Copper Iodide with various amine groups 
present in the membrane biomolecules and others led to 
generation of ROS causing cell death. In another study, Sarwar 
et al. (2016) evaluated the activity of ~10 nm ZnO NPs on two 
biotypes of O-serotype of V. cholera -Classical and El Tor, with the 
latter being more susceptible in biofilm and planktonic forms. 
Further analysis showed enhanced membrane fluidity and 
polarization along with protein leakage. This distortion of 
membrane integrity was caused by ROS-mediated free radical 
generation and its interaction with membrane lipids, proteins, 
fatty acids followed by cell death (Sarwar et al., 2016). In another 
recent study, Morena et al. (2021) showed the generation of ROS 
due to exposure of Hybrid Tellurium Lignin Nanoparticles 
(TeLigNPs) in S. aureus (ATCC 25923), E. coli (ATCC 25922), and 
P. aeruginosa (ATCC 10145). Further mechanistic analysis 
suggested interaction of active surface of TeLigNPs with 
hydrophilic surface of bacterial membrane. The NPs further 
integrated with the outer membrane causing lipid peroxidation, 
generation of highly reactive short aldehyde chain which diffused 
intracellularly to oxidize amine and thiol groups of proteins 
thereby affecting the cellular homeostasis and causing cell death 
(Vermaas et al., 2019).

ROS generation using photosensitizer and light under particular 
wavelength has successfully translated as research field referred to 
as antibacterial photodynamic therapy (aPDT). Recently, Yan et al. 
(2021) designed ultra-thin hollow silica-chitosan NPs and loaded 
with photosensitizer Ce6. In comparison to free Ce6, its 
nanoparticle formulation led to stronger antibacterial activity 
against S. aureus, enhanced adherence and obliteration of mature 
S. aureus biofilms and 81% decline in biomass. In another work, 
non-toxic plant pigment chlorophyll was demonstrated to exhibit 
excellent photodynamic bactericidal properties (Liu et al., 2022). 
Additionally, if combined with antibiotics, aPDT can show 
synergistic effects as demonstrated by Liu et al. (Wang et al., 2022a) 
with gentamycin (antibiotic) and Toluidine (photosensitizer) in 
terms of growth inhibition in MDR S. aureus. The authors also 
reported the treatment to be  effective in burn-infected mice by 
reducing number of bacteria colonizing the wound, decline in 
inflammatory markers and promoting wound healing process. 
Co-encapsulating photosensitizers with antibiotics with NPs for 
synergistic effect should be explored for nanomedicine-based aPDT 
(Table 2).

7. Antimicrobial nanomedicine: 
pre-clinical results

Overall, nanomedicine has shown promising results in terms of 
bench-to-bedside research for cancer therapy and these innovations 

were responsible for early FDA approvals for Doxorubicin-loaded 
liposome (Doxil®) and Paclitaxel-loaded albumin nanoparticles 
(Abraxane®) in early 1990s. However, approvals for antimicrobial 
nanomedicine are few and far between till date. While silver 
nanoparticles have made it to marketed products from antibacterial 
creams to face masks, only a handful other NPs are approved as 
antimicrobial agents, most of which belong to liposomes. Liposomes 
represent small- (SUVs) or large-unilamellar vesicles (LUVs) 
composed of phospholipid bilayers with the ability to entrap both 
hydrophilic and hydrophobic compounds and ease of surface 
functionalization (Ferreira et al., 2021). They present the most widely 
researched and FDA approved nanomedicine (Table 3) due to their 
stability, fusablity with bacterial membrane (fusogenic liposomes) and 
enhanced biological performance in terms of controlled antibiotic 
delivery due to prolonged plasma circulation. Besides systemic 
administration, in one of the recent clinical trials, liposomal amikacin 
for inhalation (LAI) for nebulizer-based inhalation in Mycobacterium 
abcessus infected Cystic Fibrosis patients showed promising results 
(Caimmi et al., 2018).

Other ‘nanobiotics’ in clinical use include formulations of 
mupirocin, gentamicin and polymyxin B. Recently, during the second 
wave of Covid, patients recovered from long Covid developed secondary 
infection due to the fungus Mucormycosis (Black fungus). Amphotericin 
is an anti-fungal agent against mucormycosis but is highly toxic to 
nervous system and is administered as Ambisome®- liposomes 
encapsulating Amphotericin. There was a global shortage of the liposome 
due to increase in number of patients with Mucormycosis. Hence, it is 
imperative to develop antibacterial nanomedicine as humanity wades 
through the surge of AMR.

Mechanistic insights into membrane interaction with NP can 
yield potential targets for specific action only to bacteria without 
affecting human cells. Development of such nanoparticles for 
active delivery can further improve antibiotic pharmacokinetics. 
There is need to develop effective strategy to counter life 
threatening situation such as non-response to antibiotics or sepsis. 
Administering nanoparticles which can block efflux pump 
inhibitors in such critical situations can be specifically helpful as 
they can further facilitate antibiotic retention and bacterial killing 
of resistant strains. Antimicrobial nanomedicine, especially metal-
based NPs have shown quick response in killing bacteria upon 
interaction with bacterial membrane. In general, translational 
research on nanocarrier-based antibiotic delivery should 
be promoted as it can yield faster antibacterial response at lower 
antibiotic doses. Additionally, it prevents undesirable systemic 
exposure of antibiotics to non-target human tissues thereby 
reducing the development of microbial resistance.

Generation of toxic by-products following treatment with 
nanoparticles is a major roadblock in advancement of nanomedicine. 
Toxicitiy of Ag, ZnO, and CuO NPs and the ensuing toxicity in organs 
such as spleen, liver, lungs, bone marrow and colon owing to tissue 
accumulation have been reviewed previously (Liu et al., 2020). Others 
have reported neuro- and nephrotoxicity with Al2O3 and CuO NPs, 
respectively, due to DNA damage and oxidative stress (Ivask et al., 
2014; Liu et  al., 2020). Metal-NPs toxicity can be  mitigated by 
optimizing and administering minimum dose or combination with 
antibiotics to obtain synergistic effects. Additionally, coating with 
aptamers, antibody can improve therapeutic effect by targeting 
specifically to bacteria. Alternatively, organic NPs formulated with 
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TABLE 2 Nanoparticles and their mechanism of action at the NP-bacterial membrane interface.

S. No. Nanoparticle Investigated 
bacteria

Interaction 
with/
membrane 
target

Mechanism of nanoparticle action Reference

1. Ag NPs E. coli LPS and L- α 

-phosphatidyl-

ethanolamine (PE)

 - NP interacted with O-antigen part of LPS via 

hydrogen bonding

 - Ag NP broke phosphodiester bond of PE into 

phosphate monoesters to form highly disordered 

alkyl chain

Ansari et al. (2014a)

2. Al2O3 NPs E. coli LPS and L- α 

-phosphatidyl-

ethanolamine (PE)

 - LPS binding to Al2O3 NPs through hydrogen 

bonding and ligand exchange

 - structural changes in phospholipids led to loss of 

amphiphilic properties

Ansari et al. (2014b)

3. Au NPs functionalized 

with branched 

polyethylenimine

B. subtilis Teichoic acid
 - Electrostatic interaction between NPs and 

teichoic acid

 - No interaction with mutant having teichoic acid but 

lacking alanine

Caudill et al. (2020)

4. Ampicillin- chitosan–

polyanion nanoparticles

S. aureus strains 

(ATCC25923, 

ATCC29213 and 

ATCC43300)

Lipoteichoic acid 

(LTA)  - Electrostatic interaction between chitosan and LTA 

leads to disturbance in membrane homeostasis

 - MIC for free and NP-encapsulated Ampicillin was 

0.26 μg/ml and 0.13 μg/ml respectively

Ciro et al. (2019)

5. Curcumin-functionalized 

poly(lactic-co-glycolic 

acid)-dextran micelles

P. putida (PCL 1482) 

and P. fuorescens 

(PCL 1701) biofilms

Exopolysaccharide 

(EPS)  - Micelle possibly altered surface hydrophobicity 

in bacteria

 - Disruption of established biofilms induced 

electrostatic interaction between micelles and EPS 

to weaken overall architecture

Barros et al. (2021)

6. CTAB-coated gold 

nanoshell

S. aureus, E. coli, S. 

enterica and P. 

aeruginosa

Cell wall
 - The aim was to use gold nanoshells as sensors for 

bacterial detection

 - Both enzyme β-galactosidase and bacteria 

competed to interact with gold nanoshells

 - Electrostatic interaction with LPS led to formation 

of gold nanoshell aggregates in cell wall causing 

cell death

Tanvir et al. (2017)

7. Spherical and Rod-shaped 

Ag NPs

E. coli (ATCC25922) 

and S. aureus 

(ATCC25923). B. 

subtilis (AST5-2), P. 

aeruginosa (AL2-

14B32) and K. 

pneumoniae (AWD5)

Cell wall
 - FESEM analysis suggested rupture of cell wall

 - Rod-shaped Ag NPs showed enhanced antibacterial 

activity

Acharya et al. (2018)

8. Curcumin loaded Solid 

Lipid Nanoparticles

E. coli (ATCC25922)

S. aureus 

(ATCC25923)

Cell permeability
 - Combination of cholesterol-curcumin exhibited 

stronger antibacterial activity and led to enhanced 

cell membrane penetration and leakage

Jourghanian et al. 

(2016)

9. Triclosan-loaded micellar 

nanocarriers

S. aureus 

(ATCC12600GFP) 

and bioluminescent 

S. aureus Xen36

Cell permeability
 - Enhanced biofilm penetration of micelle and 

accumulation due to electrostatic interaction with 

bacterial cell surface at acidic pH

 - Triclosan release due to micelle degradation by 

bacterial lipase

Liu et al. (2016)

(Continued)
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biodegradable carrier moieties such as polymers, lipids or amphiphiles 
can alleviate toxicity issues (Fischer, 2020; Qiu et al., 2020; Mehta 
et al., 2021).

Besides addressing toxicity and improving pharmacokinetics in 
vivo, the clinical translatability of nanomedicine in terms of 

batch-to-batch reproducibility, contaminant-less synthesis and 
storage stability is pertinent. Improved quality control guidelines 
for industry-grade nanomaterials and intellectual property 
regulations can further bring nano-based products through clinical 
trials to consumers.

TABLE 2 (Continued)

S. No. Nanoparticle Investigated 
bacteria

Interaction 
with/
membrane 
target

Mechanism of nanoparticle action Reference

10. Graphene oxide Ag 

Nanocomposite

Enterobacter cloacae

Staphylococcus 

mutans

Cell leakage  - Protein leakage was assessed and found to 

be significant in Gram – than in Gram +

 - Gram + has thicker cell wall and posed barrier to 

nanocomposite penetration

Kulshrestha et al. 

(2017)

11. Au NP capped with 

pyrimidine (Au-DAPT) 

4,6-Diamino-2-

pyrimidinethiol

MDR clinical 

isolates- E. coli and P. 

aeruginosa

Membrane Ions: Mg2+ 

and Ca2+ ion of outer 

membrane vesicle 

(OMV)

 - Sequestration or chelation of Mg2+ and Ca2+caused 

by Au-DAPT lead to the disruption of membrane 

integrity which lead to leakage of cellular 

components

Zhao et al. (2010)

12. Poly(acrylic acid; PAA)-

coated iron oxide 

(magnetite) nanoparticles 

(PAA-MNPs) and 

Rifampicin (TB drug)

Mycobacterium 

smegmatis

Efflux pump
 - Iron oxide NPs acted as efflux pump inhibitor 

which resulted in up to a 3-fold-increased 

accumulation of rifampicin inside Mycobacterium

Padwal et al. (2014)

13. Cu NPs Wild type- S. aureus 

and P. aeruginosa. 

MRSA and drug 

resistant mutant- S. 

aureus

Efflux pump
 - Exhibited remarkable efflux inhibition activity

 - Reverse the MIC of the mutant S. aureus strain for 

ciprofloxacin by 4-fold

Christena et al. 

(2015)

14. CuI NPs B. subtilis 

(ATCC6633) and E. 

coli DHF 5α 

(ATCC10536), 

Shigella dysenteriae 

(ATCC12039)

ROS generation  - Bactericidal activity due to ROS formation of the 

surface of CuI NP due to interaction with amine 

functional group of various biomolecules on cell 

membrane

Pramanik et al. 

(2012)

15. TiO2 NPs MRSA, E. coli and P. 

aeruginosa

ROS generation  - NP interaction with membrane protein and lipid 

leads to generation of ROS followed by cell death

Alhadrami and 

Shoudri (2020)

16. ZnO NPs Vibrio cholera ROS generation and 

membrane disruption  - NPs increased fluidity and depolarization of 

membrane, protein leakage leading to 

bacterial death

Sarwar et al. (2016)

17. Chlorohexidine acetate 

nanoemulsion (CNE)

Skin burn wound 

MRSA infection

Ion leakage and 

membrane disruption  - CNE treatment led to leakage of K+, Mg2+ Ions, 

DNA and protein

 - Increase electrical conductivity and disruption of 

cell wall and cell membrane

Song et al. (2016)

18. Hybrid Tellurium−Lignin 

Nanoparticles (TeLigNPs)

S. aureus 

(ATCC25923), E. coli 

(ATCC25922), and P. 

aeruginosa 

(ATCC10145),

ROS generation and 

membrane disruption  - Strong antibacterial activity due to interaction of 

lignin with hydrophilic surface of Gram – bacteria 

as compared to Gram +

 - Insertion of TeLig NPs into the outer membrane 

caused lipid peroxidation decomposing it into 

highly reactive short-chain aldehydes which further 

diffused into cytoplasm and oxidize thiol and 

amino groups of proteins leading to death

Morena et al. (2021)
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8. Conclusion and future perspectives

As newer pathogenic strains emerge, development of alternative 
antimicrobial therapy is imminent. Using nanoparticles as a vehicle 
for delivering therapeutic agents such as antibiotics or antimicrobial 
peptides not only enhances its delivery efficiency but also reduces 
drug toxicity, improves bioavailability and specificity. Nanoparticles 
have shown ability to penetrate biofilms and can also act as slow-
release reservoirs of antibiotics. However, most studies are restricted 
to in vitro bactericidal activity without evaluation of mechanism of 
action. Comprehensive studies are required to understand the 
mechanism of interaction of different classes of nanoparticles with 
bacterial membrane. Research should focus on narrowing down the 
generic NP-membrane interaction mechanisms, as the nanoparticle 
interaction can differ depending on the structural differences of Gram 
negative, Gram positive or Mycobacterium membranes.

Furthermore, optimizing nanoparticle formulations for physical 
and chemical stability, batch-to-batch reproducibility, quality control 
and scale up capabilities are paramount to move towards in vivo testing. 
This gap needs to be  further abridged by additional studies of 
‘antibacterial nanomedicine’ on mice model of bacterial infection and 
biodistribution profile to aid its clinical translatability. Various robust 
animal models of skin, lung, gut and systemic infections exist and must 
be utilized to further characterize and test antimicrobial nanomedicine.

In this review, we highlighted on the bacterial membrane where 
most of the AMR-related alterations occur at genomic or functional 
level. This can have direct implications in the interaction of nanoparticles 
at the bacterial membrane interface. Although few, we also reviewed 
research articles that elucidate mechanism of NP-membrane 
interactions. Identification and characterization of potential bacterial 
membrane targets specifically in the drug resistant strains can help 
design NPs towards targeted therapy. Surface conjugation with aptamers 
or antibodies can provide specificity and further reduce the dose of 

antibiotic required for antibacterial action. With few clinically approved 
nanomedicine, there is scope for major research in utilizing the potential 
of nanotechnology as an alternative to antibiotics.
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