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Natural products are well-known due to their antimicrobial properties. This study 
aimed to evaluate the antimicrobial effect of Desplac® product (composed of Aloe 
Vera, Propolis Extract, Green Tea, Cranberry, and Calendula) on the subgingival 
biofilm. Two different protocols were used to treat the 33-species biofilms: (A) 
2×/day (12/12  h) for 1  min with Desplac® or Noplak Toothpaste (Chlorhexidine 
+ Cetylpyridinium Chloride) or Oral B ProGengiva (stannous Fluoride) or a 
placebo gel; (B) a 12-h use of the Desplac® product or 0.12% chlorhexidine gel 
or a placebo gel. After 7 days of biofilm formation, the metabolic activity (MA) 
and biofilm profile were determined by 2,3,5-triphenyltetrazolium chloride and 
Checker-board DNA–DNA hybridization, respectively. Statistical analysis used 
the Kruskal-Wallis test followed by Dunn’s post-hoc. In protocol A, all treatments 
presented reduced MA compared to the placebo (p ≤ 0.05). The Desplac®-treated 
biofilm showed a similar microbial profile to other antimicrobials, although with 
higher bacterial total counts. In protocol B, MA of Desplac®-treated biofilms 
was lower than the placebo’s MA but higher than chlorhexidine-treated biofilms 
(p ≤ 0.05). Pathogen levels in Desplac®-treated biofilms were lower than in 
placebo-treated biofilms and elevated compared to the chlorhexidine-treated 
biofilms (p ≤ 0.05). Desplac® inhibited the biofilm development and disrupted the 
mature subgingival biofilm, highlighting its effect on Tannerella forsythia counts.
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1. Introduction

The mechanical removal of biofilm is necessary for the prevention, treatment, and post-
therapy maintenance of periodontal diseases, either professionally or through manual control 
by the individual (Axelsson et al., 2004). However, satisfactory cleanliness levels are not always 
achieved with manual brushing alone. Furthermore, tooth surfaces only represent a small 
percentage of the total mouth area (Kerr et al., 1991). Therefore, the use of antimicrobial agents 
can help control the supragingival biofilm because they are able to reach other oral niches and 
can delay the accumulation on the tooth surface (Teles and Teles, 2009).
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One of the ways to use chemical agents in oral health is through 
mouthwashes. These agents can act by promoting cell death, inhibiting 
bacterial reproduction, or inhibiting cell metabolism (Tartaglia et al., 
2017). A wide range of antimicrobial chemical agents are being studied as 
active principles to control dental biofilm formation, such as bisbiguanides 
(chlorhexidine), quaternary ammonium compounds (cetylpyridinium 
chloride), essential oils, enzymes (mutanase/glucanase, amyloglucosidase/
glucose oxidase), metal ions (zinc, copper, tin), and plant extracts (Jones, 
1997; Radford et al., 1997; Faveri et al., 2006; Feres and Figueiredo, 2009; 
Kumar et al., 2013; James et al., 2017).

In this context, previous research (Newman and Cragg, 2020) 
reported that among all new drugs approved by the US’s Food and 
Drug Administration (FDA), or other equivalent entities in other 
countries, 30% are directly derived from natural products, 44% are 
from derivatives of these natural products, and only 26% have 
synthetic origins. Natural products have been a more sustainable and 
ecological therapeutic alternative for different clinical situations. Some 
of the main benefits arising from the use of natural products are 
formulas that are not aggressive to the human body, they do not 
present polluting agents in nature, and they decrease the risk of 
allergies and inflammatory diseases. The search for natural cosmetic 
products for dental applications (dentifrices and mouthwashes) has 
been growing constantly. There is intense research in the literature to 
find new antimicrobials that lead to the rupture of the subgingival 
multispecies biofilm and one of the main sources to discover novel 
compounds are the natural products (Freires et al., 2015; Lazar et al., 
2016; Slobodnikova et al., 2016; Arbia et al., 2017; Lee et al., 2017; 
Miranda et al., 2019; Bim-Júnior et al., 2020; de Figueiredo et al., 2020; 
de Faveri et al., 2022).

The initial studies to prove the antimicrobial effect of a novel 
agent usually adopt the biofilms model. The common monospecies 
biofilms were inappropriate for the periodontal disease since 
bacteria organize themselves as dynamic multispecies biofilms in 
the subgingival environment (Prado et  al., 2022). Hence, the 
literature looks for innovative biofilm models to reproduce what 
happens in vivo. Recently, our research group developed a 
multispecies biofilm composed of 33 distinct bacterial species using 
the Calgary Biofilm Device, which includes a cover with 96 
polystyrene pegs mounted up into a 96-well plate (Miranda et al., 
2019; de Figueiredo et al., 2020). This model’s advantages include 
the number of health- and disease-associated species, encompassing 
most of the species studied in Socransky’s complexes (Socransky 
et  al., 1998). To our knowledge, no biofilm model quantifies so 
many species as the present one. It better simulates what happens 
in vivo when compared to a model with fewer species due to the 
number of representative bacteria species involved in the 
periodontal disease initiation and progression included in the 
model. In addition, bacteria must actively adhere to pegs instead of 
being deposited at the bottom of the wells in order to form the 
biofilm. Recently, the natural product Desplac® (Premium Oral 
Gel), composed of propolis, Aloe vera, green tea, cranberry, and 
calendula, became available in the Brazilian market. This oral 
product has lawful approval from the responsible government 
departments in the country (Brazilian Health Regulatory Agency—
ANVISA) and recommendations for dental use. The main biological 
constituents of natural products can act as antioxidants, anti-
inflammatories, and antimicrobials, in addition to other properties. 
Several studies have already been carried out to better understand 

the use of propolis (Bueno-Silva et al., 2013, 2015, 2017a,b,c, 2020; 
Lima Cavendish et al., 2015; Kiani et al., 2022), Aloe vera (Sujatha 
et al., 2014; Ali and Wahbi, 2017; Pattnaik et al., 2022), green tea 
(Yang et al., 2016; Miyoshi et al., 2020; Kong et al., 2022), cranberry 
(Ben Lagha et al., 2020; Galarraga-Vinueza et al., 2020; Mizutani 
et al., 2021; Nawrot-Hadzik et al., 2021a,b; Nemzer et al., 2022), and 
calendula (Alexandre et  al., 2018; Tanideh et  al., 2020; Yin 
et al., 2021).

However, it is necessary to carry out scientific investigations that 
prove and support the commercial recommendations of these 
products. Thus, the objective of this study was to evaluate the 
antimicrobial effect of the Desplac® product (Premium Oral Gel) on 
the metabolic activity and the profile of multispecies subgingival 
in vitro biofilm model.

2. Materials and methods

2.1. Experimental design

The design of this study (Figure 1) involved two laboratory 
experiments that aimed to reproduce the clinical indications of the 
Desplac® product (Premium Oral Gel): as a dentifrice (A) and as a 
night gel on acrylic plates (B). The (in vitro) multispecies bacterial 
biofilm was exposed to the respective products according to the test 
or control groups.

Experiment A (simulation of use as a toothpaste, 2×/day, 12/12 h, 
for 1 min).

 - Test Group: Desplac® (Premium Oral Gel);
 - Negative Control Group: Placebo Gel;
 - Positive Control Group 1: Noplak Toothpaste (Chlorhexidine + 

Cetylpyridine Chloride);
 - Positive Control Group 2: Oral B ProGengiva (Stannous Fluoride).

For experiment A, the pins with attached biofilm were removed 
from the culture media, placed in another 96-well plate with the 
treatments each time, and later returned to the same media.

Experiment B (simulation of use as an overnight gel on acrylic 
plates, for 12 h on day 6).

 - Test Group: Desplac® (Oral Gel Premium);
 - Negative Control Group: Placebo Gel;
 - Positive Control Group: 0.12% Chlorhexidine Gel.

The cover with the pins was placed in another 96-well plate 
containing culture media BHI mixed with the treatments for 
experiment B. Noplak Toothpaste and Oral B ProGengiva products 
are commercially available and were purchased locally. The 
Desplac® and the placebo gels were provided by the company 
responsible for the former’s manufacturing (Sysplac). The placebo 
gel was formulated with the same physical characteristics as the 
Desplac® product but without the active ingredients. Considering 
that there is no other commercially available dental product in the 
national market with the same recommendation for overnight use 
during 12 h, a 0.12% Chlorhexidine Gel, purchased from a 
compounding pharmacy, was chosen for its recognized gold 
standard antimicrobial activity.
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2.2. In vitro multispecies biofilm model

In vitro multispecies biofilm cultures were prepared with 33 
bacterial species (Table 1) as described by Miranda et al. (2020), with 
some modifications. Tryptone soy agar with 5% sheep blood (Probac, 
São Paulo, Brazil) was used to grow most species under anaerobic 
conditions, 85% nitrogen, 10% carbon dioxide, and 5% hydrogen. 
Porphyromonas gingivalis was grown on tryptone soy agar containing 
yeast extract enriched with 1% hemin, 5% menadione, and 5% sheep 
blood. Tannerella forsythia was grown on tryptone soy agar 
containing yeast extract enriched with 1% hemin, 5% menadione, 5% 
sheep blood, and 1% N-acetylmuramic acid. All species were allowed 
to grow on agar plates for 24 h and then transferred to glass tubes 
containing Brain Heart Infusion (BHI) culture medium (Becton 
Dickinson, Sparks, MD, United States) supplemented with 1% hemin. 
After 24 h growing on conical tubes, the optical density was adjusted 
for the inoculum to have about 108 cells/mL of each species. A 
dilution of individual cell suspensions was performed and 100 μL 
aliquots containing 106 cells from each species were added to 
11,700 μL of BHI broth complemented with 1% hemin and 5% sheep 
blood to obtain an inoculum of 15 mL (Miranda et al., 2019, 2020; 
Pingueiro et al., 2019; Shibli et al., 2021).

The multispecies biofilm model was developed using a Calgary 
biofilm device (CBD) in a 96-well plate (Nunc; Thermo Scientific, 
Roskilde, Denmark; Ceri et  al., 1999). A 150 μL aliquot of each 
inoculum was added to the wells and corresponded to ~1 × 104cells of 
each bacterial strain—except for P. gingivalis and Prevotella intermedia, 
whose inocula were adjusted to 2 × 104cells. A lid containing 
polystyrene pins was used to seal the 96-well plate (Nunc TSP system; 
Thermo Scientific, Roskilde, Denmark). Coated plates were incubated 
at 37°C under anaerobic conditions. After 72 hours, the used medium 

(BHI broth with 1% hemin and 5% sheep blood) was replaced and 
biofilm cultures were kept at 37°C under anaerobic conditions for an 
additional 4 days to obtain 7-day-old biofilms (Miranda et al., 2019). 
In the middle of the seventh day, the biofilms were transferred to a 
culture medium mixed with the different treatments according to the 
description of Experiments A and B. All products used in the 
experiments (Desplac®—Premium Oral Gel; Placebo Gel; Noplak 
Dentifrice; Oral B ProGengiva; Chlorhexidine Gel 0.12%) were 
diluted (1 part of the product for 2 parts of BHI) to obtain a more fluid 
solution that could act on the biofilm for its biological properties and 
not for a merely mechanical effect. After 7 days of biofilm formation, 
the pins were collected for microbiological processing. The 
experiments were performed in triplicate for each of the groups 
(Miranda et al., 2019; Faveri et al., 2022).

2.2.1. Quantification of biofilm bacterial 
metabolic activity

The effects of Desplac® and other products used as positive and 
negative controls on the metabolic activity of multispecies biofilm cells 
were measured in a spectrophotometric assay with 
2,3,5-triphenyltetrazolium chloride (TTC; catalog No. 17779; Fluka 
analytical). TTC is used to differentiate between metabolically active 
and inactive cells. TTC white substrate is enzymatically reduced to red 
formazan by live cells due to the activity of several dehydrogenases. 
The change in substrate color is an indirect measure of bacterial 
metabolic activity.

To mensurate the metabolic activity of biofilm cells, the pins were 
transferred to 96-well plates with 200 μL/well of fresh BHI medium 
supplemented with 1% hemin and 0.1% TTC solution. The plates were 
incubated under anaerobic conditions for 8 h at 37°C. TTC reduction 
to red formazan was read at 485 nm in a spectrophotometer (Miranda 
et al., 2019).

FIGURE 1

Scheme of the therapeutic approaches of experiments A and B.
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2.2.2. Checkerboard DNA–DNA hybridization
The pins coated with 7-day-old biofilms from each group were 

transferred to Eppendorf tubes containing 100 μL of TE buffer (10 mM 
Tris–HCl, 1 mM EDTA [pH 7.6]); then, 100 μL of 0.5 M NaOH was 

added to each tube. The tubes containing the pins and the final 
solution were boiled for 10 min and the solution was neutralized by 
adding 0.8 mL of 5 M ammonium acetate. The samples were 
individually analyzed for the presence and counting of the 33 bacterial 
species using the DNA–DNA hybridization technique, as previously 
described (Socransky et  al., 1994; Mestnik et  al., 2010). Briefly, 
following sample lysis, the DNA was placed onto a nylon membrane 
using a Minislot device (Immunetics, Cambridge, United States) and 
fixed onto the membrane at 120°C for 20 min. Next, the membrane 
was placed in a Miniblotter 45 (Immunetics). Digoxigenin-labeled 
whole genomic DNA probes of the 33 bacterial species were 
hybridized in each lane of the Miniblotter. Following hybridization, 
the membranes were washed, and DNA probes were detected using a 
specific antibody to digoxigenin conjugated with alkaline phosphatase. 
The signals were detected using the AttoPhos substrate (Amersham 
Life Sciences, Arlington Heights, United States), and the data were 
obtained in the Typhoon Trio Plus program (Molecular Dynamics, 
Sunnyvale, United States). Two lanes in each membrane contained the 
standards with 1 × 105 and 1 × 106 cells of each strain. The signals were 
converted into absolute counts via comparison with the standards on 
the same membrane. The measurements of the experimental groups 
were compared against those of the negative and positive controls. 
Counts below the method detection limit (1 × 104) were considered 
zero (Socransky et al., 1994; Miranda et al., 2019).

2.2.3. Statistical analysis
Data from the biofilm’s metabolic activity test were statistically 

analyzed using Analysis of Variance (ANOVA) followed by Tukey’s 
test. The results of the Checkerboard DNA–DNA Hybridization were 
statistically analyzed using Kruskal-Wallis followed by Dunn’s post hoc 
(p ≤ 0.05).

3. Results

The analysis of data from Experiment A is shown in Figures 2–4. 
Figure 2 shows that the metabolic activity of the Desplac® product was 
statistically similar to Noplak (chlorhexidine + cetylpyridinium 
chloride) and the Oral B toothpaste (Stannous Fluoride), while the 
three treatments were statistically better than the placebo group.

Figure 3 shows the total count of all species present in the biofilm 
subgingival model. Noplak and Oral B reduced total biofilm counts by 
more than 90% when compared to placebo and Desplac® treated 
biofilms (p ≤ 0.05). In addition, Desplac® and placebo behaved 
similarly in reducing the total count of bacteria present in biofilms 
(p = 0.07).

Figure 4 shows the individual mean count of each bacterial 
species included in the biofilm formation evaluated by 
Checkerboard DNA–DNA Hybridization. The Noplak product 
reduced the count of 23 bacterial species, the Oral B dentifrice of 
25 species, and Desplac® of two species when compared to the 
placebo-treated biofilms (p ≤ 0.05). It is noteworthy that Noplak, 
Oral B toothpaste, and Desplac® reduced the P. gingivalis count 
demonstrating specific action on key bacteria for the development 
and progression of periodontal disease.

Regarding Experiment B, Figure  5 shows that Desplac® 
statistically reduced biofilm metabolic activity when compared to 
placebo by about 45% (p ≤  0.05), but Chlorhexidine Gel (0.12%) 

TABLE 1 List of bacterial species cultured in multispecies biofilms.

Species ATCC

Actinomyces sp.

Actinomyces naeslundii 12104

Actinomyces oris 43146

Actinomyces gerencseriae 23840

Actinomyces israelii 12102

Purple complex

Veillonella parvula 10790

Actinomyces odontolyticus 17929

Yellow complex

Streptococcus sanguinis 10556

Streptococcus oralis 35037

Streptococcus intermedius 27335

Streptococcus gordonii 10558

Streptococcus mitis 49456

Green complex

Aggregatibacter actinomycetemcomitans 29523

Capnocytophaga ochracea 33596

Capnocytophaga gingivalis 33624

Eikenella corrodens 23834

Capnocytophaga sputigena 33612

Orange complex

Campylobacter showae 51146

Campylobacter gracilis 33236

Eubacterium nodatum 33099

Fusobacterium nucleatum vincentii 49256

Parvimonas micra 33270

Fusobacterium nucleatum polymorphum 10953

Fusobacterium periodonticum 33693

Prevotella intermedia 25611

Streptococcus constellatus 27823

Red complex

Porphyromonas gingivalis 33277

Tannerella forsythia 43037

Others species

Eubacterium saburreum 33271

Streptococcus anginosus 33397

Streptococcus mutans 25175

Selenomonas noxia 43541

Propionibacterium acnes 11827

Gemella morbillorum 27824

The strains were categorized in the microbial complexes described by Socransky et al. (1998).
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showed the best inhibition of metabolic activity reducing it by more 
than 80% (p ≤ 0.05).

Figure 6 presents the total count of all bacterial species present in 
the biofilm model. Desplac® statically reduced the total biofilm count 
when compared to the placebo by about 59%. However, the 
chlorhexidine gel (0.12%) showed the best reduction in the total 
biofilm count, about 89% (p ≤ 0.05).

Figure 7 shows the individual mean count of each bacterial species 
included in the biofilm formation evaluated by Checkerboard DNA–
DNA Hybridization. Chlorhexidine Gel (0.12%) reduced the count of 
27 species while Desplac® reduced the count of 24 different bacteria 
in relation to the placebo group (p ≤ 0.05), highlighting Fusobacterium 
nucleatum polymorphum, Prevotella intermedia, and P. gingivalis, all 
recognized periodontal pathogens. Only Desplac® was able to reduce 
T. forsythia counts (Figure 7).

4. Discussion

The success of periodontal treatment is directly related to an 
ecological change in the biofilm, making its microbial profile more 
compatible with periodontal health. This leads to an improvement in 
periodontal clinical parameters (Cugini et al., 2000; Feres et al., 2015). 
The therapy known as the gold standard is scaling and root planing. 
However, not all individuals are able to maintain the benefits achieved 
with such treatment in the long term (Cugini et al., 2000; Carvalho 
et al., 2005; Feres et al., 2015). The fact that the standard therapeutic 
proposal does not reach the periodontopathogens found throughout 
the mouth—including supragingival biofilm and those in other oral 
niches, such as the tongue, oral mucosa, and saliva—is one of the 
reasons for therapeutic failure (Socransky and Haffajee, 2002).

According to the current concept of periodontitis, a dysbiotic 
microbial community is pointed out as responsible for disease 
initiation (Hajishengallis and Diaz, 2020). Thus, the red complex 
members still possess a crucial role in the development of the 
disease. Among them, P. gingivalis and T. forsythia are the most 
studied microorganisms. Both have been proposed as targets to 

prevent oral microbiome dysbiosis since its incidence may 
contribute to the shift from healthy to diseased-associated biofilm 
(Hoare et al., 2021). Therefore, Desplac’s® effects on these bugs 
are outstanding.

Porphyromonas gingivalis has been indicated as the keystone 
pathogen in periodontal disease since this bacterium produces several 
virulence factors (for example, gingipains and FimA) with properties 
to subvert the human immune response, including neutrophils, 
macrophages, and complement system (Hajishengallis, 2021). Besides 
its role in periodontitis, T. forsythia may be relevant in peri-implantitis 
pathogenesis. This microorganism was found at more elevated levels 
in dental implant replacements in contrast with the adjacent tooth, 
and its presence is correlated with the increase in severity of peri-
implantitis (Eckert et al., 2018; Eick et al., 2019).

Healthy sites in individuals with periodontal disease have higher 
proportions of pathogens when compared to those without the disease 
(Feres et  al., 2015). Hence, the search for anti-infective therapies 
capable of enhancing the clinical results achieved is constant. In this 
context, the benefits attained with the use of chlorhexidine stand out 
among several scientific studies (Carvalho et al., 2005; Mestnik et al., 
2010; Feres et al., 2012), and for this reason, it was the chemical agent 
of choice to represent the positive control group in the experiments of 
this study.

The problem with the continued use of chlorhexidine mouth rinses 
is the possibility of developing adverse effects. The most reported in the 
literature are extrinsic pigmentation of teeth, tongue, mucous membranes 
and restorations, taste alteration, burning sensation, supragingival 
calculus formation, and less frequent cases of allergy (Keni et al., 2012; 
James et  al., 2017). For this reason, formulations with other active 
ingredients have been described in the literature in an attempt to show 
similar benefits, but with less frequent adverse effects associated with the 
use of chlorhexidine. Special emphasis can be given to the potential of 
natural products. Currently, there is a relevant proportion of the world 
population that searches for cosmetic oral hygiene products (toothpaste 
and mouthwash) with this profile. The antimicrobial activity of the natural 
agents propolis, Aloe vera, green tea, cranberry, and calendula is already 
evidenced in the scientific literature. However, to date, this activity 
evaluated in a combined way as in the commercial product Desplac® is 
unprecedented in the literature.

In this direction, the green propolis produced in the South region 
of Brazil was the first to be recognized for its antimicrobial potential. 
Recently, it was found to impair gut microbiota dysbiosis by enhancing 
the Bacteroidetes/Firmicutes proportion in an animal study (Okamura 
et al., 2022). In addition, the baccharin, one of its biocompounds, has 
shown a possible antimicrobial mechanism of action on P. gingivalis. 
As an antimicrobial mechanism, this compound induces membrane 
depolarization so to increase membrane permeability leading to 
bacterial death (Yoshimasu et al., 2018). The apigenin, found in green 
propolis, has been shown to inhibit the development of Candida 
albicans (Cheah et  al., 2014) and Streptococcus mutans (Jeon 
et al., 2011).

Another natural agent is Aloe vera or Aloe barbadensis. It is also 
an option in toothpaste considering its antimicrobial potential on oral 
microorganisms, such as S. mutans and C. albicans, and improvement 
in plaque index comparable to those obtained with products with 
triclosan in their composition (Lee et al., 2004; Pradeep et al., 2012; 
Vajrabhaya et al., 2022). The Aloe vera main components are aloin A, 
aloin B, aloesin, aloe-emodin, aloeresin D, orientin, cinnamic acid, 

FIGURE 2

Mean and standard deviation of the mean of the biofilms’ metabolic 
activities treated with the different agents in experiment A. The 
metabolic activity of the biofilm treated with the culture medium was 
considered 100%. Different letters mean a statistically significant 
difference using ANOVA, followed by Tukey’s test (p ≤ 0.05).
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and chlorogenic acid (Solaberrieta et al., 2022). Among them, the 
antibacterial mechanism of aloe-emodin was determined on 
Staphylococcus epidermidis. The compound provokes abnormalities in 
S. epidermidis morphology and ruins membrane permeability (Li 
et al., 2021).

Several components of green tea can also promote health benefits. 
Mazur et al. (2021) demonstrated through a systematic review that 
clinical periodontal parameters were found to be positively affected by 
green tea. Chemical analysis of green tea revealed the presence of some 
phenolic compounds (rutin, quercetin, and chlorophyll) and four main 
catechins: epicatechin (EC), epicatechin-3-gallate (ECG), 
epigallocatechin (EGC), and epigallocatechin-3-gallate (EGCG); the 
latter being the most active and abundant among them (Ku et al., 2010; 
Reygaert, 2018; Kolackova et al., 2020). More recently, Kong et al. (2022) 
published a literature review showing the antimicrobial activity of 
epigallocatechin-3-gallate, one of the green tea’s compounds as 
mentioned, in the microbiota associated with oral diseases. The 
antimicrobial effect was evident for P. gingivalis, 
A. actinomycetemcomitans, P. intermedia, and F. nucleatum. EGCG 
damages the P. gingivalis membrane and cellular wall preventing biofilm 
formation and ruining the pre-formed biofilm. Regarding 
A. actinomycetemcomitans, EGCG inhibits a relevant virulence factor, 
the leukotoxin that is associated with the impairment of 
human macrophages.

Cranberry has bioactive agents such as proanthocyanidins 
(propelargonidin, procyanidin, and prodelphinidin) that characterize 
this natural product as beneficial for health (Zhao et al., 2020). In 
dentistry, Polak et al. (2013) showed the potential protective and/or 
preventive effect of cranberry on P. gingivalis and F. nucleatum-
induced periodontitis in mice. Galarraga-Vinueza et  al. (2020) 
demonstrated that proanthocyanidins, known to inhibit oral biofilm 
adherence and for their anti-inflammatory effect, could potentially 
neutralize the destructive inflammatory response of macrophages. 
These compounds do not interfere with P. gingivalis growth; however, 
they inhibit many virulence factors related to P. gingivalis adhesion, 
such as collagenases, proteinases, and other proteins associated with 
P. gingivalis’s attachment to periodontal tissue, with subsequently 
smaller bacterial biofilm formation (Nawrot-Hadzik et al., 2021a). In 
recent years, the medicinal potential of Calendula officinalis has 

encouraged scientific studies in dentistry especially on topics involved 
in the treatment of periodontitis and peri-implantitis (Lima et al., 
2017; Alexandre et al., 2018; Tanideh et al., 2020). Although calendula 
presents distinct classes of well-known antimicrobial compounds in 
its composition, such as triterpenoids, flavonoids, quinones, tannins, 
coumarins, and phenolic acids, the literature on calendula’s 
antimicrobial activity is scarce., The only report found demonstrated 
that a calendula-based dentifrice did not present an antimicrobial 
effect on A. viscosus, C. albicans, L. casei, S. mitis, S. mutans, S. oralis, 
S. sanguis, S. sobrinus, and clinically isolated C. albicans, S. mitis, 
S. mutans, S. oralis, S. sanguis, S. sobrinus, and Lactobacillus spp. 
(Modesto et al., 2000).

FIGURE 3

Mean and standard deviation of total counts of all bacterial species in 
experiment A, analyzed using Checkerboard DNA–DNA 
Hybridization. Different letters mean a statistically significant 
difference performed using the Kruskal-Wallis test followed by 
Dunn’s post hoc test (p ≤ 0.05).

FIGURE 4

Mean counts of each of the bacterial species present in the biofilms 
of experiment A. Statistical analysis was performed using the Kruskal-
Wallis test followed by Dunn’s post hoc test (p ≤ 0.05). The letter “a” 
represents the statistical difference between placebo and Oral B; 
letter “b” represents the statistical difference between placebo and 
Noplak; letter “c” represents the statistical difference between 
placebo and Desplac®; letter “d” represents the statistical difference 
between Desplac® and Oral B, and letter “e” represents the statistical 
difference between Desplac® and Noplak.
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It is interesting to observe how the agent’s contact time with the 
biofilm improved the antibacterial effect. The unique 12-h treatment 
of an established biofilm reduced a more significant number of species 
than two daily treatments of 1 min during the biofilm formation. 
Usually, an established biofilm is a more complex challenge for 
antimicrobial agents than a biofilm in formation. However, probably 
due to the time of contact, Desplac® reduced a larger number of 
species in experiment B (12-h treatment of an established biofilm).

Considering the design of this study, it is important to point out 
that experiments A and B correspond to the uses recommended by the 
manufacturer in accordance with ANVISA’s authorization for the 
commercialization of Desplac®. It is important to note that 
chlorhexidine gel does not have an indication to be used overnight as 
Desplac®. However, due to the absence of a positive control with this 
kind of indication, chlorhexidine gel was kept as a positive control of 
experiment B due to its excellent antimicrobial properties. In addition, 
limitations of the biofilm model include the semi-quantitative 
characteristic of the checkerboard and the absence of Treponema 
denticola since this bug is also a member of the red complex (Socransky 
et al., 1998). Moreover, a possible improvement of the present biofilm 
model may include further examination, such as confocal microscopy, 

that would allow the assessment of the biofilm portion structure, 
bacteria biomass, and exopolysaccharide amount. Currently, confocal 
microscopy analysis is prevalent for caries-related monospecies 
biofilms but not periodontal ones. Therefore, future studies should 
consider improving the existing knowledge by evaluating dyes for 
confocal analysis of periodontitis-related multispecies biofilms (Torrez 
et  al., 2023). The analysis of the data obtained in this laboratory 
research showed promising results related to antimicrobial activity in 
a multispecies subgingival biofilm. Thus, it was possible to conclude 
that the combination of natural agents present in the commercial 
product Desplac® was able to inhibit the biofilm development and 
disrupt the mature subgingival biofilm, highlighting its effect on 
T. forsythia counts. Although the present subgingival multispecies 
biofilm was revealed as a good model for the initial analysis of novel 
antibacterial agents, it is still necessary to carry out randomized 
controlled clinical studies in order to confirm whether the 

FIGURE 5

Mean and standard deviation of the mean of the biofilms’ metabolic 
activities treated with the different agents in experiment B. The 
metabolic activity of the biofilm treated with the culture medium was 
considered 100%. Different letters mean a statistically significant 
difference using ANOVA, followed by Tukey’s test (p ≤ 0.05).

FIGURE 6

Mean and standard deviation of total counts of all bacterial species in 
experiment B, analyzed using Checkerboard DNA–DNA 
Hybridization. Different letters mean a statistically significant 
difference performed using the Kruskal-Wallis test followed by 
Dunn’s post hoc test (p ≤ 0.05).

FIGURE 7

Mean counts of each of the bacterial species present in the biofilm 
of experiment B. Statistical analysis was performed using the Kruskal-
Wallis test followed by Dunn’s post hoc test (p ≤ 0.05). Letter “a” 
represents the statistical difference between Placebo and Desplac®; 
letter “b” represents the statistical difference between Placebo and 
Chlorhexidine Gel; letter “c” represents the statistical difference 
between Desplac® and Chlorhexidine Gel.

https://doi.org/10.3389/fmicb.2023.1122051
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Bueno-Silva et al. 10.3389/fmicb.2023.1122051

Frontiers in Microbiology 08 frontiersin.org

microbiological benefits observed here will be  able to support the 
periodontal clinical condition associated with health.
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