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Elymus nutans is a perennial grass of the Gramineae family. Due to its cold-
resistance and nutrition deficiency tolerance, it has been applied to the 
ecological restoration of degraded alpine grassland on the Qinghai-Tibet Plateau. 
As an important symbiotic microorganism, arbuscular mycorrhizal fungi (AMF) 
have been proven to have great potential in promoting the growth and stress 
resistance of Gramineae grasses. However, the response mechanism of the AMF 
needs to be clarified. Therefore, in this study, Rhizophagus irregularis was used 
to explore the mechanism regulating cold resistance of E. nutans. Based on pot 
experiments and metabolomics, the effects of R. irregularis were investigated on 
the activities of antioxidant enzyme and metabolites in the roots of E. nutans 
under cold stress (15/10°C, 16/8  h, day/night). The results showed that lipids and 
lipid molecules are the highest proportion of metabolites, accounting for 14.26% 
of the total metabolites. The inoculation with R. irregularis had no significant 
effects on the activities of antioxidant enzyme in the roots of E. nutans at room 
temperature. However, it can significantly change the levels of some lipids and 
other metabolites in the roots. Under cold stress, the antioxidant enzyme activities 
and the levels of some metabolites in the roots of E. nutans were significantly 
changed. Meanwhile, most of these metabolites were enriched in the pathways 
related to plant metabolism. According to the correlation analysis, the activities of 
antioxidant enzyme were closely related to the levels of some metabolites, such 
as flavonoids and lipids. In conclusion, AMF may regulate the cold-resistance of 
Gramineae grasses by affecting plant metabolism, antioxidant enzyme activities 
and antioxidant-related metabolites like flavonoids and lipids. These results can 
provide some basis for studying the molecular mechanism of AMF regulating 
stress resistance of Gramineae grasses.
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Introduction

Alpine grassland is the most important ecosystem of the Qinghai-
Tibet Plateau, accounting for more than half of the plateau area (Li 
et al., 2018a,b). It has ecological functions such as supporting the 
development of grassland husbandry, regulating climate, and 
maintaining species diversity (Shang et al., 2014; Sun et al., 2018). 
However, the alpine grassland has been seriously degraded because of 
global climate change (Yang et al., 2017), overgrazing, engineering 
activities such as road building, herbal medicine excavation, and the 
infestation of rodents and pests, resulting in the abnormal functioning 
of the ecosystem (Bao et al., 2015; Liu et al., 2022a,b). Fencing, rotation 
grazing, supplementary seeding of fine herbages, and reasonable 
fertilization have been proven effective restoration strategies (Li et al., 
2018a,b, 2023). However, under the adapted management of degraded 
alpine grassland, the combination of herbage replanting and microbial 
controlling is crucial to restoring the ecological functions of the 
degraded alpine grassland (Zhou et al., 2020).

Gramineae grasses are the main seeding plants applied in the 
restoration of degraded alpine grassland (Tian et  al., 2021). As a 
perennial Gramineae grass, Elymus nutans was applied in the 
re-establishment of artificial grassland, natural grassland reseeding, 
and ecological restoration of the degraded grassland in the alpine 
region of the Qinghai-Tibet Plateau because of its characteristics of 
high yield and quality, cold resistance, and nutrition deficiency 
tolerance. However, the restrictions of provenance and extreme 
climatic conditions lead to the highly unstable growth of grasses, 
which is prone to secondary degradation (Song and Yu, 2015). At the 
same time, the resource waste and the substantial production costs 
also bring difficulties to grass-based livestock development husbandry 
and regional ecological restoration.

As an important symbiotic microorganism that widely exists in 
soil, arbuscular mycorrhizal fungi (AMF) can form mycorrhizal 
structures such as mycelia, vesicles, spores, and arbuscles with more 
than 80% of terrestrial higher plants, including Gramineae (Salvioli 
et al., 2016; Genre et al., 2020). Then, it can promote plant growth, 
such as increasing plant height and biomass accumulation, expanding 
the contact area of plant roots, etc. (van der Heijden et al., 2015; Gao 
et al., 2020; Li et al., 2022). Meanwhile, this mutuality can also enhance 
the resistance of plants to environmental stresses, such as low 
temperature (Liu et  al., 2013), drought (Ruiz-Lozano et  al., 2016; 
Chandrasekaran, 2022), salt (Aroca et al., 2013; Duc et al., 2021; Zai 
et al., 2021), and heavy metals (Dhalaria et al., 2020; Riaz et al., 2021). 
Therefore, it has been applied to improve the resistance of plants and 
repair soil with heavy metal pollution. However, only a few studies 
explored the molecular mechanism involved in plant resistance to 
environmental stresses under symbiosis. These researches indicated 
that AMF improved plant resistance to low-temperature by increasing 
the contents of secondary metabolites, including phenols, flavonoids, 
lignin, DPPH activity, and phenolic compounds (Chen et al., 2013), 
and accumulating content of proline via enhancement of the Glu and 
Orn synthetic pathways (Liu et  al., 2022a,b); enhancing drought 
tolerance by altering compositions of fatty acid and levels of saturation 
(Wu et  al., 2019), and declining almost all differential terpenoids 
(Liang et  al., 2021). Meanwhile, sugars and lipids were positively 
modulated (Bernardo et  al., 2019); Under salt stress, activities of 
catalase and peroxidase, contents of proline and phenolic were 
increased to improve salt tolerance (Duc et  al., 2021; Israel et  al., 

2022). Studies have also shown that the effects of AMF on plant 
stresses resistance were also closely related to metabolic pathways 
related to organic acid and amino acid (Liu et al., 2023) and secondary 
metabolites, such as phytohormones and signaling molecules 
(Bahadur et  al., 2019). However, these pieces of evidence may 
be  insufficient to explain how AMF affects the stress resistance of 
Gramineae grasses, especially in the alpine regions.

Therefore, based on our previous experimental results and the 
geographical distribution characteristics of AMF on the Qinghai-
Tibet Plateau, in this study, E. nutans and Rhizophagus irregularis were 
used to investigate the mechanism that AMF inoculation increased 
cold-resistance of Gramineae grasses. Through pot experiments and 
UHPLC-MS/MS-based metabonomics, we studied the effects of AMF 
inoculation on the antioxidant enzyme activities and metabolite levels 
of E. nutans roots under cold stress (15/10°C, 16/8 h, day/night). This 
study aimed to explore the possible molecular mechanism of AMF 
inoculation regulating the cold-resistance of Gramineae grasses.

Materials and methods

Sources of experimental materials

The seeds of E. nutans ‘Aba’ were provided by the Experimental 
Station of Grassland Improvement of Qinghai Province, which 
were purchased from Sichuan Chuancao Ecological Grassland 
Technology Development Co., Ltd., with a germination rate ≥95%. 
Before sowing, the seeds were sterilized with 10% H2O2 for 10 min, 
and then washed with sterile water 5 times, finally dried with filter 
paper. R. irregularis was donated by Professor Wu Chu at Yangtze 
University and proliferated by symbiosis with Trifolium repens. 
During proliferation, the cultivation substrate was the soil collected 
from the Experimental Station of Grassland Improvement of 
Qinghai Province, with a total nitrogen level of 1469.56 mg/kg, 
ammonia nitrogen of 21.89 mg/kg, nitrate nitrogen of 64.98 mg/kg, 
and organic matter of 4.07%. The substrate was dried, passed 
through a 2 mm soil sieve, and sterilized at 121°C for 2 h before 
cultivation. Plastic pots (18 cm × 15 cm × 13 cm) were sterilized 
with 75% alcohol and used for the experiment.

Research design

In this experiment, the pot culture method was applied. First, two 
treatments were set up, one was the group inoculated with 
R. irregularis, and the other was not inoculated. Next, each treatment 
was repeated 10 times, 20 pots in total. The specific steps: first, 400 g 
of the sterilized cultivation substance in a sterilized pot was evenly 
covered with 20 g of the AMF inoculum mentioned above, and then 
evenly covered with 60 g of the sterilized cultivation substance, and 
100 mL of sterile water was sprayed. The grass seeds were sowed, 50 
grains per pot, and 40 g of the cultivation substance was used to cover 
these seeds. Finally, a little sterile water was sprayed. After 7 days of 
germination, the seedlings were thinned, leaving 30 seedlings per pot. 
All the seedlings were continuously cultivated in a greenhouse with 
natural light, 22°C day/12°C night. The seedlings were cultivated for 
60 days, and the Hoagland nutrient solution (Waheed et al., 2019) was 
provided once a week, 100 mL per pot.
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After 60 days of cultivation, the 10 potted plants without AMF 
inoculation were randomly divided into two groups, i.e., normal 
temperature (NT) and low temperature (LT), 5 pots in each group. The 
10 potted plants inoculated with R. irregularis were also randomly 
divided into two groups, i.e., NT-AMF and LT-AMF, 5 pots in each 
group. The two treatment groups, i.e., LT and LT-AMF, were cultivated 
in an RDN-type artificial climate chamber (15°C day/10°C night, 16 h 
light/8 h dark) for 10 days, while the other two treatment groups, i.e., 
NT and NT-AMF, were cultivated in an RDN-type artificial climate 
chamber (22°C day/12°C night, 16 h light/8 h dark) for 10 days. For all 
the four treatment groups, 60% relative humidity and 3,000 lx light 
density were provided in the climate chambers. After cultivation of 
10 days, three complete plant roots were randomly dug from the five 
biological replicates of each group and rinsed, and then these roots 
were cut into 1–2 cm root segments. Finally, the mycorrhizal infection 
was detected by fixing these root segments in the formaldehyde-
acetic-acid (FAA) solution and storing under 4°C. At the same time, 
3 complete plant roots were randomly collected from 5 biological 
replicates of each group and mixed into one sample, 9 replicates, thus 
9 samples in total. Out of them, 6 samples were used for UHPLC-MS/
MS non-targeted metabonomic analysis, and 3 samples were used to 
determine antioxidant enzyme activities. The samples used for 
metabonomic analysis were cleaned with the 1 × PBS and treated in 
liquid nitrogen for 15 min, and subsequently were stored under 
−80°C. The samples used to determine the activities of antioxidant 
enzyme were rinsed with sterilized water and treated in liquid nitrogen 
for 15 min and subsequently stored under −80°C.

Mycorrhizal infection detection

The mycorrhizal infection rate in the roots of E. nutans was 
determined using the method by Blazkova et al. (2021), and trypan 
blue staining method was used to detect mycorrhizal structure 
including vesicles and hyphaes (Jill et al., 2020).

Assay of antioxidant enzyme activities

The activities of ascorbate peroxidase (APX), peroxidase (POD), 
superoxide dismutase (SOD), and catalase (CAT) were determined 
according to the methods of Jin et al. (2023) and Zhang et al. (2023).

Metabolite extraction and UHPLC-MS/MS 
analysis

At first, 100 mg of liquid nitrogen-ground root sample was placed 
in an Eppendorf tube, and 500 μL of 80% methanol aqueous solution 
(Thermo Fisher, United  States) was added. Next, after vortex 
oscillation until mixed evenly, ice bath for 5 min, centrifugation for 
20 min (15,000 g, 4°C, Scilogex, United States), 400 μL of supernatant 
with mass spectrometry grade water (Merck, Germany) was diluted 
until the methanol concentration was 53%. The solution was 
centrifuged at 15000 g and 4°C for 20 min to collect the supernatant, 
and the sample was injected for UHPLC-MS/MS analysis (Want et al., 
2012; Silva et al., 2021). Equal volume samples from each experimental 
sample were taken and mixed as QC samples. 53% methanol-water 

solution was applied to replace the experimental sample, and the 
pretreatment process was the same as the experimental sample.

UHPLC-MS/MS analysis was performed using a Vanquish 
UHPLC instrument (Thermo Fisher, Germany). Chromatographic 
conditions: chromatographic column, Hypesil Gold column 
(100 mm × 2.1 mm, 1.9 μ m), 40°C; positive ion mobile phase, A-0.1% 
formic acid, B-methanol; negative ion mobile phase, A-5 mM 
ammonium acetate (pH 9.0), B-methanol; flow rate, 0.2 mL/min; the 
chromatographic gradient elution procedure was: 0–1.5 min, 98% 
solvent A; 1.5–3 min, 15% solvent A; 3–10 min, 0% solvent A; 
10–12 min, 98% solvent A; the sample mass spectrum signal under 
positive and negative ion modes were collected through the Q 
Exactive™ HF-X (Thermo Fisher, Germany). Mass spectrum 
condition: m/z, 100–1,500; spray voltage, 3.5 kV; sheath gas flow rate, 
35 psi; aux gas flow rate, 10 L/min; capillary temperature, 320°C; 
S-lens RF level, 60; aux gas heater temperature, 350°C.

Data analysis

The original data obtained from UHPLC-MS/MS analysis were 
imported into Compound Discoverer 3.1 (CD 3.1, Thermo Fisher). 
After screening the retention time, mass charge ratio, and other 
parameters of each metabolite, the retention time deviation of 0.2 min 
and the mass deviation of 5 ppm were set to align the peaks of different 
samples. A series of settings, including the mass deviation of 5 ppm, 
signal strength deviation of 30%, the signal-to-noise ratio of 3, the 
minimum signal strength, additive ions, and other information, were 
set to extract the peaks. The peak area was quantified and the target 
ions were integrated to predict the molecular formula by molecular 
ion peak and fragment ions. Compared with the mzCloud, mzVault, 
and Masslist databases and obtained the identification and relative 
quantitative of metabolites, and annotated them using KEGG, HMDB 
and LIPIDMaps databases.

The SIMCA 14.1 was applied for PCA and PLS-DA analysis and 
random array test (200 times), to know the overall distribution 
characteristics of the samples and the stability of the entire analysis 
process. The histograms, classification ring diagram of metabolites, 
differential metabolite volcano pots and correlation heatmaps were 
drawn by the Origin 22. The TBtools (Chen et al., 2020) was applied 
to draw the Venn diagrams and cluster heatmaps. The KEGG 
enrichment bubble diagrams were drawn on the bioinformatics cloud 
platform.1

Results

Mycorrhizal infection

The mycorrhizal infection of root samples from 4 treatment 
groups (NT, NT-AMF, LT, LT-AMF) was detected by trypan blue 
staining, to clear the infection of R. irregularis in roots of E. nutans 
‘Aba’. According to the mycorrhizal infection diagrams of root samples 
(Figure  1), R. irregularis successfully infected the root cortex of 

1 http://www.bioinformatics.com.cn/
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E. nutans ‘Aba’ and mycorrhizal structures were observed, such as 
vesicles and hyphae, suggesting that the inoculation experiment was 
effective for subsequent tests.

Antioxidant enzyme activities

According to the results of the four treatment groups shown in 
Figure 2, the inoculation of R. irregularis at room temperature showed 
no significant effect on the activities of antioxidant enzyme (i.e., APX, 
POD, SOD) in the roots of E. nutans ‘Aba’ (NT vs. NT-AMF). 
However, after 10 days of low-temperature treatment at 15°C/10°C 
(16 h/8 h, day/night), the activities of APX, POD and SOD in the 
inoculated group (LT-AMF) and the non-inoculated group (LT) 
increased or significantly increased (p < 0.05), while the activity of 
CAT significantly decreased (p < 0.05). The activities of APX, POD and 
SOD in the non-inoculated group (LT) were significantly higher than 
those in inoculated group (LT-AMF) (p < 0.05), respectively, but there 
was no significant difference in CAT activity between the two groups.

Metabolite detection and classification

Both positive and negative ion modes were applied in the 
non-targeted UHPLC-MS/MS analysis of E. nutans ‘Aba’ root samples 
to maximize the detection of metabolites. After preprocessing the 
original data of 24 samples from 4 treatment groups (each treatment 
group has 6 biological repeats), 1,010 metabolites were identified, 
including 566 and 444 metabolites in the positive and negative ion 
modes, respectively. At the superclass level, these metabolites were 

divided into 10 categories, the top four categories were lipids and lipid 
molecules (14.26%), organic acids and derivatives (8.12%), 
phenylpropanoids and polyketides (7.03%) and organoheterocyclic 
compounds (6.73%) (Figure 3).

Multivariate statistical analysis of 
metabolites

Principal component analysis (PCA) was applied to visualize the 
differences between the four treatment groups. According to the PCA 
diagrams of the positive and negative ion modes, six samples from the 
same group gather together, while there was a certain distance 
between samples from different groups (Figures 4A,B), indicating that 
the repeatability within the sample group was good. However, there 
were certain differences between the different groups. The samples of 
the normal temperature groups and the low temperature groups 
distributed on both sides of the Figures 4A,B, suggesting a significant 
difference of the metabolites between the normal temperature-treated 
groups (i.e., NT and NT-ANF) and the low temperature-treated 
groups (i.e., LT and LT-AMF). However, the samples of the inoculated 
and non-inoculated groups clustered, indicating that the metabolites 
of the inoculated and non-inoculated groups were similar.

Partial least squares discriminant analysis (PLS-DA) was 
performed on the metabolite accumulation level to investigate the 
reliability of metabonomics data. As shown in Figures  4C,D, in 
positive ion mode, the R2Y of the PLS-DA model was 0.985 and Q2 
was 0.835; in negative ion mode, the R2Y of the PLS-DA model was 
0.984 and Q2 was 0.848. The values of R2Y and Q2 in the positive and 
negative ion modes were close to 1, indicating that the PLS-DA model 

FIGURE 1

Detection of mycorrhizal infection of root samples. NT, normal temperature; NT-AMF, normal temperature  +  Rhizophagus irregularis; LT, low 
temperature; LT-AMF, low-temperature  +  R. irregularis. In the figure, the length of scale bars was 20  μm, which was used to measure the size of vesicles 
and hyphae. The same below.
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had good recognition and prediction ability. At the same time, the 
PLS-DA model was verified through random array tests (200 times). 
According to verified results, the R2 and Q2 values of random array 
tests were lower than the original values, and the intersection point of 
the blue regression line and the Y-axis was below zero (Figures 4E,F), 
indicating that the PLS-DA models did not have over-fitting, i.e., the 
model was reliable and applicable in analyzing the differences in 
metabolites between treatment groups.

Analysis of differential metabolites

Differential metabolites (DAMs) were identified between the four 
treatment groups (t-test, p < 0.05, absolute log2FC >1, and VIP >1) and 
visualized by the volcano plots (Figure 5). Between the inoculated and 
the non-inoculated groups (i.e., NT vs. NT-AMF), 79 and 75 DAMs 
were identified in the positive and negative ion modes, respectively. 
Among them, 42 and 49 DAMs were up-regulated (red dots) in the 
positive and negative ion modes, respectively, and 37 and 26 DAMs 
were down-regulated (blue dots) in the positive and negative ion 
modes, respectively (Figures 5A,B). After 10 days of low temperature 
stress, 116 and 85 DAMs were identified between the inoculated and 
non-inoculated groups (i.e., LT vs. LT-AMF) in the positive and 

negative ion modes, respectively. As show in Figure 5, up-regulated 
metabolites (red dots) were 32 and 46 DAMs in the positive and 
negative ion modes, respectively, and 84 and 39 DAMs (blue dots) 
were down-regulated in the positive and negative ion modes, 
respectively (Figures  5C,D). At the superclass level, these DAMs 
included lipids and lipid molecules, benzenoids, organoheterocyclic 
compounds, organic oxygen compounds, phenylpropanoids and 
polyketones, nucleotides and analogues, and organonitrogen 
compounds. According to biological functions of metabolites, these 
differentially expressed metabolites can be divided into lipids, nuclear 
acids, antibiotics, peptides, steroids, vitamins and cofactors, and 
organic acids.

The Venn diagrams were applied to visualize the unique and 
common up-regulated and down-regulated metabolites among the 
four treatment groups (Figure  6). In the two groups (i.e., NT vs. 
NT-AMF), 12 differential metabolites were up-regulated in the 
positive and negative ion modes, respectively (24 in total). Meanwhile, 
the common down-regulated metabolites were 10 and 6 in the positive 
and negative ion modes, respectively. The cluster heatmaps showed 
the similarities and differences between these up-regulated and down-
regulated metabolites (Figure 7). Except for individual metabolites, 
the number of up-regulated metabolites in the non-inoculated groups 
(i.e., NT and LT) was significantly higher than that in the inoculation 

FIGURE 2

The activity of antioxidant enzymes. (A) APX activity, (B) POD activity, (C) SOD activity, (D) CAT activity. In the figure, different lowercase letters indicate 
significant one-way ANOVA results between groups at p  =  0.05.
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FIGURE 3

Classification ring diagram of metabolites of root samples at the super-class level. Different colors in the figure represent different classifications, and 
numbers in the figure represent the amounts of metabolites in each classification.

groups (i.e., NT-AMF and LT-AMF). On the contrary, the number of 
down-regulated metabolites in the inoculated groups was significantly 
higher than that in the non-inoculated groups.

KEGG enrichment analysis

KEGG database can link metabolites with specific metabolic 
pathways based on the differential accumulation of metabolites. Through 
KEGG enrichment analysis, 12–34 enrichment pathways were obtained 

in the positive and negative ion modes, and enrichment bubble diagrams 
with the first 12–20 enrichment values were shown (Figure 8).

In the comparison between NT and NT-AMF (Figures 8A,B), five 
metabolic pathways were significantly enriched in positive ion mode, 
including aminobenzoate degradation, dioxin degradation, glycine, 
serine and threonine metabolism, nucleotide metabolism, and 
benzoate degradation. Meanwhile, four metabolic pathways were 
significantly enriched in the negative ion mode, including biosynthesis 
of unsaturated fatty acids, linoleic acid metabolism, caffeine 
metabolism, and C5-blanched dibasic acid metabolism.

FIGURE 4

(A) PCA diagram in positive ion mode, (B) PCA diagram in negative ion mode, (C) PLS-DA analysis in positive ion mode, (D) PLS-DA analysis in negative 
ion mode, (E) permutation test in positive ion mode, and (F) permutation test in negative ion mode.
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In the comparison between LT and LT-AMF (Figures 8C,D), three 
metabolic pathways were significantly enriched in positive ion mode, 
including nucleotide metabolism, purine metabolism, and one carbon 
pool by folate. Under the negative ion mode, 6 metabolic pathways were 
significantly enriched, including C5-branched dibasic acid metabolism, 
carbon fixation pathways in prokaryotes, aminoacyl tRNA biosynthesis, 
glyoxylate and dicarboxylate metabolism, one carbon pool by folate, and 
microbial metropolis in diverse environments.

In the comparison between NT vs. NT-AMF and LT vs. LT-AMF 
(Figure  8), there were three enriched metabolic pathways in the 
positive ion mode, including nucleotide metabolism, caffeine 
metabolism, and C5-branched dibasic acid metabolism. Among them, 
the only common metabolic pathway with significant enrichment was 
nucleotide metabolism. In the negative ion mode, there were four 
enriched metabolic pathways, including C5-branched basic acid 
metropolis, microbial metropolis in diffuse environments, linoletic 
acid metropolis, and biosynthesis of unsaturated fatty acids.

Relationship between antioxidant enzyme 
activities and flavonoid or lipid metabolites

Some studies showed that lipids and lipid molecules, and 
flavonoid metabolites play important roles in the defence responses of 
plants (Okazaki and Saito, 2014; Yang et al., 2018). In order to clarify 
the relationship between antioxidant enzyme activities and lipid or 
flavonoid metabolites, 33 flavonoid metabolites, 144 lipids and their 
derivatives were screened from all metabolites at first. Then, 18 
flavonoid metabolites (DAMs) and 45 lipids and their derivatives 
(DAMs) were selected. Finally, the correlation analysis with SOD, 
POD, CAT and APX were carried out. The heatmaps showed the 
relationship between the activities of four antioxidant enzymes and 
the flavonoid metabolites (Figure 9A) and lipids and lipid molecules 
(Figure 9B).

Figure 9 showed a significantly or extremely significantly positive 
or negative correlation between the activities of the four antioxidant 

FIGURE 5

Volcano plots of different metabolites among sample groups. At room temperature, the differential metabolites between the inoculated and non-
inoculated groups in the positive (A) and negative (B) ion modes. After low-temperature stress, the differential metabolites between inoculated and 
non-inoculated groups under positive (C) and negative (D) ion modes.
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enzymes and some flavonoids or lipids. Among them, the activities of 
SOD, POD, and APX were significantly positive correlation with the 
level of 4-methyllumbelliferyl glucuronide (p < 0.01), and they were 
significantly negative correlation with the levels of esculin, 
demethylnobiletin and columbianadin. CAT activity was significantly 
positive correlation with the levels of luteolin, columbianadin, 
polydatin, demethoxycurcumin, rhapontin, demethylmobiletin, 
nobiletin, and praeruptorin A (p < 0.05), and negative correlation with 
the levels of hordatine A, and 4-methylumbelliferyl glucuronide 

(p < 0.05). At the same time, the activities of SOD, POD, and APX were 
significantly (p < 0.05) or extremely significantly (p < 0.01) positive 
correlation with the levels of mestranol, 8-epilogic acid, 
oxypaeoniflorin, jervine, oleuropein, hydroxyproterone capture, and 
ruscogenin, and were significantly (p < 0.05) or extremely significantly 
(p < 0.01) negative correlation with the levels of 15 (S)-HepETE, 
2-methylglutamate acid and atractylolide III. CAT activity was 
significantly (p < 0.05) or extremely significantly (p < 0.01) positive 
correlation with the levels of verbenalin, ginkgolide B, linoleic acid, 

FIGURE 6

Venn diagrams of different metabolites between the inoculated and non-inoculated groups treated with normal or low temperature. (A) Common 
up-regulated metabolites in positive ion mode; (B) common down-regulated metabolites in positive ion mode; (C) common up-regulated metabolites 
in negative ion mode; (D) common down-regulated metabolites in negative ion mode.

FIGURE 7

Cluster heatmaps of common differential metabolites between the inoculated and non-inoculated groups treated with normal or low temperature. 
(A) The down-regulated metabolites in inoculated groups, (B) the up-regulated metabolites in inoculated groups.
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androsterone, methylenesuccinic acid, 5-phenyl-1-pentanol, and 
11-oxoetocholinolone, and was extremely significantly (p < 0.01) 
negative correlation with the levels of mestranol, lactobionic acid, 
16-hydroxyhexadecanoic acid, tretinoin, and sstriol. These results 
indicated that the relationship between antioxidant enzyme activities 
and flavonoid and lipid metabolites was related to the types and levels 
of metabolites.

Discussion

Plants are inevitably affected by various environmental stresses in 
their whole life process. In order to respond to these disturbances, 
plants have evolved related resistance mechanisms, such as increasing 
the activities of antioxidant enzyme and changing the levels of 
metabolites (Ma et al., 2021; Malicka et al., 2021). In this study, our 
results showed that after 10 days of cold stress treatment, the 

antioxidant enzyme activities (except for CAT) of E. nutans roots 
significantly increased, which was consistent with previous studies 
(Sun et al., 2017; Yan et al., 2021). The enhancement of antioxidant 
enzyme activities in plants were mainly related to the increase of 
reactive oxygen species (ROS) caused by low temperature. However, 
the increasing rates in the inoculation groups were lower than those 
in the non-inoculation groups (Figure 2), which mainly attributed to 
the stress time. On the one side, short-term cold stress likely resulted 
in a rapid increase in antioxidant enzyme activities in the inoculated 
group, with a large amount of energy expenditure. On the other side, 
energy deficiency could reduce antioxidant enzyme activities with 
extended stress time (Lyu et al., 2022). It was also possible that the 
non-inoculated groups could only reduce oxidative damage by 
significantly increasing the activities of antioxidant enzyme to cope 
with cold stress. However, the inoculated groups may reduce the 
content of ROS in plants due to the presence of AMF, resulting in less 
increase of activities of antioxidant enzyme.

FIGURE 8

KEGG enrichment analysis of differential metabolites. (A) Metabolic pathways of DAMs enrichment in positive ion mode (NT-AMF vs. NT), (B) metabolic 
pathways of DAMs enrichment in negative ion mode (NT-AMF vs. NT), (C) metabolic pathways of DAMs enrichment in positive ion mode (LT-AMF vs. 
LT), (D) metabolic pathways of DAMs enrichment in negative ion mode (LT-AMF vs. LT).

https://doi.org/10.3389/fmicb.2023.1134585
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhang et al. 10.3389/fmicb.2023.1134585

Frontiers in Microbiology 10 frontiersin.org

Changes in metabolites and their levels are considered to be the 
ultimate response of plants to environmental stresses (Ge et al., 2020). 
Plant metabolites can be divided into primary (such as carbohydrates, 
lipids and proteins, etc.) and secondary metabolites (phenols, 
flavonoids, alkaloids and polyamines, etc.), and the levels of metabolites 
are closely related to the plant itself and environmental factors 
(Aversano et  al., 2017; Yang et  al., 2018). Through metabolomic 
analysis, metabolites and their levels in plants can be comprehensively 
analyzed. In our study, through UHPLC-MS/MS analysis, 1,010 
metabolites were detected in the roots of E. nutans, including lipids and 
lipid-like molecules, organic acids and derivatives, organoheterocyclic 
compounds, phenylpropane and polyketones, benzenoids, organic 
oxygen compounds, nucleosides & nucleotides and analogues 
(Figure 3). Among them, lipids and lipid-like molecules accounted for 
the highest proportion, indicating that lipids were the main 
components of the metabolites of Gramineae, which was similar to the 
result of Bernardo et al. (2019). Lipids are the main components of 
biofilms and provide energy for various physiological processes, plants 
can cope with low-temperature stress by changing lipid composition 
or level (Takahashi et al., 2013). The results of PCA, PLS-DA and 200 
random permutations showed that the sequencing results were reliable 
and could be applied for subsequent analysis (Figure 4). There was a 
significant separation between the low- temperature and the room-
temperature groups, but the inoculated and non-inoculated groups 
were similar, suggesting that the effect of low temperature on 
metabolites may be greater than that of the inoculation of AMF, the 
more direct influence of abiotic environmental factors on plants may 
be the main reason for this phenomenon. However, the effect of AMF 
on the metabolites of E. nutans roots should be addressed.

We applied three criteria to screen the differential metabolies (i.e., 
t-test for p < 0.05, log2FC >1, and VIP >1). A total of 154 (room 
temperature) and 201 (low temperature) differential metabolites were 
detected between the inoculation and non-inoculation groups, 
including 91 (room temperature) and 78 (low temperature) 
up-regulated metabolites, and 63 (room temperature) and 123 (low 
temperature) down-regulated metabolites (Figure 5). These results 
showed more differential metabolites in the low temperature groups 
than in the room temperature groups, but it appeared to be less than 

in the results of previous studies (Liu et al., 2021; Xie et al., 2022). The 
sampling time of roots of E. nutans in the late stage of AMF 
development was probably the main reason for fewer DAMs.

The KEGG enrichment analysis shown that the most of these 
differential metabolites were enriched in metabolism-related 
pathways. In comparing inoculated and non-inoculated plants under 
room and low temperatures, differential metabolites were significantly 
enriched in nucleotide metabolism and C5-branched dibasic acid 
metabolism (Figure 8). In conclusion, inoculation of the AMF may 
regulate plant cold resistance by affecting the metabolism in plants. In 
addition, 24 up-regulated metabolites and 16 down-regulated 
metabolites were screened between the inoculated and non-inoculated 
groups under room and low temperature (Figure 7). These metabolites 
were mainly lipids and flavonoids, which was in consistent with 
previous studies (Chen et al., 2013; Zhou et al., 2018). The reasonable 
explanation was that lipids and flavonoids played important roles in 
enhancing plant stress resistance and removing ROS effectively. The 
increase of their contents may be related to the accumulation of ROS 
and synthesis of some certain compounds caused by low temperature 
(Mahajan and Tuteja, 2005; Agati et al., 2011; Landi et al., 2015). These 
results indicated that AMF inoculation might affect the cold resistance 
of plants by affecting the levels of metabolites, such as lipids and 
flavonoids, related to levels of plant antioxidants.

Many studies have shown that lipids and their derivatives play 
key roles in the defence response of plants, affecting the resistance 
mechanisms related to plant-microbe interactions (Feng et al., 2020, 
2022), and flavonoids are one of the main secondary metabolites in 
plants, with antioxidant properties. Increase in flavonoid levels helps 
plants strengthen their resistance to abiotic stresses, such as cold 
stress (Ren et  al., 2019; Shah and Smith, 2020). In this study, 33 
flavonoid metabolites, including flavonoids, isoflavones, and 
2-arylbenzofuran flavonoids, were screened in all samples, and 18 of 
them showed differential changes. 144 lipids and their derivatives 
were screened, and 45 of them showed differential changes. According 
to the results of correlation analysis between these 18 flavonoids 
metabolites and 45 lipids and their derivatives and the activities of 
SOD, POD, CAT, and APX, there were significantly or extremely 
significantly positive or negative correlations between the activities 

FIGURE 9

Correlation heatmaps between antioxidant enzyme activities and antioxidant related metabolites. (A) The correlation heatmap of antioxidant enzyme 
activities and flavonoid metabolites, (B) the correlation heatmap of antioxidant enzyme activities and lipids and lipid-like molecules.
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of the four antioxidant enzymes and some metabolites in flavonoids 
and lipids (Figure 9). The reason is that antioxidant enzymes, lipids, 
and flavonoids are important factors in removing ROS and alleviating 
oxidative damage, and there is a certain synergistic effect between 
them (Janda et al., 2003). These results indicate that the activities of 
antioxidant enzyme in the root of E. nutans were correlated with the 
levels of flavonoids and lipid metabolites, and the degree of 
correlation was related to the types and levels of the metabolites.

In conclusion, the regulation of AMF on cold-resistance of 
E. nutans may be realized by affecting the metabolic activities of some 
organic acids, such as nucleotide metabolism, etc., as well as the levels 
of some flavonoids and lipid metabolites related to antioxidant effects. 
However, these results may be insufficient to reveal the mechanism 
under different growth stages, stress intensities and duration. 
Therefore, time-course metabolomics and microscopy of AMF 
development may be required for further insights into the dynamics 
of mycorrhizal effect at the metabolic level.

Conclusion

Inoculation of R. irregularis at room temperature had no 
significant effect on the activities of antioxidant enzyme in the roots 
of E. nutans ‘Aba’, but significantly changed the levels of some lipids 
and other metabolites. However, the activities of antioxidant enzyme 
and levels of some metabolites were significantly changed under cold 
stress. Meanwhile, most of these metabolites were enriched in the 
pathways related to plant metabolism, and the activities of antioxidant 
enzyme were closely related to the levels of some metabolites, such as 
flavonoids and lipids. These results can provide some basis for 
studying the molecular mechanism of AMF regulating cold-
resistance of Gramineae grasses.
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