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Introduction: Psychrophilic enzymes are a class of macromolecules with high 
catalytic activity at low temperatures. Cold-active enzymes possessing eco-friendly 
and cost-effective properties, are of huge potential application in detergent, textiles, 
environmental remediation, pharmaceutical as well as food industry. Compared 
with the time-consuming and labor-intensive experiments, computational modeling 
especially the machine learning (ML) algorithm is a high-throughput screening tool 
to identify psychrophilic enzymes efficiently.

Methods: In this study, the influence of 4 ML methods (support vector machines, 
K-nearest neighbor, random forest, and naïve Bayes), and three descriptors, i.e., 
amino acid composition (AAC), dipeptide combinations (DPC), and AAC + DPC on the 
model performance were systematically analyzed.

Results and discussion: Among the 4 ML methods, the support vector machine 
model based on the AAC descriptor using 5-fold cross-validation achieved the best 
prediction accuracy with 80.6%. The AAC outperformed than the DPC and AAC + DPC 
descriptors regardless of the ML methods used. In addition, amino acid frequencies 
between psychrophilic and non-psychrophilic proteins revealed that higher 
frequencies of Ala, Gly, Ser, and Thr, and lower frequencies of Glu, Lys, Arg, Ile,Val, and 
Leu could be related to the protein psychrophilicity. Further, ternary models were also 
developed that could classify psychrophilic, mesophilic, and thermophilic proteins 
effectively. The predictive accuracy of the ternary classification model using AAC 
descriptor via the support vector machine algorithm was 75.8%. These findings would 
enhance our insight into the cold-adaption mechanisms of psychrophilic proteins 
and aid in the design of engineered cold-active enzymes. Moreover, the proposed 
model could be used as a screening tool to identify novel cold-adapted proteins.
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Introduction

Psychrophilic enzymes are also called cold-adaptive enzymes, maintaining catalytic efficiency 
and function under low temperatures (0–25°C; Siddiqui and Cavicchioli, 2006; Sarmiento et al., 
2015). This types of enzymes are mainly isolated from glaciers, polar regions, and deep seas. 
Possessing high catalytic activity at low and moderate temperatures and heat-labile properties, 
psychrophilic enzymes could be used in various industries such as detergent, food, medical, and 
bioremediation (Saeki et al., 2007; Al-Ghanayem and Joseph, 2020; Gupta et al., 2020; Mangiagalli 
et al., 2020; Kumar et al., 2021; Mhetras et al., 2021), thus they offer huge economic benefits. For 
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example, the addition of cold-adapted proteases, lipases, and cellulases 
in detergents can remove dirt efficiently under low temperatures, which 
is eco-friendly and cost-effective as does not require an extensive heating 
process. Cold-active lipases additives can prevent spoilage and adverse 
changes of substrates that are used in food processing. The application 
of cold-adapted lipases in the synthesis of chiral organic compounds has 
also been reported in several reviews (Mhetras et al., 2021). Additionally, 
psychrophilic enzymes are not only vital enzymes in industrial 
applications, but also are valuable research models in the basic research 
of protein folding and catalysis (Feller and Gerday, 2003; Siddiqui and 
Cavicchioli, 2006; Åqvist et al., 2017).

According to the Arrhenius equation K Ae E
RT
a=

−
, the reaction 

rate decays exponentially with the decrease of temperatures (Struvay 
and Feller, 2012; Åqvist et al., 2017). The main issue of psychrophilic 
enzymes is how to maintain the catalytic rate at low temperatures. The 
first resolved psychrophilic protein structure is alpha-amylase derived 
from Alteromonas haloplanctis (Aghajari et al., 1996). The increasing 
resolved 3D structures of psychrophilic enzymes shed light on the 
molecular basis of cold-adaption mechanisms (Arnorsdottir et  al., 
2005). The comparison with the mesophilic and thermophilic 
homologous proteins shows that psychrophilic enzymes have evolved 
some structural features responsible to maintain the low-temperature 
catalytic activity, such as more flexible structures, decreased core 
hydrophobicity, increased surface hydrophobicity, fewer disulfide bonds 
(Schrøder Leiros et al., 2000), and reduced hydrogen bonds (Schrøder 
Leiros et al., 2000; Aghajari et al., 2003; Siddiqui and Cavicchioli, 2006; 
Almog et  al., 2009). Comparative structural analysis showed that 
different family enzymes adopt one or a combination of several 
structural features to adapt to low-temperatures (Struvay and Feller, 
2012; Tribelli and López, 2018).

Unlike wet experiments that are time-consuming and costly, in silico 
method is a reliable and powerful tool. Machine learning (ML) is a data-
driven technology and has been applied to various fields, such as protein 
structure prediction (Senior et al., 2020; Jumper et al., 2021), protein 
engineering (Saito et al., 2018; Wang et al., 2018; Mazurenko et al., 2019; 
Wu et al., 2019; Yang et al., 2019), protein function prediction (Han 
et al., 2006; Bonetta and Valentino, 2020; Zhang Y. H. et al., 2021), 
enzyme substrate scope prediction (Mou et al., 2021), screening of novel 
pharmaceutical candidates (Chandak et al., 2020) and efficient catalysts 
(Niu et  al., 2021). Computational methods have been conducted to 
classify acidic and alkaline enzymes effectively based on the protein 
sequence (Zhang et al., 2009; Khan et al., 2015). Similarly, predictive 
models have also been developed to discriminate thermophilic proteins 
from mesophilic proteins (Gromiha and Suresh, 2008; Lin and Chen, 
2011; Ai et al., 2018; Feng et al., 2020; Guo et al., 2020; Wang et al., 2020; 
Ahmed et  al., 2022). These models that are composed of different 
descriptors based on protein sequences achieved reliable prediction 
performance. Many comparative analyzes have shown that different 
types of amino acids have a tendency among mesophilic and 
thermophilic proteins, and amino acid composition (AAC) descriptor 
could discriminate mesophilic and thermophilic proteins using the 
support vector machines (SVM), K-nearest neighbor (KNN), random 
forest (RF), and naïve Bayes (Bayes) algorithms. In addition, other 
sequence descriptors such as dipeptide combinations (DPC) were also 
utilized to establish the predictive model.

Due to the essential role of psychrophilic enzymes in industrial 
applications and scientific research, many efforts have also been 
carried out to investigate cold-adapted enzymes. A previous study has 
shown that the random forest model using AAC descriptor and 

hydrophobic residue patterns as input features could discriminate 
psychrophilic from mesophilic proteins, with an accuracy of 70.3% 
(Nath et al., 2012). To achieve the interpretability of the model, a 
cascade model was also proposed, and the percentage of different 
amino acid composition ranges was used as input features, in which 
the attribute with the highest discriminability was the serine, lysine, 
glutamic acid and alanine amino acid composition. The rotation 
forest reached the highest accuracy with 70.5% (Nath and Subbiah, 
2014). Although these models achieved good accuracy, there are also 
several issues needed to be addressed. On the one hand, the influence 
of different features on predictive accuracies should be investigated. 
Though the AAC descriptor alone proved to be a very useful feature 
for discriminating psychrophilic and mesophilic proteins, the DPC 
descriptor has not been explored. On the other hand, the feasibility 
of the ternary classification model (psychrophilic-mesophilic-
thermophilic) is also worth exploring.

In this concern, the iLearnPlus software was exploited to develop 
computational model, where feature extraction, feature selection, model 
construction, and result visualization were all deployed in the software 
(Chen et al., 2021). Considering the ability of the AAC descriptor to 
identify psychrophilic and mesophilic proteins, the AAC descriptor was 
utilized in this study, while the DPC descriptor was also tested and the 
ability of AAC, DPC, and AAC + DPC to distinguish psychrophilic from 
non-psychrophilic proteins was compared. The results indicated that the 
binary and ternary classification model could be used for discriminating 
psychrophilic from mesophilic and thermophilic enzymes. In addition, 
the accuracies of different models were studied and AAC frequency 
distributions among psychrophilic and non-psychrophilic proteins were 
also explored.

Materials and methods

Datasets preparation

The thermophilic and mesophilic proteins were obtained from (Lin 
and Chen, 2011). The psychrophilic proteins were extracted from the 
UniProt web server, the search keywords including the “psychrophilic, 
cold-adaptive, and low-temperature.” Firstly, all queried protein 
sequences must be reviewed and manually annotated; secondly, entries 
which be  a part of other proteins were excluded; finally, to avoid 
redundancy and homology bias, the CD-HIT program (Huang et al., 
2010) was used with a cutoff of 40% sequence identity. The dataset 
included 2,400 protein sequences, among which the thermophilic, 
mesophilic, and psychrophilic proteins were 915, 793 and 692, 
respectively. The training and test sets were split in a 4:1 ratio, so there 
were 731, 574, and 554 thermophilic, mesophilic, and psychrophilic 
proteins in the training set, and 184, 219, and 138 in the test set. The 
sequences of the datasets could be  downloaded from the 
supporting material.

Feature extraction

Protein feature descriptors are generated from protein sequences. 
The feature descriptor extraction and model construction were 
implemented using iLearnPlus, a machine-learning platform that served 
as protein sequence analysis and prediction. It has been reported that 
the AAC and DPC descriptors can discriminate the thermophilic from 
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mesophilic proteins effectively (Zhang and Fang, 2006b; Gromiha and 
Suresh, 2008; Lin and Chen, 2011; Ai et al., 2018; Guo et al., 2020; Wang 
et al., 2020), therefore, the two descriptors were calculated for each 
protein sequence.

AAC refers to the occurrence of each amino acid in the protein 
sequence (Wang et al., 2011; Khan et al., 2015; Guo et al., 2020; Sun 
et al., 2020; Charoenkwan et al., 2021), as that there are 20 kinds of 
naturally-occurring amino acids, that is 
ACDEFGHIKLMNPQRSTVWY. Therefore, each residue frequency in 
a sequence can be calculated by the following formula:

 
Comp i

n i
n

i A C D E F W Y( ) = ( )
∈ …, , , , , , ,

DPC calculates dipeptide composition and generates a 
400-dimensional feature vector.(Charoenkwan et al., 2021) and it was 
defined as:

 
Comp i j

n i j
n

i j A C D E F W Y,
,( ) = ( )
−

∈ …
1
, , , , , , , ,

The CHI2 algorithm (Chen et al., 2009) was used for DPC feature 
selection and dimensional reduction.

Model construction

Several machine learning algorithms were tested to distinguish 
between psychrophilic and non-psychrophilic proteins. Considering 
the reliable performance of SVM, RF, KNN, and Bayes in classifying 
thermophilic and mesophilic proteins, these algorithms were used in 
our study (Cortes and Vapnik, 1995; Breiman, 2001). The RF is an 
ensemble of decision trees. The algorithm performs better than 
decision trees by building and merging multiple decision trees to 
obtain more accurate results. For a new sample, the RF assigns the 
class label based on the prediction by each tree. The n_trees was set 
to 300. The SVM is a simple but powerful supervised machine 
learning algorithm used in classification and/or regression. It seeks 
a hyperplane to classify samples. When the sample is linearly 
inseparable in the low-dimensional space, the kernel function is used 
to map the sample to the high-dimensional space to achieve linear 
separability. The radial basis function (RBF) was selected in the 
kernel function of SVM and the optimized γ and C were 8.0 and 15.0, 
respectively. KNN is also one of the most basic algorithms in 
supervised machine learning. It assumes that similar things are near 
to each other, and the Euclidean distance between samples was 
calculated to solve the classification and regression of data. The top 
K value was set to 3. Naïve Bayes method is a set of supervised 
machine learning algorithms based on Bayes’ Theorem. It obeys the 
assumption that every pair of the feature are independent and every 
feature is equal to the value of the class variable. It states the following 
relationship, and is mathematically expressed as the 
following equation:

 
P AB

P B A P A
P B

|
|( ) = ( ) ( )
( )

where A and B are events and P(B) ≠ 0. All the parameters in four 
machine learning algorithms were optimized by grid search.

Performance evaluation

The data set was randomly divided into training set and test set in a 
ratio of 4:1. The 5-fold cross-validation was also used in this study, out 
of which the datasets were randomly divided into 5 subsets, one of 
which was used to test the model, and the remaining 4 subsets were used 
as the training set to train the model and optimize the parameters. This 
process was repeated 5 times until each subset was used as the test set 
only once to validate the model. Four indicators were adopted to 
evaluate the model performance, that is sensitivity (Sn), specificity (Sp), 
accuracy (ACC), and Matthews correlation coefficient (MCC). The 
calculation formulas of these indicators were as follows:

  
TPSensitivity

TP FN
=

+

  
TNSpecificity

TN FP
=

+

  
TP TNAccuracy

TP TN FP FN
+

=
+ + +

 

( ) ( )
( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

× − ×
=

+ + + +

Where TP, TN, FP, and FN represent the number of correctly 
predicted positive samples, correctly predicted negative samples, 
incorrectly predicted positive samples, and incorrectly predicted 
negative samples, respectively. For a multi-classification task, the ACC 
was calculated as follows:

 

ACC
TP i TN i

TP i TN i FP i FN i
=

( ) + ( )
( ) + ( ) + ( ) + ( )′

Where TP(i), TN(i), FP(i), and FN(i) represent the number 
of the samples that are correctly predicted as i-th class, the 
number of samples that are classified correctly as not to be  i-th 
class, the number of samples not in i-th class that is classified 
wrongly as belonging to i-th class, the number of samples in i-th 
class that are predicted incorrectly as not in i-th class, respectively. 
Additionally, ROC (Receiver Operating Characteristic) curves 
were also utilized to visualize the predictive performance of 
the classifiers.

Results and discussion

Performance of models for discriminating 
psychrophilic and non-psychrophilic 
proteins

The predictive performance of the machine learning model based 
on AAC, DPC, and the combination of the two descriptors were listed 
in Table 1. Among the models using with AAC descriptor, the SVM 
model achieved the highest prediction accuracy with 80.6%. The 
prediction accuracy of RF was lower than 0.4% of the SVM. And the two 
other models, Bayes and KNN, the accuracies were less than 80%, 
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especially the Bayes model had the lowest prediction accuracy with 
73.8%. All the trained models were public in github1website.

DPC descriptor generates 400-dimensional vectors, and the CHI2 
algorithm was used for feature dimension reduction. The results 
indicated that the prediction accuracy of the models based on DPC 
descriptor decreased compared with AAC descriptor, which declined by 

1 https://github.com/ailanhuang/A-machine-learning-model-for-psychrophilic- 

proteins

about 5–7%. Similar to the AAC descriptor, the model with DPC 
descriptor using the SVM algorithm also achieved the best accuracies.

In addition, the two descriptors were integrated to construct the 
classification model. Compared with the DPC descriptor, the accuracies 
of the AAC + DPC descriptors had been improved to varying degrees. 
While compared to AAC descriptors, the accuracies of SVM and KNN 
models were almost unchanged, RF and Bayes models even dropped by 
1.2 and 2.4%, respectively. The models constructed by AAC have 
achieved best accuracy via four machine learning algorithms in this 
study. Of course, DPC is also an important feature to distinguish 
psychrophilic proteins from non-psychrophilic proteins, which has also 
achieved relatively good prediction accuracy. However, the addition of 
DPC to the descriptor may cause redundancy of features, which makes 
the accuracy decrease slightly. In a report of using AAC and DPC to 
distinguish thermophilic and mesophilic proteins, AAC and DPC 
achieved 0.9256 and 0.9157 prediction accuracy, respectively. The 
accuracy of AAC and DPC combination to distinguish thermophilic and 
mesophilic proteins also decreased, though DPC contained more 
parameters (Lin and Chen, 2011).

The ROC curves of four models using AAC and DPC descriptors 
were plotted (Figure  1), it also showed that the AAC descriptors 
outperformed the DPC descriptors. In a comparison of the frequencies 
of amino acids between thermophilic and non-thermophilic proteins, it 
is proposed that the AAC captures the thermostability of the protein 
(Sun et al., 2020). Same as thermostability, it is also demonstrated that 
the psychrophilicity is highly related to the AAC descriptor in this study.

In addition to the higher predictive performance of the AAC 
descriptor, it is easy to find in Figure 1 that the SVM model achieved the 
best predictive accuracy among the four models (AUC 0.8609). It has 
been shown in many studies that the SVM model based on AAC 
descriptor had achieved good predictive performance in discriminating 
thermophilic from mesophilic enzymes. For example, the SVM model 
constructed by Michael Gromiha et al. using AAC descriptors could 
distinguish thermophiles from mesophiles with an accuracy of 89% 
(Gromiha and Suresh, 2008). And employing AAC descriptors with only 
16 dimensions to discriminate thermophilic and non-thermophilic 
proteins with 93% accuracy (Guo et al., 2020).

Performance of ternary classification for 
discriminating psychrophilic, mesophilic, 
and thermophilic proteins

To verify the feasibility of ternary classification, the scatter diagram 
of the three types of enzymes was calculated employing the K-means 
clustering method, where psychrophilic proteins were labeled as 1, 
mesophilic proteins were labeled as 0, and thermophilic proteins were 
labeled as 2. As seen from Figure 2, three types of proteins had different 
distribution patterns on principal component 1 and principal 
component 2, which indicated that multi-class classification is feasible. 
Therefore, the ternary classification model was established, and the 
predictive accuracies of the models for psychrophilic (P), mesophilic 
(M), and thermophilic (T) proteins were listed in Table  2; 
Supplementary Table S1.

The results showed that the accuracies of ternary classification were 
slightly lower than that of binary classification. The model predictive 
accuracy of AAC + DPC descriptors by SVM method was 76.1%, which 
was 4.0% lower than that of binary classification model with the same 
descriptors and method. In general, the SVM model performed well in 

TABLE 1 Prediction results of AAC and DPC descriptors for psychrophilic 
and non-psychrophilic proteins.

Descriptor Model Sn Sp Acc MCC

AAC RF 0.524 0.919 0.802 0.497

SVM 0.780 0.859 0.806 0.546

Bayes 0.711 0.749 0.738 0.439

KNN 0.667 0.808 0.766 0.470

DPC RF 0.266 0.940 0.740 0.300

SVM 0.548 0.874 0.747 0.370

Bayes 0.654 0.696 0.684 0.348

KNN 0.461 0.823 0.716 0.304

AAC + DPC RF 0.529 0.943 0.790 0.497

SVM 0.785 0.850 0.801 0.546

Bayes 0.743 0.702 0.714 0.439

KNN 0.629 0.817 0.761 0.470

Sn: sensitivity, Sp: specificity, Acc: Accuracy, MCC: Matthews correlation coefficient.

A B

C D

FIGURE 1

The receiver operation characteristic (ROC) curve of the four machine 
learning models using AAC and DPC descriptors. (A) Random forest, 
RF; (B) SVM; (C) Bayes; (D) KNN.
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discriminating three types of enzymes. As an ensemble classifier, the 
RF also achieved relatively good prediction accuracy with 73.8% solely 
using AAC descriptor. Among the four models, the predictive accuracy 
of the KNN model was relatively lower than other models, the 
prediction accuracy based on DPC descriptor was 67.1%. Taken 
together, the AAC descriptor achieved the highest prediction accuracy, 
which indicated the capacity of the amino acid composition in 
distinguishing psychrophilic proteins.

Differences of amino acid composition in 
psychrophilic, mesophilic, and thermophilic 
proteins

The frequencies of 20 amino acids in psychrophilic, mesophilic, and 
thermophilic proteins were computed (Figure 3). Ala, Gly, Ser, and Thr 
amino acids in psychrophilic enzymes were higher than those in 
non-psychrophilic proteins, whereas the other amino acids Glu, Lys, and 
Arg were lower than, the non-psychrophilic proteins, and aliphatic 
amino acids Ile,Val, and Leu were slightly lower than 
non-psychrophilic proteins.

Many studies have demonstrated that psychrophilic proteins 
maintain their high catalytic activity at low temperatures mainly due to 
their more flexible structures (Siddiqui and Cavicchioli, 2006; Santiago 
et al., 2016; Åqvist et al., 2017; Arcus and Mulholland, 2020). Several 
factors contribute to conformational flexibility, such as reduced inter-
domain and inter-subunit interactions, fewer inter-protein disulfide 

bonds, and reduced hydrogen bonds and electrostatic interactions. 
Glycine and alanine are very small amino acids, and the side chains are 
a hydrogen atom and a methyl group, respectively. And the comparative 
analysis focused on the dataset from psychrophilic and mesophilic 
proteins also showed that Ala and Gly residues are over-represented. 
Increased levels of Gly residue have been suggested to be  related 
to psychrophilicity.

A higher percentage of serine and threonine is also found in the 
psychrophilic proteins. The study of Subbiah et.al on the classification 
rules for psychrophilic and mesophilic proteins showed that when the 
percentage of Ser and Thr is higher than certain values, the proteins 
would be  classified as psychrophilic proteins (Nath et  al., 2012). 
Meanwhile, a pairwise comparison of proteins from cold-adapted 
archaea revealed that there was higher content of non-charged polar 
residues, especially threonine (Berthelot et al., 2019; Bargiela et al., 
2020). Ser and Thr are uncharged polar amino acids and prefer to 
reside on the surface of the psychrophilic proteins (Jahandideh et al., 
2007), therefore they tend to have more interactions with water 
molecules around proteins (Sun et al., 2020). Structural and molecular 
dynamics (MD) analysis of homologous psychrophilic, mesophilic, 
and thermophilic counterparts of serine proteases (Tiberti and 
Papaleo, 2011; du et al., 2017) and serine hydroxy methyltransferases 
(Zhang Z. B. et al., 2021) reported that psychrophilic proteins formed 
more hydrogen bonds with solvent water molecules. Further analysis 
revealed that the content of serine in psychrophilic proteases and 
hydroxy methyltransferases is greater than in homologous mesophilic 
and thermophilic proteins. Although these studies only include 

FIGURE 2

The scatter plot of the dimension reduction of the three enzymes.

TABLE 2 Prediction accuracies of ternary classification model for psychrophilic, mesophilic, and thermophilic proteins.

Class Descriptor RF SVM Bayes KNN

P-M-T (P)a AAC 0.738 (0.731) 0.758 (0.761) 0.756 (0.717) 0.746 (0.724)

DPC 0.700 (0.710) 0.721 (0.703) 0.702 (0.703) 0.671 (0.688)

AAC + DPC 0.736 (0.717) 0.761 (0.753) 0.716 (0.710) 0.688 (0.710)

aThe combined accuracies with three descriptors for psychrophilic (P), mesophilic (M) and thermophilic (T) proteins, and the accuracies for psychrophilic proteins is listed in bracket.
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several types proteins, it seems that serine and threonine involve 
increasement of surface hydrophilicity via forming more H-bonds 
with water molecules to enhance the mobility and flexibility of 
psychrophilic enzymes.

The charged amino acids in proteins are divided into two groups: 
basic amino acids which are lysine, arginine, and histidine; while 
acidic amino acids including glutamic acid and aspartic acid. Basic 
and acidic amino acids have positive and negative charges under 
physiological conditions and thus form higher number of salt bridges 
and electrostatic interactions. Therefore, more charged residues were 
found in the non-psychrophilic than in psychrophilic proteins to 
maintain the conformational stability of protein structures (Gianese 
et al., 2002; Tiberti and Papaleo, 2011; Wu et al., 2017). However, 
Figure 3 indicated that Asp amino acid favors psychrophilic proteins. 
It seems that Asp is unstable at high temperatures, thus the increased 
content of Asp contributes to the structural flexibility of the 
psychrophilic proteins. Another acidic amino acid, Glu, contributes 
to the formation of helical structures, and structure comparative 
analysis shows that the content of helical structures is lower in the 
psychrophilic proteins than in the mesophilic proteins (Metpally and 
Reddy, 2009), thus the reduced content of Glu maintains the 
thermolability of psychrophilic proteins. In contrast, the higher 
charged amino acids in thermophilic proteins are essential to protein 
stabilization at high temperatures (Zhang and Fang, 2006a,b; 
Gromiha and Suresh, 2008; Taylor and Vaisman, 2010; Ai et  al., 
2018). For example, a model only using Lys residue feature to classify 
thermophilic and non-thermophilic proteins reached 76.41% 

accuracy, a striking difference between the thermophilic and 
non-thermophilic proteins (Guo et al., 2020).

The content of three aliphatic acids (valine, leucine, and isoleucine) 
in psychrophilic is slightly lower than in the non-psychrophilic proteins. 
The aliphatic amino acids maintain the conformational stability of the 
protein structure through hydrophobic interactions. Many findings have 
demonstrated that psychrophilic enzymes possess reduced core 
hydrophobicity (Lonhienne et  al., 2000; Feller and Gerday, 2003; 
Siddiqui and Cavicchioli, 2006; Åqvist et  al., 2017; Arcus and 
Mulholland, 2020). Such as fewer Ile residue were found on the core of 
the psychrophilic citrate synthase, trypsins, and AHA (Siddiqui and 
Cavicchioli, 2006). In other comparative studies, fewer Leu residues 
were proposed to contribute to the reduced hydrophobic interaction 
within the protein (Zhou et al., 2008).

In conclusion, psychrophilicity is the consequence of numerous 
characteristics, and different families of psychrophilic enzymes may 
adopt one or several strategies to adapt to low temperatures, which 
causes no structural features that is always presented in all 
psychrophilic enzymes.

Feature importance

To identify the key amino acids, the influence of different 
features subset on the accuracy of the model was investigated. 
According to the residue differences between psychrophilic and 
non-psychrophilic proteins, the feature of hydrophobic (ILV), 
charged (KRED), aromatic (WYF), and polar uncharged (STQ) 
residues were explored. These residual features were removed, 
respectively, and the remaining residues were used to build the 
classification model. It is demonstrated that by removing the 
descriptors, the performance of all established models was 
decreased, especially the sensitivity values decreased significantly 
(Table 3). The largest degradation in performance was the models 
that excluded from the KRED and STQ residues. It is deduced that 
the charged amino acids and non-polar amino acids play a vital role 
in discriminating psychrophilic from non-psychrophilic proteins. 
However, the Acc and MCC values did not decrease significantly, 
because the number of psychrophilic proteins was smaller than that 
of non-psychrophilic proteins, thus the subtle change of TP values 
had little effect on Acc and MCC.

FIGURE 3

The amino acids composition in the psychrophilic and non-psychrophilic proteins.

TABLE 3 Prediction results of using different AAC descriptors for 
psychrophilic and non-psychrophilic proteins.

Descriptor Sn Sp Acc MCC

AAC 0.780 0.859 0.806 0.550

AAC-WYF* 0.667 0.860 0.803 0.536

AAC- ILV* 0.660 0.869 0.807 0.544

AAC-KRED* 0.615 0.879 0.800 0.520

AAC-STQ* 0.631 0.865 0.795 0.514

AAC-KREDSTQ* 0.537 0.866 0.768 0.426

AAC-WYF* means the model constructed by the deletion of WYF amino acids frequency 
features, and other descriptors in the table were constructed similarly to this descriptor.

https://doi.org/10.3389/fmicb.2023.1130594
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Huang et al. 10.3389/fmicb.2023.1130594

Frontiers in Microbiology 07 frontiersin.org

Conclusion

In this study, the iLearnPlus platform was utilized to develop binary 
and ternary classification machine learning models to identify 
psychrophilic proteins. The models were constructed based on AAC, DPC, 
and the combination of two descriptors, respectively. In the binary 
classification models, the SVM model using AAC descriptor achieved the 
highest prediction accuracy with 80.6%. Whereas, the accuracy of the SVM 
model using the DPC descriptor was 74.7%. It indicated that AAC 
descriptor can better distinguish psychrophilic and non-psychrophilic 
proteins than DPC descriptor. At the same time, the distribution frequency 
difference of AAC in psychrophilic and non-psychrophilic proteins was 
compared, and the influence of different amino acid composition in AAC 
descriptor on the accuracy of the model was identified. This also provides 
the interpretability of the model for AAC descriptor could better 
distinguish psychrophilic from non-psychrophilic proteins. The frequency 
of amino acid composition results demonstrated that the abundance of Ala, 
Gly amino acids in psychrophilic proteins might provide greater 
conformational mobility. Meanwhile, a higher number of Ser and Thr 
amino acids in psychrophilic enzymes could enhance the interaction 
between the protein with water molecules, thus inducing the protein 
structural flexibility. Moreover, the decreased charged amino acids in 
psychrophilic proteins tend to form fewer salt bridges and hydrogen bonds 
within the protein and be important for the structural plasticity of cold-
adapted enzymes. Non-psychrophilic proteins showed favor for aliphatic 
residues (Leu, Ile, Val) than psychrophilic proteins. In a word, the sequence 
changes of psychrophilic proteins are related to the protein structural 
flexibility. Additionally, compared with binary classification, the feasibility 
of ternary classification was also investigated. The proposed machine 
learning model is expected to be  useful for the identification of 
psychrophilic enzymes and can provide meaningful guidance for the 
modification of cold-adaption of enzymes.
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