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Meningitis-like infectious disease (MID) (also known as frog cataract and torticollis) 
is a disease prone to occur in amphibians and reptiles. It is highly contagious and 
has a high mortality rate. In this study, we sampled and sequenced microbiomes 
from oral and intestinal samples of five normal and five diseased bullfrogs. The 
analysis found that the richness, uniformity, and abundance of the microbial 
community of the diseased bullfrogs were significantly higher than those of the 
normal bullfrogs in both the oral cavity and the gut. In the diseased group, the 
abundance of Elizabethkingia significantly increased and that of Lactococcus 
significantly decreased. It showed that the structure of the microbial community 
had changed a lot in diseased frogs. After the pathogenic bacteria infected the 
body, it might be make the decline in the immune function of the body declined, 
and resulting in some conditional pathogenic bacteria in the water body further 
infecting the body. As a result, the richness and composition of the microbial 
community significantly changed. This study can provide a theoretical basis for 
the control of MID of bullfrogs.
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Introduction

Benefits and challenges of bullfrog farming

Bullfrog, Lithobates catesbeiana, is the most popular large edible frog found globally (Nori 
et al., 2011). The glands and the bile extracted are of economic value due to the nature of skin, 
oil, and hormones (Cathers et al., 1997), and play a key role in aquaculture, medicine, and other 
industries (Bury and Whelan, 1985; Silva et  al., 2009). Farmers use various techniques to 
improve the yield during the rearing of bullfrogs. However, the water body has limited bearing 
capacity, and the occurrence of diseases is positively correlated with the stocking density. The 
continuous, large-scale, and hence high-density of bullfrog breeding caused many issues, such 
as a shortage of biologically healthy food, degradation of germplasm resources (Graves and 
Anderson, 1987), and deterioration of the breeding environment. The lack of breeding 
technology has complicated the aforementioned issues. The number of diseases encountered 
during bullfrog breeding is on the rise becoming more detrimental and resulting in frequent 
large-scale outbreaks seriously hindering industrial development. The pathogens of bullfrogs 
that are mainly responsible for diseases include bacteria, viruses, and parasites (Zhe et al., 2013). 
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However, the strains used in aquaculture have usually been derived 
from wild strains (Kibenge et  al., 2012). They may not have had 
enough time to adapt to high-density confinement in the aquaculture 
environment (Rodríguez-Ramilo et  al., 2011) compared with 
terrestrial farmed animals. This chronic stress (Yada and Nakanishi, 
2002) provides opportunities for the emergence of diseases caused by 
pathogens that may be harmless under natural conditions. Among 
several pathogens, Aeromonas hydrophila and A. salmonicida are 
considered the most common pathogens in freshwater fish, while 
Vibrio anguillarum and V. parahaemolyticus are the most familiar 
bacterial pathogens in a marine environment, causing different types 
of fish diseases such as ulcer disease, carp erythrodermatitis, motile 
Aeromonas septicemia, and so forth (Lightner, 1985; Martínez Cruz 
et al., 2012). In December 2021, a strange disease, commonly known 
as meningitis-like infectious disease (MID), broke out at a bullfrog 
farm (Figures 1A,B) in Ma’anshan City, Anhui Province. The sick frogs 
showed symptoms such as head tilt, loss of motor balance, opacity or 
hyperemia of eye lens, photophobia, and body edema, and even death 
(Figure 1D).

Microbiome and health

Most studies on the gut microbiome have been conducted in 
mammals, especially laboratory rodents and humans (Kohl and Yahn, 
2016). However, studies on the gut microbiome of other vertebrates 
such as amphibians are lacking (Tong et al., 2019). The composition 
of frog gut microbiota is affected by season, temperature, and 
developmental state. Therefore, it is meaningful to study the gut and 
oral microbes of diseased frogs. The “ecosystem services perspective” 
treats the microbiota as an ecosystem that provides “services” to 
humans. Like any ecosystem, the host has some control over the 
structure of this system and the functional benefits it provides 
(Shreiner et al., 2015; Foster et al., 2017). The ecosystem services 
perspective treats the microbiome as an independent ecosystem that 
provides its host with services required for life and individual well-
being (Calow, 1995; Arumugam et  al., 2011). Gut microbial 
communities profoundly influence vertebrate physiology, impacting 

animal development, nutrition, immune function, and behavior. The 
gut microbiota are microorganisms (mainly bacteria but also viruses, 
protozoa, and fungi) and their collective genetic material present in 
the gastrointestinal tract (Falony et  al., 2016). Besides the direct 
actions on the gut mucosa and enteric nervous system, many 
chemical mediators produced by the gut microbiome enter the 
bloodstream and communicate with distal organs such as the brain, 
heart, and liver (Evans et  al., 2013), The symbiotic relationship 
between microbiota and the host is mutually beneficial. The host 
provides an important habitat and nutrients for the microbiome, and 
the gut microbiota support the development of the metabolic system 
and the maturation of the intestinal immune system by providing 
beneficial nutrients (D’Argenio and Salvatore, 2015), for example, by 
the synthesis of vitamins (Kau et al., 2011; Kitamoto et al., 2020) and 
short-chain fatty acids (Topping and Clifton, 2001; McDermott and 
Huffnagle, 2014). The oral cavity is a primary gateway to the human 
body and has the second-largest and most diverse microbiota after 
the gut, harboring > 770 species of bacteria (Kitamoto et al., 2020). A 
variety of microbial habitats in the oral cavity (e.g., teeth, buccal 
mucosa, soft and hard palate, and tongue) makes the ecologic system 
complex and attracts diverse microorganisms, called the oral 
microbiome, including bacteria, fungi, and viruses (Kilian, 2018). 
More than half of microbial species (e.g., Streptococcus and 
Veillonella) frequently detected in both sites showed evidence of oral–
gut translocation, even in healthy individuals (Schmidt et al., 2019). 
Accumulating evidence indicates that resident oral bacteria can 
translocate to the gastrointestinal tract through hematogenous and 
enteral routes. The dissemination of oral microbes to the gut may 
exacerbate various gastrointestinal diseases, including irritable bowel 
syndrome, inflammatory bowel disease, and colorectal cancer 
(Kitamoto et al., 2020).

Meningitis-like infectious disease 
characteristics and experimental purpose

Meningitis-like infectious disease is a highly contagious and lethal 
disease for bullfrogs. Once infected, it brings great losses to farmers. 
In the farmed frogs, the characteristics of MID were anorexia, slow 
movements, corneal opacity, and a series of neurological symptoms 
including the onset of torticollis, indifference to stimuli, intermittent 
motion, and curling up of toes of the limbs. The diseased frogs in this 
study were lethargic, and most died within a few days. Dissection 
revealed lesions in multiple internal organs. Histopathological lesions 
in the liver, spleen, kidney, heart, brain, and muscle of the diseased 
frogs showed cell degeneration and necrosis (Hu et al., 2017). In these 
studies about MID, the main pathogens were basically determined to 
be bacteria of the genus Elizabethkingia (Lei et al., 2019). Relevant 
cases have been reported in bullfrogs (Mauel et al., 2002), Chinese 
spiny frogs (Quasipaa spinosa; Lei et al., 2019), black-spotted frogs 
(Hu et al., 2017; Chang et al., 2021), tiger frogs (Xie et al., 2009), adult 
northern leopard frogs (Lithobates pipiens), chapa bug-eyed frogs 
(Theloderma bicolor), Vietnamese warty toads (Bombina 
microdeladigitora), and Sabana Surinam toads (Pipa parva; Trimpert 
et al., 2021). This experiment started with gut and oral microbes to 
examine the differences in the gut and oral microbes between normal 
and diseased individuals so as to explore the causes of disease 
outbreaks in bullfrogs raised in Dayutan. The pathogenic-related 

A B
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FIGURE 1

Morphology of the healthy and diseased bullfrogs (Lithobates 
catesbeiana). (A,B) Farm environment. (C) Breeding density; 
(D) Morphology of diseased (meningitis-like infectious disease, which 
causes muscle relaxation in sick frogs) frog morphology (red arrow).
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bacterial communities were revealed through the differences between 
the biological groups, providing a theoretical basis for the prevention 
and control of MID in the later stage.

Materials and methods

Oral and gut samples collection

In the study, a total of 10 bullfrogs from Dayutan in Anhui 
Province in 2021 were prospectively collected. Samples are generally 
normal, half are sick, and the samples were selected according to the 
criteria: (1) All samples are from the same culture pond; (2) about the 
similar size; (3) age < 1 year old; (4) Breeding conditions were the same 
before collection; The bullfrog was dissected in a sterile environment, 
and its gut and oral microbiome samples were taken, 10 cases (gut and 
oral) of sick group (MID), 10 cases (gut and oral) of healthy control 
group (HC) were finally included in the study and received 16S rDNA 
amplicon sequencing.

DNA extraction and PCR amplification

Ten bullfrogs were dissected in a sterile environment, the 
intestines and orals were carefully scraped with a sterile swab, the 
swabs after sampling were marked, and the water samples were drawn 
with a 0.22 μm filter membrane in a sterile environment. After 
filtration, placed the filter membrane in a sterile Ep tube for marking. 
The genomic DNA of the sample was extracted by CTAB method 
(Miaomiao et al., 2008), and then the purity and concentration of the 
extracted DNA were detected by agarose gel electrophoresis.

Library construction and sequencing

PCR amplification of 16S rRNA gene sequences was performed 
by targeting the V3–V4 regions by using a set of forward and reverse 
primers according to a previous study (Chen et  al., 2022). The 
sequences of forward and reverse primers used in this experiment 
were as follows: Pro_341F (5′-ACTCCTACGGGAGGCAGCA-3′) 
and Pro_806R (5′-GGACTACHVGGGTWTCTAAT- 3′; Nossa 
et al., 2010). The PCR was carried out in a total volume of 25 μl that 
contains 2 × KAPA HiFi HotStart Ready Mix (12.5 μl), 400 nM of 
each primer, ddH2O (7.5 μl) and 3 μl of template DNA. The PCR 
reaction was carried out in a thermocycler (Px2 Thermal Cycler, 
Thermo, United  States) under the following conditions: initial 
denaturation at 95°C for 30 s followed by 28 cycles of denaturation 
at 95°C for 30 s, annealing at 55°C for 30 s and elongation at 72°C 
for 30 s. The amplicons were confirmed by electrophoresis with 1.5% 
agarose gel under 110 V for 30 min. After separation using agarose 
gel electrophoresis, PCR products with expected sizes were purified 
from the matrix. The amplicons were subjected to sequencing using 
the pair-end method with the MiSeq Illumina platform (Illumina 
Inc., San Diego, CA, United States; Quail et al., 2008), following 
manufacturer instructions. The Nextera XT DNA Library 
Preparation Kit (Illumina) was used to construct libraries from the 
isolated DNA.

Operational taxonomic unit (OUT) 
clustering and species annotation

Using Cutadapt (V1.9.1) cut the low quality part of reads; the 
sample data were separated from the obtained reads according to 
Barcode, and the Barcode and primer sequences were truncated to 
obtain raw reads. The Reads sequence was compared with the species 
annotation database, the chimera sequence was detected and 
removed, and the Clean Reads were obtained. All the Clean Reads of 
all samples were clustered by Uparse software (Uparse v7.0.1001; 
Edgar, 2013). The sequences were clustered into Operational 
Taxonomic Units (OTUs), with 97% identity and the sequences with 
the highest frequency were taken as the representative sequences of 
OTUs according to the principle of algorithm. Then the species 
annotation of OTUs sequence was analyzed by Mothur method 
(Schloss et  al., 2009) and SILVA132 SSUrRNA database (Set the 
threshold to 0.8–1; Apprill et  al., 2015), and the taxonomic 
information was obtained.

Statistical analysis

The differences between groups were compared by calculating the 
α index (Observed-species, Chao1, Shannon, Simpson) of different 
groups with t-test. The relative abundance at the genus level was 
calculated. A Bray–Curtis dissimilarity matrix was calculated based 
on relative abundance of OTUs and used to perform non-metric 
multidimensional scaling (NMDS). We used the linear discriminant 
analysis (LDA) effect size (LEfSe) to identify significant associations 
between bacterial taxa and different groups. LEfSe can determine the 
taxonomic units most likely to explain differences between classes by 
coupling standard tests for statistical signifcancewith additional tests 
encoding biological consistency and effect relevance (LDA score > 2.0, 
p < 0.05).

Results

Increased microbiome abundance in the 
mid group

High-throughput sequencing of the 16S rDNA gene V3–V4 
region was performed in 20 samples to examine the structure of 
the gut and oral microbiome. The basic data statistics after 
sequencing are shown in Tables 1, 2. The accumulation curve 
analysis showed that the rarefaction curve of the gut (Figure 2A) 
and oral cavity (Figure 2B) tended to be flat, indicating that the 
amount of sequencing data was gradually reasonable, and more 
data would only produce a small number of new species (OTUs). 
Therefore, the sample size of the study was sufficient, the 
sequencing depth was up to the standard, and an additional sample 
size was not required. In the gut cavity, 135 OTUs were obtained; 
of 78 in the two groups, 45 OTUs were unique to the MID group, 
and 12 were unique to the HC group (Figure 2C). Further, 299 
OTUs were obtained in the oral cavity; of 191 in the two groups, 
66 OTUs were unique to the MID group, and 42 were unique to the 
HC group (Figure 2D).
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A B
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FIGURE 2

Rationality test of sample number and component difference statistics. Rarefaction Curve, horizontal axis is the number of sequencing strips randomly 
selected from a sample, and vertical axis is the number of OTU that can be constructed based on the number of sequencing strips, which is used to 
reflect the sequencing depth. The results showed that with the increase of the sample size, the number of OTU in the gut cavity (A) and oral cavity 
(B) gradually stabilized, indicating that the sampling number was reasonable. Venn diagram (C,D) showing significantly differential OTU between 
healthy control (HC) and meningitis-like infectious disease (MID). (C) Shows  intestinal results and (D) shows oral results.

TABLE 1 Basic data for sequencing gut microbiome samples.

Group Reads-raw Reads-derep Average 
Reads-derep

HC

149,161 121,237

97,876

92,792 70,279

115,658 90,554

126,904 99,338

140,068 107,973

MID

119,440 59,623

70,080

96,755 53,670

167,344 89,733

99,351 57,747

112,488 89,625

TABLE 2 Basic data for sequencing oral microbiome samples.

Group Reads-raw Reads-derep Average 
Reads-derep

HC

130,389 79,633

64,549

104,094 50,821

98,669 49,365

133,214 70,968

153,602 71,960

MID

129,252 83,286

100,243

195,408 128,809

179,203 100,140

143,606 94,194

145,760 94,784
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Alterations in microbiomes in the mid group

In the oral cavity, the α indexes, observed species (p = 6.014 × 10−5), 
Chao1 (p = 1.237 × 10−5), Shannon (p = 0.001), and Simpson (p = 0.0099; 
Figures 3A–D), had significant differences. No significant difference was 
observed in the abundance and evolutionary distance of microorganisms 
between the HC and MID groups, but a significant difference was 
observed in the richness and evenness. In the gut cavity, the α indexes 
were significantly different between the HC and MID groups, including 
observed species (p = 1.079 × 10−8), Chao1 (p = 2.439 × 10−6), Shannon 
(p = 0.00013), and Simpson (p = 0.0004; Figures 3E–H). Except for 
Simpson and Shannon, the α indexes had very significant differences. 
This indicated a large difference in the richness and evenness of 
microorganisms in the gut cavity between the HC and MID groups.

Bacterial taxonomic abundance at the 
phylum and genus levels based on 16S 
rRNA gene amplicons

The top  15 bacterial phyla in the HC and MID groups were 
evaluated by examining the changes in the gut and oral microbiota. 
The results showed that Proteobacteria was the most abundant 
phylum in the oral cavity in the HC group (Figure 4B), followed by 
Bacteroidota and Firmicutes. However, the Firmicutes abundance 
decreased significantly and the Bacteroidota abundance increased 
significantly in the MID group compared with the HC group. Only 
eight phyla of microorganisms were found in the gut (Figure 4A). The 
Firmicutes abundance significantly decreased and the Bacteroidota 
abundance significantly increased in the MID group, which was 

consistent with those in the oral cavity. At the genus level, Lactococcus 
was the dominant bacteria in the gut in the HC group (Figure 4C). 
However, almost no Lactococcus was found in the MID group, while 
the relative abundance of Flavobacterium and Acinetobacter increased 
significantly. The relative abundance of Lactococcus decreased sharply 
and the relative abundance of Flavobacterium and Acinetobacter 
increased significantly in the MID group, which was consistent with 
the abundance in the oral cavity (Figure 4D). Different from the oral 
manifestations, Flavobacterium and Acinetobacter were the dominant 
bacteria in the intestinal tract in the MID group.

We considered the relative abundances of the top 35 genera of the 
samples to determine the microbiota of high abundance. The 
microbiota of high abundance analysis revealed that Gracilibacteria, 
Hydrogenophaga, Undibacterium, Aeromonas, Chryseobacterium, 
Shewanella, Bacteroides, Stenotrophomonas, Ideonella, Flavobacterium, 
Pedobacter, Anoxybacillus, Brevundimonas, Enhydrobacter, 
Acinetobacter, and Elizabethkingia were the microbiota of high 
abundance in the gut in the MID group (Figure 5A). The microbiota 
of high abundance were Flectobacillus, Cloacibacterium, Acinetobacter, 
Elizabethkingia, Enhydrobacter, Cetobacterium, Bacteroides, and 
Aeromonas in the oral cavity (Figure  5B) in the MID group. 
Elizabethkingia, Enhydrobacter, Bacteroides, and Aeromonas were 
found in the oral cavity and gut. It was observed that the oral flora 
structure had changed during the disease process, and excessive 
reproduction of some pathogenic bacteria had inhibited the structure 
of the original healthy flora. The structure of the intestinal flora also 
changed in the gut tract due to the excessive reproduction of 
pathogenic bacteria. Further, the abundance of pathogenic bacteria 
overexpressed in the intestinal tract was much higher than that in the 
oral cavity in the HC group.

A B C D

E F G H

FIGURE 3

Group differences between oral (A–D) and intestinal (E–H) samples, MID group had significant higher diversity in both oral and intestinal microbiota 
than that of HC group (p < 0.05 for all tests, t-test). The horizontal axis is the grouping, and the vertical axis is the alpha indexes (Observed specifications, 
Chao1, Shannon and Simpson). The white point represents the mean value, the outer contour represents the sample distribution, the upper side of the 
black box in the middle represents the upper 1/4, and the lower side represents the lower 1/4.
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A B

C D

FIGURE 4

Average relative abundance of phylum and gene levels. The top 15 phylum (A,B), and genus (C,D), with the highest abundance in each group were 
presented and the rest were set to others.

Differences in the microbial community 
structure between HC and mid groups

Non-metric multidimensional scaling (NMDS) showed the 
structural differences in the microbiota based on two groups. 
Bray–Curtis showed that gut (Figure  5A) and oral (Figure  5B) 
microbiota were differentially distributed in the MID and HC 
groups. Hence, the microbiota of both oral cavity and gut segments 
could be  divided into two distinct groups, and the two groups 
displayed apparent differences (stress = 0.0012 and 0.0131, 
respectively).

In the gut, the LEfSe analysis showed that 16 microbial clades 
exhibited significant differences between the MID and HC groups 
(Figure 6A). In the HC group, Firmicutes and Bacilli were highly 
abundant. In the MID group, Bacteroidota had the highest LDA 
score. In the oral cavity, the LEfSe analysis showed that 14 microbial 
clades exhibited significant differences between the MID and HC 
groups (Figure 6B). In the HC group, Firmicutes and Bacilli were 
highly abundant. In the MID group, Bacteroidota had the highest 
LDA score (Figure 7).

Discussion

In this study, 16S amplicon sequencing was used to detect the 
differences in gut and oral microbiota composition and population 
numbers of diseased and normal bullfrogs to find the pathogenic 
bacteria that caused the disease in bullfrogs.

Differences in microbiome structure

In humans, there are many reports of disease and gut microbes. For 
example, chronic kidney disease (CKD) will reduce the richness, 
uniformity and uniformity of intestinal microorganisms (Loomba et al., 
2017); Non-alcoholic fatty liver disease (NAFLD) will reduce the 
diversity of intestinal microorganisms α and β (Astbury et al., 2020). But 
we calculated the relative abundance of oral and gut microorganisms in 
normal and diseased frogs and we  were found that the diversity, 
uniformity and richness of the flora in MID increased. It might be due 
to the decline in the immune function of the body declined after the 
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A

B

FIGURE 5

Heat map of the genus of top 35 microbiota in the HC and MID groups. Differences in relative abundance at genus level in different samples. Heat map 
showed the difference in annotated gene abundance at genus level among groups (showing the relative abundance of the top 35 genus). The row 
clustering distance method is Pearson correlation, and the default is Euclidean distance. Columns represent a sample and rows represent a genus. 
Based on the average relative abundance of the genus in the same sample, the expression level higher than the average value is positive and marked in 
red; on the contrary, the expression level below the average value is negative and marked in blue. The shade of color indicates the degree of difference 
between the relative abundance and the mean. The dendrogram above the main body of the heatmap clusters the source of the samples, which is 
convenient for distinguishing different samples (normal and diseased); the dendrogram on the left of the heatmap clusters the relative abundance of 
genera, and groups the genera with similar relative abundance to For one class, the color difference is more pronounced. In the gut (A), genera with 
high relative abundance were concentrated in the diseased group, and in the oral cavity (B), genera with high relative abundance were concentrated in 
the normal group.
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A B

FIGURE 6

Non-metric multidimensional scaling (NMDS) of the microbial communities of different groups. Both gut (A) and oral (B), all samples can be divided 
into two categories according to MID and HC.

pathogenic bacteria infected the body resulting in some conditional 
pathogenic bacteria in the water body, further infecting the body. Thus, 
the richness of the microbial community increased.

The 16S rRNA gene amplicon sequencing could be  used to 
determine the genetic composition and community function of all 
microorganisms in environmental samples (Goldfeder et al., 2017). In 
our study, the results of 16S rRNA gene amplicon sequencing showed 
that the Chao1 indexes slightly increased in the HC group compared 
with the MID group, but with no significant difference. Previous studies 
showed that a balanced gut microbial structure was an important 
guarantee for the health of an organism. Once the gut microbiota is 
unbalanced, it causes a variety of diseases; the beneficial bacteria in the 
gut are the key to maintain the balance of the gut microbial population 
structure (Qi et  al., 2019). In the HC group, the abundance of 
Bacteroidetes and Firmicutes accounted for 97% of the total bacteria. 
Lactococcus has been used in dairy fermentation for centuries. These 
Gram-positive, generally nonpathogenic, nonmotile, and 
nonsporulating bacteria are members of the Streptococcaceae family, 
which includes food, commensal, and virulent species. Many probiotics 
in this genus are beneficial to the survival of the host. Most widely used 
probiotic bacteria belong to the Lactobacillus and Bifidobacteria genera, 
but other microorganisms, such as Lactococcus and Enterococcus, are 
also used as the components of probiotic preparations (Kim et al., 2019).

Elizabethkingia—potential pathogenic 
bacteria

Currently, the reports only clarified that Elizabethkingia was a 
pathogenic bacteria, but did not explain the structural and functional 
changes in microorganisms after infection. In this study, the relative 
abundance of Elizabethkingia was significantly higher in the MID 
group than in the HC group. Our study showed that the abundance of 
Elizabethkingia increased significantly in the MID group compared 

with the HC group. Many studies showed various pathogenic bacteria 
of the genus Elizabethkingia, which could cause diseases in amphibians, 
reptiles, and even humans. Elizabethkingia meningoseptica was detected 
in tiger frogs with cataracts (Monteagudo-Mera et al., 2011), suggesting 
that it could cause disease in tiger frogs. Its symptoms are the same as 
those of the sick frogs in this study. E. meningoseptica has been reported 
to cause severe sepsis in humans (Xie et  al., 2009). Cases of 
E. meningoseptica causing patient shock have also been reported, 
suggesting that species in this genus cause disease in humans. The 
genus Elizabethkingia has six species, two of which have been reported 
to be pathogenic to organisms; meningitis-like symptoms occur in 
both cases. Amphibians and mammals are infected by the bacteria, but 
no infection in reptiles has been reported. It is believed that the bacteria 
may also infect species similar to crocodiles and other aquatic reptiles, 
which will be the focus of future investigations. However, in this study, 
the lack of basic information such as body weight and blood routine 
led to the inability to analyze the differences in physiological indicators 
between MID and HC. In future studies, we should pay attention to 
recording basic data to make the research content more complete.

Conclusion

The structure of the oral and intestinal flora of diseased frogs 
changed significantly. Also, the Elizabethkingia abundance increased 
remarkably, implying that the presence of Elizabethkingia might cause 
diseases in frogs. Further, the proliferation of other bacteria after the 
illness also further exacerbated the deterioration of the disease. It 
showed a significant increase in the diversity of microbiomes in both 
the oral cavity and the intestinal tract after the illness. It might be due 
to the decline in the immune function of the body after the pathogenic 
bacterial infection, leading to some conditional pathogenic bacteria 
in the water body further infecting the body and resulting in an 
increase in the richness of the microbial community.
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