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The emergence of potentially life-threatening zoonotic malaria caused by 
Plasmodium knowlesi nearly two decades ago has continued to challenge Malaysia 
healthcare. With a total of 376 P. knowlesi infections notified in 2008, the number 
increased to 2,609 cases in 2020 nationwide. Numerous studies have been conducted 
in Malaysian Borneo to determine the association between environmental factors 
and knowlesi malaria transmission. However, there is still a lack of understanding of 
the environmental influence on knowlesi malaria transmission in Peninsular Malaysia. 
Therefore, our study aimed to investigate the ecological distribution of human 
P. knowlesi malaria in relation to environmental factors in Peninsular Malaysia. A 
total of 2,873 records of human P. knowlesi infections in Peninsular Malaysia from 
1st January 2011 to 31st December 2019 were collated from the Ministry of Health 
Malaysia and geolocated. Three machine learning-based models, maximum entropy 
(MaxEnt), extreme gradient boosting (XGBoost), and ensemble modeling approach, 
were applied to predict the spatial variation of P. knowlesi disease risk. Multiple 
environmental parameters including climate factors, landscape characteristics, 
and anthropogenic factors were included as predictors in both predictive models. 
Subsequently, an ensemble model was developed based on the output of both 
MaxEnt and XGBoost. Comparison between models indicated that the XGBoost 
has higher performance as compared to MaxEnt and ensemble model, with AUCROC 
values of 0.933 ± 0.002 and 0.854 ± 0.007 for train and test datasets, respectively. Key 
environmental covariates affecting human P. knowlesi occurrence were distance to 
the coastline, elevation, tree cover, annual precipitation, tree loss, and distance to 
the forest. Our models indicated that the disease risk areas were mainly distributed in 
low elevation (75–345 m above mean sea level) areas along the Titiwangsa mountain 
range and inland central-northern region of Peninsular Malaysia. The high-resolution 
risk map of human knowlesi malaria constructed in this study can be further utilized 
for multi-pronged interventions targeting community at-risk, macaque populations, 
and mosquito vectors.
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1. Introduction

Environmental variations including land cover types, climate 
changes, anthropogenic landscapes, and host distributions have been 
linked to the geographical distribution and altered transmission patterns 
of malaria and other vector-borne diseases worldwide (Medone et al., 
2015; Morand and Lajaunie, 2021; Kulkarni et al., 2022). In Malaysia, 
the transmission of the simian malaria species Plasmodium knowlesi, via 
Anopheles Leucosphyrus group mosquitoes, has been attributed to 
environmental changes affecting the proximity between people, 
macaque reservoirs (mainly Macaca fascicularis and M. nemestrina), and 
mosquito vectors (Cuenca et al., 2021). It is important to highlight that 
the incidence of human knowlesi malaria has grown significantly over 
the last two decades, threatening the malaria elimination efforts in 
Malaysia and other Southeast Asian countries (Singh et al., 2004; Shearer 
et al., 2016; Chin et al., 2020). It is suggested that the increasing reports 
of human knowlesi malaria are driven by deforestation, agricultural 
expansion, and spatial overlaps between the human population and 
wildlife hosts (Moyes et al., 2016; Fornace et al., 2019).

Malaysia is geographically divided by the South China Sea into two 
regions, Peninsular Malaysia and Malaysian Borneo. Heterogeneities 
exist in the distribution of P. knowlesi vectors between these regions such 
as An. cracens, An. introlatus, and An. hackeri in Peninsular Malaysia, 
and An. balabacensis and An. latens in Malaysian Borneo (Tan et al., 
2008; Wong et al., 2015; Ang et al., 2020; Jeyaprakasam et al., 2021a). 
Molecular epidemiological studies have found that the geographical 
separation could have also driven the allopatric divergence of P. knowlesi 
into distinct subpopulations (Divis et al., 2017). Studies in Sabah, a state 
in Malaysian Borneo, have demonstrated the association between 
environmental factors and knowlesi malaria risk (Brock et al., 2019; 
Fornace et  al., 2019; Sato et  al., 2019; Hod et  al., 2022). However, 
environmental influences on knowlesi malaria in Peninsular Malaysia 
are not widely studied. Therefore, it is of interest to know how 
environmental factors may impact knowlesi malaria transmission in 
Peninsular Malaysia.

As a part of the malaria intervention strategy in Malaysia, disease 
screening via active case detection, mass blood survey, and 
entomological surveillance were conducted mainly in localities with a 
history of malaria cases. This intervention strategy is not able to 
effectively cover other parts of the populations which are at high-risk or 
may be exposed to the disease without case notifications, especially 
among Orang Asli (i.e., indigenous people) communities in forested 
areas lacking accessible roads. Also, not knowing the locations of the 
high-risk area may affect the systematic implementation of macaque 
reservoir screening and entomological surveillance. Therefore, 
identifying the ecological niche of the disease can support plans for 
controlling disease transmission.

The emerging role of machine learning approaches in healthcare 
and spatial epidemiology is instrumental, especially in modeling the 
covariate contribution toward disease transmission as well as to predict 
the spatial distribution of the disease (Kopczewska, 2022; Temenos et al., 
2022). For instance, MaxEnt (maximum entropy) algorithm enables the 
estimation of the geographical range of a target disease by determining 
the probability distribution of maximum entropy (i.e., most spread out 
or closest to uniform) based on the availability of case presence and 
ecological information within the study area (Phillips et  al., 2006). 
Besides, decision-tree-based models such as random forest and 
gradient-boosted tree are popularly used in ecological niche modeling. 
These models have been widely applied to estimate the potential risk 

areas of diseases such as malaria (Bhatt et al., 2017), dengue (Liu et al., 
2016), West Nile virus (Shartova et al., 2022), scrub typhus (Acharya 
et  al., 2019), brucellosis (Jia and Joyner, 2015), and Chagas disease 
(Mischler et al., 2012) as well as to estimate the spatial distribution of 
the vectors of Lyme disease (Burrows et  al., 2022), chikungunya 
(Richman et al., 2018), leishmaniasis (Cunze et al., 2019), and malaria 
(Akpan et al., 2018). Previous studies have demonstrated the use of 
boosted regression tree (BRT) to map the geographical distribution of 
natural reservoirs and vectors of P. knowlesi and estimated the risk of 
P. knowlesi infection throughout Southeast Asia (Moyes et al., 2016; 
Shearer et al., 2016). Also, several studies applied ensemble modeling 
techniques by integrating multiple predictive models to generate a 
prediction of malaria risk with higher performance (Bhatt et al., 2017; 
Chemison et al., 2021).

A relatively new approach known as extreme gradient boosting 
(XGBoost), was found to outperform various models in spatial modeling 
(Zhao et al., 2021). In addition to improving the model performance, 
understanding the influence of each parameter in the model is important 
for public health administration. Recently, SHAP (SHapley Additive 
exPlanations) tool has rendered detailed explanations to once-
considered black-box machine learning models without sacrificing 
performance. This approach is coupled with XGBoost as a method 
emphasized in this study.

Understanding the transmission patterns and geographical 
distribution of P. knowlesi in Peninsular Malaysia is essential to strategize 
effective disease control measures and enhance understanding of how 
ecologies affect the risks of knowlesi malaria. To address these needs, 
we aimed to investigate the impacts of diverse environmental variations 
toward human knowlesi malaria occurrence as well as to predict 
potential high-risk areas for human knowlesi malaria at fine spatial 
resolution across Peninsular Malaysia using machine learning models 
of MaxEnt and XGBoost.

2. Materials and methods

2.1. Ethic statement

This study was registered with the National Medical Research 
Register (NMRR-16-2,109–32,928), and ethical approval was obtained 
from the Malaysian Research Ethical Committee (MREC) [reference no. 
KKM/NIHSEC/P16-1782 (11)]. For all case data, information that 
identifies the patient was anonymized.

2.2. Geography of Peninsular Malaysia

Malaysia is a country in Southeast Asia and has two regions, 
Peninsular Malaysia and Malaysian Borneo (Figure  1A). Our study 
focused on Peninsular Malaysia which extends from latitude 
1°15′50.0″N to 6°43′36.0″N and from longitude 99°35′E to 104°35″E 
(Figure 1B). From 2010 to 2019, Peninsular Malaysia experienced a loss 
of 2.26 million hectares of tree cover (Global Forest Watch, 2021; 
Figure  1C). Within this period, at least 90% of the tree loss was 
attributable to deforestation activities (Global Forest Watch, 2021). 
Previous studies suggested that landscape changes driven by 
deforestation would increase the likelihood of spillover of the macaque 
population into the human population, thus, increasing the risk of 
knowlesi malaria exposure (Fornace et al., 2016).
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2.3. Human knowlesi malaria data

In Malaysia, all laboratory-diagnosed malaria cases are notified to 
the District Health Offices and State Health Departments, which will 
be subsequently compiled by the Ministry of Health Malaysia. Human 
knowlesi malaria cases are diagnosed via microscopic examination and/
or nested PCR assay. In this study, retrospective data on knowlesi malaria 
cases from 1st January 2011 to 31st December 2019 were provided by the 
Ministry of Health Malaysia. Approximately 97.16% (n = 2,873) of the 
reported indigenous knowlesi malaria cases (total = 2,956) were able to 
be geolocated (Figure 1D). The source of infection reported for each case 
was manually geolocated as the occurrence point with reference to 
Google Maps (Google, 2022), Mapcarta (Mapcarta, 2022), Waze (Waze 
Mobile, 2022), as well as state and federal territory gazetteers (Ministry 
of Energy and Natural Resources Malaysia, 2022). For cases with no 
information on the source of infection addresses, household or working 
addresses were used as the replacement for occurrence point (9.89%, 
n = 284, of the geolocated cases were georeferenced this way). Before 
running MaxEnt and XGBoost modeling, reports of cases within the 
same grid in a covariate layer were considered as a single unique record. 
This approach was used to reduce spatial clumping and avoid the 
inflation of model accuracy (Veloz, 2009). Overall, the case dataset 
consisted of 1,845 unique occurrence records. The overview of the 
modeling procedure is shown in Figure 2.

2.4. Spatial environmental covariate data 
collation and processing

ArcGIS Pro version 2.7.2 (Esri, Redlands, CA, United States) and 
QGIS version 3.6.3 (Open Source Geospatial Foundation, Beaverton, 
OR, United States) were used to visualize and process all spatial data. 
Original covariate data were acquired from multiple sources and 
processed as described in Supplementary Data and 
Supplementary Tables 1–3. The coordinate reference systems of all 
spatial data were projected to World Geodetic System (WGS) 84/
Universal Transverse Mercator (UTM) zone 47 N. All covariates were 
resampled to produce raster layers with 1×1 km2 pixel spatial resolution. 
A total of 36 constructed covariate spatial data consisted of landscape, 
climate, anthropogenic, and proximity characteristics were used for 
subsequent analysis (Supplementary Figures 1–3).

2.5. Multicollinearity test

A multicollinearity assessment was conducted to remove highly 
correlated covariates via two steps (Sillero et  al., 2021). Firstly, a 
pairwise correlation matrix was constructed and Pearson’s correlation 
coefficient r ≤ −0.8 or ≥ 0.8 were set as a threshold to selectively 
remove highly correlated covariates. Then, an assessment based on 

A B

C D

FIGURE 1

(A) Location of Peninsular Malaysia (red box). (B) The district-level administrative boundary of Peninsular Malaysia. (C) Extent of tree loss (recorded in years 
2010–2019) and tree cover (recorded in year 2019) in Peninsular Malaysia. Tree loss data was acquired from Global Forest Change database (https://
earthenginepartners.appspot.com/science-2013-global-forest/download_v1.7.html) whereas tree cover data was acquired from Copernicus Global Land 
Service (https://zenodo.org/record/3939050#.Yw-ZpXZBzIU). (D) Geolocated cases of human knowlesi malaria (n = 2,873) throughout Peninsular Malaysia 
from years 2011–2019.
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the variance inflation factor (VIF) was conducted to remove 
covariates with VIF ≥ 10.

2.6. Maximum entropy (MaxEnt) modeling 
procedure

MaxEnt is a machine learning approach which applies a maximum 
entropy algorithm to model potential distributions of an object based 
on presence-only datasets. MaxEnt version 3.4.4 (Phillips et al., 2006) 
was used in this study to construct the presence-background niche 
model for knowlesi malaria in Peninsular Malaysia. The unique case 
occurrence dataset was randomly partitioned into train dataset (70%) 
and test dataset (30%) through subsampling approach. Log-transformed 
value of human population density covariate was selected as the 
sampling bias layer. Sampling bias layer was included to account for the 
assumption of a greater likelihood of disease detection in populous 
places (Merow et al., 2013). The inclusion of sampling bias layer could 
also reduce the likelihood of false positives such as predicting highly 
populated areas as high-risk areas due to biased detection location. In 
this model, 10,000 background points were randomly sampled. The 
modeling software factors out bias by assigning weights to the 
background points based on the sampling bias layer value during 
modeling. The modeling parameters used include regularization 
multiplier of 1, 2000 iterations, and 0.00001 convergence threshold. The 
area under curve of receiver operating characteristic (AUCROC) was 
used to evaluate the performance of the model. The higher the AUCROC 

value (ranging from 0 to 1), the higher its accuracy. The logistic output 
of the model was selected to present the predicted risk probability.

All environmental covariates (except human population density) 
that passed the multicollinearity assessment were included in the model 
training stage. Ten replicated models were fitted with each trained to a 
separate subsampled dataset. The relative importance of each covariate 
was ranked based on the percent contribution to the model. Backward 
stepwise elimination was applied to the to remove the covariates with 
the lowest percent contribution to the models until all remaining 
covariates have a percent contribution threshold of ≥1%.

To obtain a robust model, 30 replicated models were developed 
using the final covariate dataset (Convertino et al., 2012; Acharya et al., 
2018). Mean output grids were calculated among the raster outputs of 
these 30 models and these grids were used to generate a 1×1 km2 pixel 
spatial resolution predicted risk map of human knowlesi malaria. 
Ecological suitability ranges of the human knowlesi malaria transmission 
per covariate were demonstrated by response curves.

2.7. Extreme gradient boosting (XGBoost) 
modeling procedure

XGBoost is a machine learning algorithm based on gradient 
boosting, which can be utilized for both regression and classification 
problems. XGBoost is known for its ability to speed up data learning 
execution out of core computation (Chen and Guestrin, 2016). Similar 
to MaxEnt, we employed XGBoost as a presence-only model by using 

FIGURE 2

Schematic summarizing the modeling procedure in this study.
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the same dataset in the MaxEnt procedure, consisting of case 
occurrence and background points. This dataset was transformed into 
binary code of 1 and 0 to indicate case occurrence and background 
data, respectively. The covariates utilized for the final MaxEnt was 
similarly employed as predictors in XGBoost modeling. The 
partitioning of the case dataset into 70% train and 30% test datasets was 
the same as previously mentioned in the MaxEnt modeling procedure. 
We constructed the XGBoost model with a tree-based booster learning 
type and set the objective of binary logistic regression. It was noted that 
the background data make up a large proportion of the dataset by 
approximately five-fold as compared to the case occurrence data. This 
would lead to an imbalanced dataset, which can affect the model 
performance and cause biased prediction toward higher proportion 
class of background data. Therefore, we  assigned a class weighted 
approach to reduce the impact of imbalanced data issue. The weight for 
each class (occurrence class weight, w1, and background class weight, 
w0) can be calculated as follows:

 
w N

N
train

train
1
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train
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where Ntrain is the total number of data points (both occurrence and 
background) in the train dataset, N(train,1) and N(train,0) are the numbers of 
occurrences and backgrounds, respectively, in train dataset. Weight 
assignment allows the handling of class imbalance by reducing model 
bias toward the majority class without manipulating the training data 
distribution (Johnson and Khoshgoftaar, 2019). Besides class weight, 
we included the bias layer of log-transformed human population density 
value as the instance weight for each corresponding occurrence and 
background points to adjust sampling bias. Class weight and instance 
weight were processed prior to input into the train dataset. AUCROC was 
used to evaluate the performance of the model. During model training 
process, hyperparameter tuning was conducted to identify optimal 
parameters while maximizing the model training AUCROC. Five-fold 
cross-validation of the train dataset was performed during the tuning 
phase to avoid overfitting the model prediction. The final optimized 
parameters are described in Supplementary Table 4. Mean output grids 
were calculated among the raster outputs of 30 XGBoost replicates, and 
these grids were used to generate a 1×1 km2 pixel spatial resolution 
predicted risk map of human knowlesi malaria.

To provide better interpretations of environmental conditions and 
knowlesi malaria risk, we  applied SHapley Additive exPlanations 
(SHAP) to disseminate and interpret the output of XGBoost model 
(Campbell et al., 2022). SHAP values were generated to evaluate the 
relative importance of covariates in the model. A high and positive 
SHAP value indicates that the covariate highly and positively affects the 
output of the prediction model and vice versa (Lundberg et al., 2020). 
Global SHAP summary plots and SHAP dependence plots were created 
to explain the relationship between covariates and the model prediction 
output. XGBoost modeling procedure was performed in R using 
maptools, raster, and usdm packages to manage digital mapping and 
data extraction, dplyr package for data manipulation, XGBoost package 
for running XGBoost algorithm, caret package for managing machine 
learning framework and hyperparameter tuning, pROC package for 

analyzing model AUCROC, and SHAPforxgboost package for generating 
SHAP value and plots.

2.8. Ensemble model procedure

Ensemble modeling involves the aggregation of outcome 
prediction from multiple model algorithms to generate a final 
prediction. Model ensemble approach is frequently applied to address 
machine learning issues such as incremental learning, imbalanced 
data, error correction, and confidence estimation, and it usually 
generates improved results (Polikar, 2012). An ensemble model was 
developed by averaging the outputs of MaxEnt and XGBoost models 
using the same subsampled datasets as used for constructing both 
MaxEnt and XGBoost. The averaged ensemble output was used to 
generate human knowlesi malaria risk map. The predictive 
performances of MaxEnt, XGBoost, and ensemble models were 
evaluated using AUCROC, sensitivity, specificity, and F1-score. To 
compare the prediction patterns produced by different models, 20,000 
points were randomly sampled from the risk map outputs of the three 
models and converted by kernel density. District-level annual 
incidence rate in 1 million people was calculated by dividing the 
annual number of reported cases by estimated mid-year population 
size and multiplying by 1,000,000. Spearman’s correlation test was 
conducted to determine the correlation between variables with value 
of p <0.05 indicates statistical significance. The procedure of model 
development and validation was carried out in R software. The R script 
used to conduct XGBoost and ensemble modeling is available at 
https://github.com/WKPhang/XGBoost_EcologicalNicheModel/.

2.9. Identification of priority areas for 
intervention and surveillance

Priority zone maps were developed to identify priority areas for 
intervention targeting agricultural and logging workers, entomological 
surveillance, and macaque surveillance. Before the development of a 
priority zone map for intervention targeting agricultural and forest 
workers, the land cover of the workplace of agricultural and logging 
workers was estimated by overlaying the covariate layers of cropland, 
oil palm, and historical tree loss. For each pixel grid, the highest value 
of either of the overlaid value was selected to represent the value of 
the output map. A priority zone map highlighting important areas for 
intervention targeting agricultural and logging workers is important 
as this group of populations is considered at-risk and regularly 
exposed to potentially infective mosquitoes (Grigg et al., 2017; Chin 
et al., 2021). It was noted that 92% of tree cover loss in the year 2010–
2019 was driven by deforestation (Global Forest Watch, 2021). Hence, 
it is important to consider the high likelihood of logging workers 
presence in areas where tree loss occurred. The relative occurrence 
probability maps of the Anopheles Leucophyrus group mosquito, 
M. fascicularis, and M. nemestrina were included in the development 
of priority zone maps for entomological and macaque surveillance. 
Threshold values indicating relative priority scores were set based on 
the quantile-based classification of each covariate and predicted risk 
map. We assigned the values in the first and second quarters a score 
of 0, values in the third quarter a score of 1, and values in the fourth 
quarter a score of 2. The score assignment of each covariate and risk 
map was described in Supplementary Table 5. For each objective, the 

https://doi.org/10.3389/fmicb.2023.1126418
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://github.com/WKPhang/XGBoost_EcologicalNicheModel/


Phang et al. 10.3389/fmicb.2023.1126418

Frontiers in Microbiology 06 frontiersin.org

relative priority score of covariates and predicted risk map were 
summed to produce scores ranging between 1 (lowest priority) to 5 
(highest priority).

3. Results

3.1. Model development and evaluation

Multicollinearity assessment via a pairwise correlation matrix 
revealed strong correlations between several covariates (Figure 3). Seven 
covariates with strong correlation relationships were removed while 
retaining relevant covariates in the modeling dataset. For instance, 
elevation has strong a negative correlation with three spatial climate 
covariates (historical minimum temperature with r = −0.93, historical 
maximum temperature with r = −0.88, and historical water vapor with 
r = −0.97). Thus, elevation is deemed more suitable to be maintained to 
represent these climate covariates. Besides, dense forest and secondary 
forest covariates were removed to ensure that the dataset achieved an 
overall VIF <10. Twenty-seven covariates were maintained for 
subsequent analysis after multicollinearity assessment. Before modeling, 
the human population density was excluded for inclusion as a sampling 
bias layer, leaving a balance of 26 covariates as predictors in 
starting model.

Backward stepwise elimination was conducted by initial MaxEnt 
modeling using 26 spatial covariates. Subsequently, we  identified a 
reduced dataset of 14 covariates which fulfilled the criteria of having a 
percent contribution of ≥1 (Table 1). MaxEnt modeling using the final 
covariate dataset depicted high model performance with mean AUCROC 
values of 0.835 ± 0.003 and 0.824 ± 0.007 for train and test datasets, 
respectively, (Table 2). The most important covariates were distance to 
coastline, forest cover, cropland, M. fascicularis occurrence probability, 
historical tree loss, and historical annual precipitation (Table 1).

XGBoost modeling using the final 14 covariates showed high 
predictive performance with AUCROC values of 0.933 ± 0.002 and 
0.854 ± 0.007 for the train and test datasets, respectively, (Table 2). The 
key covariates in the model fitting of XGBoost were distance to coastline, 
elevation, tree cover, historical annual precipitation, historical tree loss, 
and distance to forest (Figure 4). The output of ensemble model built 
showed higher AUCROC than MaxEnt but lower than XGBoost 
(AUCROC = 0.904 ± 0.002 for train dataset and AUCROC = 0.845 ± 0.008 for 
test dataset). Despite XGBoost having a superior performance as 
compared to the other models, kernel density estimation showed a 
relatively similar distribution of predicted risk across models. There 
were statistically significant high positive correlations for all pairwise 
comparisons of the models: MaxEnt-XGBoost (ρ = 0.899, value of 
p < 0.001), MaxEnt-ensemble (ρ = 0.969, value of p < 0.001), and 
XGBoost-ensemble (ρ = 0.977, value of p < 0.001) (Figure 5).

FIGURE 3

Correlation matrix of all spatial covariates. Covariates highlighted in red indicated high collinearity (r ≤ −0.8 or ≥ 0.8) with at least one of other covariates were 
removed from the modeling dataset.
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3.2. Environmental suitability for the 
occurrence of human knowlesi malaria

Suitable range of each important environmental factor for the 
occurrence of human knowlesi malaria was identified based on the 
response curve of MaxEnt model and the partial dependence plot of 
XGBoost model (Figures 6, 7). Both models indicated that there was 
a higher risk of human knowlesi infection at inland areas distant 
from the coastline (>50 km distance in XGBoost or > 70 km distance 
in MaxEnt), experienced low intensity of tree loss (3–20% in 
XGBoost or 3–40% in MaxEnt), and with high annual precipitation 
(>2,500 mm in MaxEnt or > 2,640 mm in XGBoost). XGBoost 
demonstrated that there was a higher risk of human knowlesi malaria 
infection at lower elevation regions of 75–345 m above mean sea 
level, a wide range of tree cover (<82%), and near to forest landscape 
(<200 m). In association with various forest-related covariates, 
MaxEnt showed that the risk of knowlesi malaria increased at >32% 
forest cover.

As various forest-related covariates (forest cover, tree cover, 
historical tree loss, and distance to forest) were found to have 
significant influences on either of the two models, it was of interest to 
identify the type of forest where knowlesi malaria transmission is high. 
Thus, an alternative dataset was prepared by replacing the tree cover 
and forest cover with dense forest cover and secondary forest cover. 
An XGBoost analysis involving this dataset showed that knowlesi 
malaria cases have a higher probability to occur in areas with high 

secondary forest cover (>13%) and with low dense forest cover (<18%) 
(Supplementary Figure 4).

Besides, the knowlesi malaria environmental suitability range was 
found to be influenced by other spatial attributes such as M. fascicularis 
occurrence probability, and cropland in MaxEnt (Figure 6). This signifies 
that the occurrence of human knowlesi malaria has a specific ecological 
niche with multi-dimensional environmental factors playing roles in the 
disease transmission cycle.

3.3. Distribution of human knowlesi malaria 
in Peninsular Malaysia

The mean model outputs were used to generate predicted human 
P. knowlesi infection risk maps of 1×1 km2 pixel spatial resolution 
(Figure 8). All models generated similar predicted spatial patterns across 
Peninsular Malaysia. Risk map generated by XGBoost was used as the 
final map output due to its higher performance compared to other 
models (Table 2). Based on the risk map, the models predicted that the 
ecological factors in the central-northern region of Peninsular Malaysia 
and the lower elevation areas along Titiwangsa mountain range are 
highly suitable for knowlesi malaria transmission. The mean predicted 
risk value was extracted for each district in Peninsular Malaysia. The 
district-level mean predicted risk is presented alongside the average 
annual human knowlesi malaria incidence rate in year 2011–2019 
(Figures 9A,B). There is a significant positive correlation between mean 
predicted risk and disease incidence rate (in 1 million people) 
(Spearman’s correlation coefficient ρ = 0.76, value of p < 0.001; 
Figure 9C).

3.4. Intervention and surveillance priority 
zone maps

The predicted risk map produced using XGBoost was subsequently 
selected for developing the intervention and surveillance priority zone 
maps (Figure 10). In coherence with the predicted risk map, most of 
the high-priority areas are situated in the central northern region of 
Peninsular Malaysia. For surveillance targeting agricultural and logging 
workers, the high-priority zones are mostly located in suburban areas 
in the central-northern Peninsular Malaysia region as well as near hills 
in the southern state of Johor (Figure 10A). Anopheles Leucosphyrus 
group mosquito priority zone maps indicated that key areas for 
enhanced surveillance are mostly located in the interior (Figure 10B). 
M. fascicularis surveillance priority zones are mainly situated in the 
peri-domestic areas as compared to M. nemestrina surveillance priority 
zones, which are mainly found in the interior part of 
Peninsular Malaysia.

TABLE 1 Relative importance of each covariate toward modeling of human 
knowlesi malaria risk based on MaxEnt model percent contribution.

Covariates Percent contribution

Distance to coastline 22.643 ± 1.667

Forest cover 17.687 ± 2.555

Cropland 11.120 ± 2.600

M. fascicularis occurrence probability 9.634 ± 0.818

Historical tree loss 6.732 ± 1.219

Historical annual precipitation 5.681 ± 0.712

Oil palm 5.594 ± 1.876

Tree cover 4.493 ± 0.876

Elevation 3.980 ± 1.534

Human footprint 3.319 ± 1.219

Built-up 2.910 ± 0.298

Distance to cropland 2.506 ± 0.899

Distance to forest 2.337 ± 0.891

M. nemestrina occurrence probability 1.366 ± 0.306

TABLE 2 Performance comparison across MaxEnt, XGBoost, and ensemble models.

Model MaxEnt XGBoost Ensemble

Dataset Train Test Train Test Train Test

AUCROC 0.833 ± 0.003 0.821 ± 0.009 0.933 ± 0.002 0.854 ± 0.007 0.904 ± 0.002 0.845 ± 0.008

Sensitivity 0.622 ± 0.006 0.606 ± 0.026 0.916 ± 0.004 0.742 ± 0.18 0.781 ± 0.005 0.684 ± 0.020

Specificity 0.874 ± 0.003 0.874 ± 0.003 0.816 ± 0.003 0.816 ± 0.003 0.848 ± 0.003 0.848 ± 0.003

F1-score 0.479 ± 0.007 0.312 ± 0.008 0.548 ± 0.005 0.293 ± 0.005 0.527 ± 0.005 0.308 ± 0.005

Bolded value indicates the best performance per evaluation metric (AUCROC, Sensitivity, Specificity, and F1-score) per train or test dataset across the three modeling methods.
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4. Discussion

This study incorporated diverse environmental data sources as well 
as the national knowlesi malaria case data to predict spatial knowlesi 
malaria transmission risk using machine learning approaches. Higher 
performance was observed in XGBoost as compared to other modeling 
approaches. XGBoost can generate high-resolution maps showing the 
risk of knowlesi malaria transmission to humans from known reservoirs, 
specifically M. nemestrina and M. fascicularis. One of the primary 
benefits of this map is that it allows for the identification of high-risk 
areas down to the village level. These high-risk areas can be prioritized 
for intervention or strengthening of existing surveillance systems.

In understanding the spatial heterogeneities of human knowlesi 
malaria occurrence, it is important to identify diverse environmental 
factors with optimal ranges that drive the transmission. For instance, 
forest cover was recognized as a key predictor in the MaxEnt model 

training, which reflects the role of forest environments as the habitats of 
macaque reservoirs and Anopheles mosquito vectors. Likewise, the 
XGBoost model showed that knowlesi malaria risk is higher in and near 
to the forest, which has also been observed in previous studies (Tan 
et al., 2008). A study in Sarawak found that the P. knowlesi vector An. 
latens had the highest sporozoite and oocyst rates in the forest as 
compared to farms (Tan et  al., 2008). The association of increased 
knowlesi malaria occurrence with both forest and forest loss provides 
further support for the hypothesis that transmission occurs in forested 
areas undergoing substantial change (Fornace et al., 2016). Deforestation 
has been considered the main driver in the transmission of knowlesi 
malaria. As shown in this study, further classification of forest into dense 
forest and secondary forest revealed that the risk of knowlesi malaria is 
higher in areas mainly covered with secondary forest. An entomological 
study in Sabah found that the abundance of the local primary vector of 
knowlesi malaria, An. balabacensis is higher in the logged forest as 
compared to the primary forest (Brant et  al., 2016). Another study 
revealed that higher percentage of infectious bites were likely to occur 
at households at forest edges (Fornace et al., 2019). This is related to the 
anthropogenic-induced conversion of forests into other land use such 
as cropland and settlements, which would affect macaque movements 
(Stark et  al., 2019). For instance, the movement of macaques from 
forests to plantations and human settlements for food foraging would 
increase the contact between humans and macaques as well as the 
probability of zoonotic transmission of P. knowlesi can occur in the 
presence of efficient vectors (Imai et al., 2014).

In general, the predicted high-risk areas of knowlesi malaria are 
concentrated in lower elevation areas along the Titiwangsa mountain 
range and the central-northern region of Peninsular Malaysia. Other 
studies also indicated that geographical elevation was negatively 
associated with knowlesi malaria exposure (Fornace et al., 2016, 2019). 
This is because both the macaque hosts and vectors are more frequently 
found at lower elevation (Fooden, 1995). The risk of knowlesi malaria 
occurrence increased relative to distance from the coastline. This is 
apparent as forested areas where high transmission occurs are mainly 

FIGURE 4

Global SHAP summary plot. The relative importance of each covariate toward human knowlesi malaria risk is indicated and ordered (most important 
covariate at the top) by the mean absolute SHAP value summarized over 30 model replicates. Warmer dot color indicates higher value of corresponding 
covariate.

FIGURE 5

Distribution of mean predicted risk of each model output based on 
kernel density estimation. Spearman’s correlation test was conducted 
for MaxEnt-XGBoost (ρ = 0.899, value of p < 0.001), MaxEnt-ensemble 
(ρ = 0.969, value of p < 0.001), and XGBoost-ensemble (ρ = 0.977, value of 
p < 0.001).
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situated inland. Greater urbanization nearer to the coastline has 
disrupted Anopheles mosquitoes’ habitat and abundance, thus, 
transmission intensity in these areas is likely low (Ferraguti et al., 2016).

Both MaxEnt and XGBoost models explain that knowlesi malaria 
tends to occur in areas with high historical annual precipitation. 
Consistent rainfall with partial contribution from land-use changes 
would create favorable breeding sites for Anopheles mosquitoes and 
support larval development (Oo et al., 2002; Ahmad et al., 2018). In 
Sabah, an increase in knowlesi malaria cases was observed after 2 to 
4 months of increased rainfall (William et al., 2014). Also, an increase in 
knowlesi malaria incidence 3 months after higher rainfall and higher 
humidity was found via univariate analyses in another study, but these 
associations were not statistically significant in multivariate analysis 
(Cooper et  al., 2020). In Thailand, climate factors such as rainfall, 
temperature, and relative humidity were found to be associated with 

malaria incidence (Kotepui and Kotepui, 2018). Extreme rainfall may 
be unfavorable to malaria transmission as it would lead to a wash-out 
effect that disrupts vector breeding sites and causes larvae mortality 
(Thomson et al., 2005; Tompkins and Ermert, 2013). The utilization of 
time-series modeling would be able to help in explaining the non-linear 
relationship between rainfall and malaria transmission in detail. Also, 
there was a transient drop of number of knowlesi malaria cases 
throughout Malaysia in year 2015 and 2016, which was thought to 
be impacted by changing weather pattern and El Niño phenomenon 
(Cooper et al., 2020; Phang et al., 2020; Ooi et al., 2021). Nevertheless, 
other factors such as landscape factors such land-use change and 
deforestation play important roles in transmission patterns, which makes 
it difficult to fully understand the impact of climate change on knowlesi 
malaria transmission. More research is needed to fully understand the 
complex relationship between climate change and P. knowlesi transmission.

FIGURE 6

Response curve outputs from MaxEnt model demonstrating the range of suitability for human knowlesi malaria occurrence based on only key covariates 
with highest model percent contribution as described in Table 1. Grey band indicates standard deviation of the model output.

FIGURE 7

SHAP dependence plots generated from XGBoost model demonstrating the environmental suitability range for human knowlesi malaria occurrence based 
on only key covariates with highest mean absolute SHAP value as reported in Figure 4. Positive SHAP value indicates higher risk of knowlesi malaria 
infection whereas negative SHAP value indicates lower risk of knowlesi malaria infection. The plots were smoothed using LOESS (locally estimated 
scatterplot smoothing) curve in red.
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The influence of Anopheles Leucosphyrus group mosquito 
occurrence was found to be less important in our models. This covariate 
was initially modeled using the scattered data collected before 2013 
which may not present the reliable spatial distributions in the study 
region and resulted in its weak association with disease occurrence 
(Moyes et al., 2016). Breeding behavior, abundance, and distribution of 

certain mosquito species may change drastically over time due to 
landscape shifts, deforestation, and human encroachment (Burkett-
Cadena and Vittor, 2018). At present, only Anopheles Leucosphyrus 
group mosquitoes are recognized as the vector of P. knowlesi in 
Peninsular Malaysia, but recent studies conducted in Sarawak have 
added An. donaldi from the Barbirostris group as well as An. collessi and 

A B

C D

FIGURE 8

Maps of predicted human knowlesi malaria risk in Peninsular Malaysia. (A) Map of geolocated human knowlesi malaria occurrence throughout Peninsular 
Malaysia from years 2011–2019. Risk maps generated by MaxEnt (B), XGBoost (C), and ensemble models (D). Warmer color indicates higher predicted risk 
of knowlesi malaria.

A B C

FIGURE 9

(A) District-level mean predicted risk of human knowlesi malaria based on XGBoost output. (B) Average annual incidence rate of knowlesi malaria from 
2011 to 2019 by district. Color gradations for maps in (A,B) were determined using Jenks natural breaks. (C) Correlation plot shows statistically significant 
positive correlation (Spearman’s correlation coefficient ρ = 0.76, value of p < 0.001) between mean predicted risk and knowlesi malaria average annual 
incidence rate (in 1 million people).
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An. roperi from the Umbrossus group into the list of potential vectors 
(Ang et al., 2020, 2021). It may be possible that there are efficient vectors 
other than the Leucosphyrus group mosquitoes in Peninsular Malaysia. 
It is necessary to implement continuous entomological surveillance for 
updating entomological data to monitor changes in Anopheles mosquito 
biology, to identify potentially new vectors, as well as to investigate the 
possible influence on receptivity across multiple localities in Malaysia. 
In addition, new tools are essential to enable efficient and cost-effective 
entomological fieldwork. For instance, the predictive risk map developed 
in this study has the potential to guide entomologists in identifying 
suitable surveillance locations. To complement the efficiency of vector 
sampling in the field, the use of commercialized mosquito traps as a 
safer alternative to human landing catch and the application of multiplex 
polymerase chain reaction assay for the accurate identification of certain 
Anopheles mosquito species should be considered (Jeyaprakasam et al., 
2021b; Pramasivan et al., 2022).

The utility of MaxEnt has been well documented in various 
epidemiology-related ecological studies for its high performance in 
species distribution range prediction. However, this showed that 
XGBoost performed better than MaxEnt. Nevertheless, this may not 
indicate that XGBoost always offers superior performance compared to 
MaxEnt. This is because each model has different strengths and 
weaknesses with different outcomes. Therefore, an ensemble of multiple 

models is recommended to integrate the attributes of each involved 
model in a complementary manner. This approach is generally applied 
to address issues such as incremental learning, imbalanced data, error 
correction, and confidence estimation, and it usually generates improved 
results (Polikar, 2012). Some studies highlighted that combining 
relatively high-performing base models with low correlation or high 
diversity can generate ensemble models with higher performance (Pan 
et al., 2019; Yu et al., 2022). Nonetheless, our study demonstrated that 
the use of a single best-performing base model of XGBoost was adequate 
because the outputs from both base models, MaxEnt and XGBoost, were 
highly correlated with a lack of novel information to improve ensemble 
model performance.

The approach applied in this study demonstrated the importance of 
integrating empirical data from multiple agencies and developed a guide 
for future collaborative-based programs. From the zoonotic malaria 
control perspective, it is important to address the interdependence 
between humans, animals, and their environmental variations. The 
involvement of macaques as the natural hosts of P. knowlesi complicates 
the elimination and subsequent eradication of malaria and requires 
intervention strategies designed to specifically address zoonotic 
pathways, which is different from the strategy for tackling human 
malaria (Vythilingam et al., 2018; Mohammad et al., 2022). Thus, a 
unifying approach converging transdisciplinary and multisectoral 

A B

C D

FIGURE 10

Priority zone maps developed to identify priority areas for intervention targeting agricultural and logging workers (A), Anopheles Leucosphyrus group vector 
surveillance (B), M. fascicularis surveillance (C), and M. nemestrina surveillance (D). The priority zone was determined using the sum of relative priority score 
of respective covariate spatial layer and XGBoost predicted risk of human knowlesi malaria.
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efforts is essential to combat the transmission of P. knowlesi, as advocated 
in the “One Health” concept. These efforts include sharing and 
co-assessment of intervention and data from epidemiologists, clinicians, 
zoologists, and entomologists, development of novel tools and platforms 
that can be adapted in different settings, as well as converging diagnostics 
for human, vector, and macaque reservoirs.

The development of intervention and surveillance priority zone map 
highlighted how the risk map can be further utilized to identify priority 
areas for concentrated efforts. For instance, the localities of the population 
at risk can be identified and effective interventions can be adapted to 
target populations. In this case, personal-level protective equipment such 
as insecticide-treated outdoor clothing, topical repellent, 
chemoprophylaxis, and spatial repellent shall be  distributed more 
frequently to agricultural and logging workers, military personnel, as well 
as people living in high-risk areas (Vythilingam et al., 2021; Mohammad 
et  al., 2022). Regular screening as well as awareness programs shall 
be conducted for communities in these areas. Specifically, in high-risk 
areas with a lack of accessible routes, the development and distribution 
of highly sensitive, mobile, and affordable tools such as novel rapid 
diagnostic test kits will enhance public health outreach (Tan et al., 2022).

Several potential strategies have been highlighted in relation to 
vector and wildlife controls. At present, indoor residual spraying and 
insecticide-treated net have been practiced as the core vector 
interventions in Malaysia (Ministry of Health Malaysia, 2022). However, 
the effectiveness of certain indoor-based interventions may be limited by 
the outdoor biting behaviors of the P. knowlesi vectors (Grigg et al., 2017; 
Vythilingam et al., 2021). Recent studies showed that outdoor-based 
applications such as outdoor residual sprays are effective against primary 
P. knowlesi vectors in Malaysian Borneo (Rohani et al., 2020, 2021). The 
distribution of vaccines or drug-treated oral baits for macaques has been 
proposed in wildlife-based intervention, and it is less invasive than 
macaque population culling, which is being debated for ethical reasons 
and uncertain implications (Cuenca et al., 2021). This similar method has 
been found promising in controlling other zoonoses such as Lyme 
disease (Dolan et al., 2017) and rabies (Rosatte et al., 2009; Maki et al., 
2017). Nonetheless, there are currently no suitable vaccine or drug 
candidates that could be adapted for similar use in knowlesi malaria 
wildlife control programs. The use of oral baits will necessitate further 
research, and as suitable oral baits are developed in the future, they can 
be  distributed to macaque populations in knowlesi malaria high-
risk areas.

Surveillance, monitoring, and intervention are important aspects of 
zoonotic disease management and control because they serve as a 
guideline for detecting high-risk areas early in an outbreak and deciding 
how to allocate resources and manpower during disease outbreaks. The 
generated risk map had a high level of agreement with the actual data. 
Therefore, zoonotic disease management and control efforts should 
be targeted at the areas showing high probability of human knowlesi 
malaria occurrence. Furthermore, we propose that covariates with a 
high contribution be considered in field monitoring. We can identify the 
relative impact of environmental factors on knowlesi malaria occurrence 
by analyzing the partial dependence plots of each model. This data is 
required for epidemiologists, public health officials, and policymakers 
to effectively monitor and control knowlesi malaria.

There are several limitations to address concerning this study. 
Firstly, the ecological niche modeling approach in this study did not 
specifically consider the spatial variability of P. knowlesi infections in 
macaques and mosquitoes. To develop a surveillance system of 
macaques and vectors at priority zones will provide such information to 

enhance the accuracy of risk maps. Secondly, moderate F1-scores, which 
is caused by imbalanced data and random selection of background data 
near to reported cases, produced more false positive predictions. 
Elevated false positive rates may place additional demands on resources 
for monitoring and managing disease, however, this can be systematically 
reduced by alternative methods of identifying priority zones for targeted 
interventions. In addition, advanced deep learning algorithms can 
be considered to enhance model performance in the future.

5. Conclusion

Machine learning-based ecological niche modeling approaches such 
as MaxEnt and XGBoost are extremely useful in capturing diverse 
ecological signals relevant to spatial distributions of vector-borne 
diseases. The predictive risk maps produced in the present study can 
be used to identify high-risk areas of knowlesi malaria transmission and 
provide more precise information for decision-making of vector or 
reservoir surveillance and disease control, particularly when prevention 
resources are limited.
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