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Introduction: Candida albicans is a prevalent opportunistic human fungal

pathogen. However, there are currently very few antifungal treatments available.

Inositol phosphoryl ceramide synthase is an essential and fungal-specific protein

that also provides a novel and promising antifungal target. Aureobasidin A is

a widely used inhibitor of inositol phosphoryl ceramide synthase, however the

mechanism of resistance to aureobasidin A is largely unknown in pathogenic

fungi.

Methods: Here we investigated how C. albicans adapted to low and high

concentrations of aureobasidin A.

Results and discussions: We identified trisomy of chromosome 1 as the

predominant mechanism of rapid adaptation. Resistance to aureobasidin A

was unstable because of the inherent instability of aneuploids. Importantly,

chromosome 1 trisomy simultaneously regulated genes which were associated

with aureobasidin A resistance that are on this aneuploid chromosome as well as

on other chromosomes. Furthermore, the pleiotropic effect of aneuploidy caused

altered resistance not only to aureobasidin A but also to other antifungal drugs

including caspofungin and 5-flucytosine. We posit aneuploidy provides a rapid

and reversible mechanism of development of drug resistance and cross resistance

in C. albicans.
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Introduction

In recent years, the increase in advanced transplant procedures, the use of
immunosuppressive therapies and the pandemic spread of HIV has resulted in an increase in
the population of immunocompromised patients (Benedict et al., 2019), and the frequency of
opportunistic fungal infections, especially invasive mycoses, has also increased significantly
(Pfaller and Diekema, 2004). The most prevalent fungal infections are aspergillosis and
candidemia. Candida species are the fourth most common cause of nosocomial bloodstream
infections in the United States (Pfaller and Diekema, 2007, 2010). Candida albicans is the
predominant cause of candidiasis (Pappas et al., 2018).

Fungi are eukaryotes and share many similar metabolic pathways and essential cellular
machinery with humans. These inherent similarities have severely limited the antifungal
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drugs to only four classes: echinocandins, azoles, polyenes and
flucytosine (Fisher et al., 2022). Alarmingly, multi-drug resistance
in C. glabrata and C. auris has been reported (Arendrup and
Patterson, 2017). In this context, identifying novel antifungal
targets and the development of new antifungal agents are urgently
needed.

Sphingolipids are complex lipids that have a sphingoid
base as a backbone, to which a fatty acid and variable head
groups are attached. Sphingolipids are found on both the inner
and outer membrane of eukaryotic cells. They are essential
components of eukaryotic cell membranes and play a pivotal
role in a variety of biological processes such as cell division,
heat stress response, acid/alkaline tolerance, morphogenesis, signal
transduction, endocytosis and apoptosis (Singh and Del Poeta,
2016; McEvoy et al., 2020). The major fungal sphingolipids
are inositol phosphoryl-ceramides (IPCs) and glucosylceramide
(GlcCer). IPCs are the product of inositol phosphoryl ceramide
synthase (Ipc1). Ipc1 is an essential fungal-specific enzyme for
fungal cell growth and has no mammalian homolog (Denny et al.,
2006). Therefore, Ipc1 is an ideal potential antifungal target.

Aureobasidin A (AbA) is one of the most widely studied
IPC inhibitors. AbA is a cyclic depsipeptide isolated from the
fungus Aureobasidium pullulans R106 (Ikai et al., 1991). It is
fungicidal. AbA strongly inhibits Ipc1 almost exclusively in yeasts,
including some notorious pathogenic fungi such as C. albicans, and
Cryptococcus neoformans (Tan and Tay, 2013; Teymuri et al., 2021).
In yeasts, Ipc1 is encoded by the gene AUR1. The mechanisms
of resistance to AbA have been best studied in the model yeast
Saccharomyces cerevisiae. In most cases, resistance to AbA is
caused by mutation or overexpressoin of AUR1 (Heidler and
Radding, 1995; Hashida-Okado et al., 1996). Overexpression of
PDR16 also confers resistance to AbA putatively via reducing
the effectiveness of AbA against Ipc1 (Katsuki et al., 2018). In
addition to AUR1, deletion of other genes encoding sphingolipid-
metabolizing enzymes also causes AbA resistance (Oh et al.,
1997; Schorling et al., 2001; Tani and Kuge, 2010). AbA is likely
a substrate of the ATP-binding cassette (ABC) transporters in
S. cerevisiae. Overexpression of YOR1, which encodes plasma
membrane ABC transporter, confers resistance to AbA (Ogawa
et al., 1998). However, reports of genetic mechanisms of resistance
to AbA in pathogenic fungi are still lacking.

In this study, we investigated genetic mechanisms of adaptation
to both sub-inhibitory and lethal amount of AbA in C. albicans. We
found formation of Chromosome 1 trisomy (Chr1 × 3) was the
predominant adaptation strategy. In the absence of stress, Chr1 × 3
mutants were unstable and spontaneously reverted to euploids
with resistance to AbA concomitantly lost. We found C. albicans
PDR16 and AUR1 genes were haploinsufficient. Heterozygous
deletions of PDR16 and AUR1 caused hypersensitivity to AbA.
Chr1 × 3 simultaneously upregulated expression of genes on Chr1
including PDR16, as well as genes on other chromosomes including
AUR1. Furthermore, Chr1 × 3 conferred pleiotropic effects on
susceptibility to other antifungals including decreased resistance to
caspofungin and increased resistance to 5-flucytosine. Therefore,
we posit Chr1 × 3 provides a rapid mechanism of reversible
adaptation to AbA via simultaneously upregulating genes on and
outside of the aneuploid chromosome.

Materials and methods

Strains and growth conditions

Strains used in this study are listed in Supplementary Table 1.
Primers are listed in Supplementary Table 2. Drugs were dissolved
in dimethyl sulfoxide (DMSO) and stored at –20◦C.

C. albicans lab strain SC5314 was used as wild type in this study.
Stock culture was preserved in 25% glycerol and maintained at –
80◦C. Cells were grown in Yeast extract-Peptone-Dextrose (YPD)
media (1% [w/v] yeast extract, 2% [w/v] peptone and 2% [w/v]
D-glucose) at 37◦C in a shaking incubator at 150–200 rpm. For
solid medium, 2% [w/v] agar was added. For the selection of gene
knockout strains, YPD agar containing 400 µg/ml nourseothricin
(Werner BioAgents) medium was used (YPD + NAT).

Growth curves

Approximately 2.5 × 103 cells/ml of SC5314 in 150 µl YPD
with or without AbA were incubated in a 96 well plate at 37◦C.
OD595 was monitored in a Tecan plate reader (Infinite F200 PRO,
Tecan, Switzerland) at 15 min time intervals for 24 h. Data are
represented as the mean ± SD of three biological replicates.

Spot assay

Cells were suspended in distilled water and adjusted to
1 × 107 cells/ml. 3 µl of 10-fold serial dilutions were spotted
on YPD plates with or without drugs (control) at 37◦C and
photographed after 2 days.

Obtaining mutants using lethal amount
of aureobasidin A

Cells were suspended in distilled water and adjusted to
1 × 107 cells/ml. 100 µl of cell suspension were on YPD plates
supplemented with 20 ng/ml AbA. The plates were incubated at
37◦C for 3 days. 18 mutants were randomly chosen. The mutants
were streaked onto YPD plates and incubated at 37◦C for 36 h. For
each mutant, 4–6 colonies of similar size were selected and frozen
in 1 ml of 25% glycerol at –80◦C.

Short time exposure to sub-inhibitory
aureobasidin A

Approximately 1 × 103 cells/ml of SC5314 was grown in
YPD broth (control) or YPD broth supplemented with 5 ng/ml
AbA (test). After 24 h of shaking at 37◦C, 10 µL of the culture
was transferred to 1 ml YPD broth containing the same AbA
concentration. After 24 h, the culture was centrifuged at 3,000 rpm
for 1 min, and resuspended in distilled water. Then it was diluted
with distilled water. Approximately 200 cells were spread onto YPD
plates. The plates were incubated at 37◦C for 24 h. Randomly 40
colonies from each plate were tested for resistance to AbA.
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FIGURE 1

Susceptibility of C. albicans to aureobasidin A. C. albicans lab strain SC5314 was grown in YPD broth (A) or on YPD plates (B) supplemented with
aureobasidin A. In panel (A) optical density at 595 nm (OD595) was measured every 15 min for 24 h at 37◦C using a Tecan plate reader (Infinite F200
PRO, Tecan, Switzerland). Data are represented as the mean ± SD of three biological repeats. In panel (B), 3 µl of 10-fold serial dilutions were
spotted on YPD plates. Drug concentrations are shown in the figure. The plates were incubated at 37◦C for 48 h then photographed.

Gene deletions

Gene deletions were constructed using the NAT1 flipper
cassette as described previously (Yang et al., 2019). Briefly,
approximately 500 bp of upstream and downstream region of the
target gene was amplified using SC5314 genomic DNA as template.
The 3’ end of the upstream forward primers overlapped with
the 5’ end of the NAT1 flipper; the 5’ end of the downstream
reverse primers overlapped with the 3’ end of the NAT1 flipper.
The amplicon and plasmid pJK863 were used as templates to
fuse the upstream region to the 5’ region of the cassette, and
the downstream region to the 3’ region of the cassette. The
fusion products were transformed into C. albicans following the
lithium acetate method (Wilson et al., 2000), and transformants
were selected on YPD plates supplemented with 400 µg/ml
nourseothricin (NAT). Positive transformants were confirmed
by diagnostic PCRs with primers that annealed outside the
flanking homology regions. All primer sequences are listed in
Supplementary Table 2.

DNA-seq

Test strains were grown on YPD-agar plates. Randomly 25–30
colonies with similar sizes were collected. Total DNA extraction
and genomic DNA library preparation were performed as described
previously (Yang et al., 2021d). The final libraries were sequenced
by BGISEQ-500. Raw fastq files were uploaded to YMAP (version
1.0)1 (Abbey et al., 2014). Read depth was plotted as a function of

1 http://lovelace.cs.umn.edu/Ymap/

chromosome position using the Assembly 22 version of the SC5314
reference genome.2

RNA-seq

RNA-seq was performed as described previously (Yang et al.,
2021b). Strains were streaked onto YPD plates from the –80◦C
freezer. After 36 h incubation at 37◦C, several colonies of similar
sizes were chosen. Colonies were suspended in distilled water
and adjusted to 1 × 104 cells/ml. 100 µl of cell suspension were
spread on YPD plates. The plates were incubated at 37◦C for 36 h.
Cells were collected by centrifugation, washed and flash frozen
in liquid nitrogen. Total RNA extraction and purification, library
construction, and sequencing were performed as described in Yang
et al. (2013).

Results

Measuring susceptibility of Candida
albicans lab strain SC5314 to
aureobasidin A

Susceptibility of the C. albicans lab strain SC5314 to AbA
was measured in YPD broth and on YPD agar supplemented
with AbA. In the liquid medium, growth in the presence of 5

2 http://www.candidagenome.org/download/sequence/C_albicans_
SC5314/Assembly22/current/C_albicans_SC5314_A22_current_
chromosomes.fasta.gz
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FIGURE 2

Lethal amount of aureobasidin A selects unstable aneuploid mutants. Approximately 1 million cells of SC5314 were spread on YPD plate
supplemented with 20 ng/ml aureobasidin A or without drug (control). The plates were incubated at 37◦C for 3 days (A). Randomly 18 mutants were
chosen. Spot assay was performed to compare level of resistance between mutants and the parent (B). Two resistant mutants (#1 and #3) were
spread on YPD plates. Cyan arrows indicate small colonies and magenta arrows indicate large colonies (C). Both small and large colonies were
tested for resistance to aureobasidin A (D) and were sequenced (E). The karyotypes were generated using Ymap (Abbey et al., 2014). Allele
frequencies are color coded: homolog “a” is cyan, homolog “b” is magenta and heterozygous alleles are gray.

ng/ml or 10 ng/ml of AbA did not significantly inhibit growth
compared to the in YPD broth without AbA [p > 0.05, one-
way ANOVA (ANalysis Of VAriance) with post hoc Tukey HSD
(Honestly Significant Difference)]. 20 ng/ml of AbA completely

inhibited growth (Figure 1A). On the plates, growth was also
inhibited by 20 ng/ml of AbA (Figure 1B). Therefore, we chose
5 ng/ml and 20 ng/ml of AbA as sub-inhibitory and inhibitory
concentrations, respectively, for further studies.
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FIGURE 3

Sub-inhibitory amount of aureobasidin A selects aneuploid mutants. SC5314 was grown in YPD broth supplemented with or without 5 ng/ml
aureobasidin A. After 48 h, the cultures were washed and diluted using distilled water. Approximately 200 cells were spread on YPD. The plates were
photographed after 24 h incubation at 37◦C. Cyan arrow indicates small colonies and magenta arrow indicates large colonies (A). Randomly 20
small and 20 large colonies from the drug evolved culture were tested for resistance to aureobasidin A (B), and all the 20 resistant mutants were
sequenced (C).

Lethal amount of aureobasidin A selects
for chromosome 1 trisomy mutants in
Candida albicans

Approximately 1 million cells of SC5314 were spread on YPD
plate supplemented with 20 ng/ml AbA. After 3 days of incubation
at 37◦C, randomly 18 colonies (mutants) were chosen (Figure 2A).

Spot assay indicated only 2 (#1 and #3) of the 18 mutants (#1-#18)
grew better than the parent in the presence of AbA (Figure 2B).
However, when grown on YPD plates in the absence of AbA, these
2 mutants were unstable, exhibiting mostly small sized colonies
(indicated by cyan arrows) and a few large colonies (indicated by
magenta arrows) (Figure 2C). When tested for resistance to AbA,
only the small colonies were resistant. The large colonies were not
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FIGURE 4

Chromosome 1 trisomy has pleiotropic effect on whole genome transcription and antifungal resistance profile. Transcriptome of one Chr1 trisomy
mutant was compared to the diploid wild type strain. Cells were grown on YPD plates at 37◦C. Log2 ratio of genes expression levels were plotted as
a function of chromosome position (A). Strains with deletions of one allele of PDR16 or AUR1 were compared to wild type diploid strain parent
SC5314, or a Chr1 × 3 parent, for resistance to aureobasidin A (Ab) (B). Pleiotropic effect of Chr1 trisomy on antifungal resistance was tested by spot
assay on YPD plates supplemented with caspofungin (CSP) or 5-flucytosine (5FC) (C). In panels (B,C), the plates were incubated at 37◦C for 48 h
then photographed.
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(Figure 2D). Whole genome sequencing indicated in both mutants
the small colonies were Chr1 × 3 and both had the B homolog
duplicated (ABB), and the large colonies were euploid (Figure 2E).
Therefore, exposure to lethal amount of AbA selected for resistant
mutants which were Chr1 × 3. The resistance was unstable. Loss of
aneuploidy caused concomitant loss of AbA resistance.

Short-term exposure to sub-inhibitory
aureobasidin A selects for chromosome 1
trisomy mutants in Candida albicans

We asked if short term growth in sub-inhibitory AbA was
sufficient to select for resistant mutants. SC5314 was grown in
YPD broth or YPD broth supplemented with 5 ng/ml AbA. After
48 h, the cultures were washed, diluted and plated onto YPD.
Surprisingly, the colonies (mutants) from the AbA-evolved culture
showed obvious size variations: 117 mutants were large (indicated
by magenta arrows) and 38 mutants were small (indicated by cyan
arrows). In contrast, mutants from the YPD-evolved culture did not
show colony size variations and the size was similar to the large
mutants from the AbA-evolved culture (Figure 3A).

Randomly, 40 mutants of the YPD-evolved progeny were tested
by spot assay for resistance to AbA. None of them gained resistance
(data not shown). Randomly 20 small mutants and 20 large mutants
from the AbA-evolved progeny were tested. All the 20 small
mutants (#1-#20) were more resistant than the parent to AbA. None
of the large mutants (#21 – #40) were resistant (Figure 3B).

All the 20 resistant mutants were sequenced, and all had
Chr1 × 3: 19 had Chr1 × 3 only, and 1 mutant had
Chr1 × 3 + Chr6 × 3. Among them, 10 had AAB and 10 had ABB
of Chr1. Therefore, there was no homolog bias in the Chr1 × 3
mutants (Figure 3C).

Thus, 48 h exposure to sub-inhibitory AbA was sufficient to
select for resistant mutants. The resistance was due to amplification
of Chr1. There was no biased homolog duplication in the
Chr1 × 3 mutants.

Chr1 trisomy conferred resistance to
aureobasidin A via up-regulating PDR16
and AUR1

In the C. albicans genome, PDR16 is on Chr1 and AUR1
resides on Chr5. We asked why Chr1 × 3 caused resistance
to AbA. The transcriptome of one Chr1 × 3 mutant was
compared to the wild type strain. The expression of genes on Chr1
were generally up-regulated in the Chr1 × 3 mutant, including
PDR16 (Figure 4A and Supplementary Table 3). Chr1 × 3
also up-regulated genes on other chromosomes, including AUR1
(Figure 4A and Supplementary Table 3). We found PDR16 and
AUR1 were haploinsufficient. Deletion of one allele of PDR16 or
AUR1 in SC5314 caused hypersensitivity to AbA. Deletion of one
allele of PDR16 or AUR1 in a Chr1 × 3 mutant also caused
loss of AbA resistance (Figure 4B). Therefore, Chr1 × 3 caused
resistance to AbA via simultaneously up-regulating genes on the
aneuploid chromosome (such as PDR16) as well as genes on

euploid chromosomes (such as AUR1) which were associated with
AbA resistance.

Furthermore, we asked if Chr1 × 3 had pleiotropic effects
on the aneuploid cells. Susceptibility of Chr1 × 3 mutant was
compared to parent by spot assay. Chr1 × 3 caused hypersensitivity
to caspofungin (CSP). GSC1 and GSL1, which encode the target
protein β-1,3-glucan synthase of CSP, are on Chr1. RNA-seq
indicated expression of GSC1 was compensated to diploid level.
GSL1 was significantly up-regulated in Chr1 × 3, however,
expression of GSL2, which also encodes a subunit of the β-1,3-
glucan synthase, was significantly down-regulated (Supplementary
Table 3). Deletion of the PKC pathway kinase genes MKK2 and
MKC1, and deletion of CMP1 and CNB1, which encode subunits
of calcineurin, cause hypersensitivity to CSP (Yang et al., 2021b).
Here we found expression of MKK2 and MKC1 were significantly
down-regulated in Chr1 × 3, but expression of CMP1 or CNB1 was
not significantly different (Supplementary Table 3). In addition to
altered susceptibility to CSP, Chr1 × 3 also conferred resistance
to 5-flucytosine (5FC) (Figure 4C). RNA-seq indicated FCA1
gene was significantly down-regulated in Chr1 × 3, other genes
associated with 5FC resistance, such as FUR1, FCY2, FCY21, were
not differentially expressed (Supplementary Table 3).

Discussion

Gene copy number variation, mainly via aneuploidy, is a
prevalent mechanism of rapid adaptation to stresses in C. albicans
(reviewed in Tsai and Nelliat, 2019). Although C. albicans can
exist as a haploid (Hickman et al., 2013), most C. albicans strains
are diploids with 8 pairs of chromosomes (Jones et al., 2004).
C. albicans is tolerant to aneuploidy. Each chromosome can be
trisomic, but specific aneuploidy is always selected for by particular
stressors and usually causes resistance to that stress (Yang et al.,
2021d). Furthermore, at least in yeasts, aneuploidy typically causes
proportional alterations of gene transcription and in most cases
translation, therefore, aneuploidy has the potential of causing
cross-resistance to unrelated stresses (Yang et al., 2013, 2019,
2021a,b,c).

In this study, we found Chr1 × 3 formation was the
predominant mechanism of rapid adaptation to both sub-
inhibitory and lethal amount of AbA in C. albicans. Genetic
mutations of AUR1 and PDR16, which are known genes associated
with resistance to AbA, were not detected in the mutants. The
loss of the extra copy of Chr1 was accompanied by loss of AbA
resistance. Therefore, copy number of Chr1 was the mechanism of
altered AbA resistance. We also found PDR16 andAUR1 genes were
dosage-sensitive genes. Deletion of one allele was sufficient to cause
hypersensitivity to AbA. In the mutants, PDR16 is on the aneuploid
chromosome and AUR1 is on euploid chromosome. Interestingly,
Chr1 × 3 simultaneously up regulated both PDR16 and AUR1.
Therefore, Chr1 × 3 had pleiotropic effects on the whole genome
transcription and phenotypes. As a result, we found Chr1 × 3 not
only caused AbA resistance, it also conferred resistance to 5FC and
hypersensitivity to CSP.

In the C. albicans genome, three genes encode subunits of the
target protein β-1,3-glucan synthase of CSP: GSC1, GSL1 and GSL2.
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GSC1 and GSL1 are on Chr1 and GSL2 is on ChrR. Compared
to the euploid parent, in Chr1 × 3 mutant, transcription of GSL1
was up regulated and transcription of GSL2 was down regulated.
Imbalanced expression level of genes encoding subunits of protein
complex always leads to misassembly of the complex (Cardarelli
et al., 2011). This mechanism might explain why Chr1 × 3 mutant
was hypersensitive to CSP.

5FC is a prodrug. Upon uptake into fungal cells via the cytosine
permease (encoded by FCY2 and FCY21), it is converted into toxic
5-fluorouracil (5FU) by cytosine deaminase (encoded by FCA1).
5FU is then further processed by uracil phosphoribosyltransferase
(encoded by FUR1), and the product inhibits both DNA and
protein synthesis. Loss of function mutations of genes involved
in the uptake and intracellular metabolism of 5FC have been
associated with resistance in clinical Candida (Hope et al., 2004;
Papon et al., 2007) and Cryptococcus isolates (Whelan, 1987;
Billmyre et al., 2020; Chang et al., 2021). Here we found FCA1
was down regulated in Chr1 × 3 mutant. FUR1, FCY2 and FCY21
were not differentially expressed. Therefore, decreased expression
of FCA1 might be the cause of resistance to 5FC.

Conclusions

In summary, this study indicates aneuploidy is the major
mechanism of rapid adaptation to AbA in C. albicans. Aneuploidy
directly regulates genes on the aneuploidy chromosome and
indirectly regulates genes on the euploid chromosome. The
pleiotropic effect of aneuploidy has the potential of causing cross
resistance to antifungal drugs.
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