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Introduction: Porcine circovirus 4 (PCV4) was discovered in 2019 and then proved 
to be pathogenic to piglets. Nevertheless, few studies were currently available about 
PCV4 infection in species other than pigs and there is no information about the 
prevalence of PCV4 in dogs.

Methods: To fill this gap, 264 dog samples were collected from animal hospitals in 
the Southwest of China from 2021 to 2022 and screened for PCV4. Moreover, the 
complete genome of one PCV4 strain (SCABTC-Dog2022) were obtained successfully 
and shared a high identity (97.9-99.0%) with other PCV4 strains derived from pigs, 
dairy cows, raccoon dogs and foxes. The SCABTC-Dog2022 were analyzed together 
with 51 reference sequences.

Results and Discussion: The detected results showed a low percentage of PCV-4 
DNA (1.14%, 3/264), indicating that PCV4 could be identified in dogs in southwest 
China. Phylogenetic tree showed that SCABTC-Dog2022 strain derived from dog were 
clustered in a closed relative and geographically coherent branch with other PCV4 
strains collected from four provinces (Sichuan, Fujian, Hunan and Inner Mongolia) 
of China. To our knowledge, it is the first detection of PCV4 in dogs globally. The 
association between PCV4 status and clinical syndromes in dogs deserves additional 
investigations.
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1. Introduction

Porcine circoviruses (PCVs) are members of family Circoviridae, genus Circovirus, and also the 
smallest envelope-free animal DNA viruses (Opriessnig et al., 2020). Up to date, at least four PCVs 
have been recognized with similar structure, including porcine circovirus 1 (PCV1), porcine 
circovirus 2 (PCV2), porcine circovirus 3 (PCV3), and porcine circovirus 4 (PCV4). The genome of 
PCVs is circular single-stranded DNA and ranging from about 1.7 to 2.1 kb in size (Lekcharoensuk 
et al., 2004; Cheung, 2012; Opriessnig et al., 2020).

PCV1 was deemed to be non-pathogenic to pigs and was first reported in 1982 (Tischer et al., 
1974, 1986; Allan et al., 1995). In the 1990s, PCV-2 was identified experimentally as the cause of 
porcine circovirus-associated disease (PCVAD) in Canada, followed by severe outbreaks worldwide, 
which resulted in important losses to the pig production (Nayar et al., 1997; Allan et al., 1998; Ellis 
et al., 1998; Kiupel et al., 1998; Morozov et al., 1998). Porcine circovirus disease (PCVAD) was a 
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collective term for systemic and reproductive diseases, including post-
weaning multisystemic wasting syndrome (PMWS), porcine dermatitis 
and nephrotic syndrome (PDNS), reproductive disorders, and 
respiratory diseases (Nayar et al., 1997; Allan et al., 1998; Ellis et al., 
1998; Kiupel et al., 1998; Morozov et al., 1998). Porcine circovirus 3 
(PCV-3) was discovered in the United States in 2015. Then, it has been 
detected globally from pigs with several clinical signs including 
respiratory disease, enteritis and PDNS (Phan et al., 2016; Palinski et al., 
2017). The emerging porcine circovirus type 4 (PCV4) was discovered 
in pigs displaying severe clinical pathological outcomes as well as in 
apparently healthy pigs in 2019 in Hunan, China (Zhang D. et al., 2020), 
and then reported in several provinces in China as well as in South 
Korea (Chen et al., 2021; Sun et al., 2021; Tian et al., 2021; Kim et al., 
2022; Xu et al., 2022a). Recently, Niu et al. successfully rescued PCV4 
from an infectious clone and demonstrated its pathogenicity to piglets 
(Niu et al., 2022).

Besides the natural reservoir of pigs, PCVs has also been 
identified in non-porcine animals. In 1995, the presence of PCV1 
antibodies in cattle was first reported in Germany (Tischer et al., 
1995). Subsequently, PCV2 DNA was found in cattle with 
respiratory disease and from aborted bovine fetuses. In addition, 
the PCV2 genome has been reported to be present in a variety of 
non-pig animals, such as foxes, rats, dogs etc (Kiupel et al., 2001; 
Herbst and Willems, 2017; Song et al., 2019a). PCV3 DNA were 
also detected in non-porcine animals, such as ruminants, rodents 
and canines, etc (Zhang et al., 2018; Jiang et al., 2019; Wang et al., 
2019). Available data indicate that PCVs (PCV1–PCV3) have a 
broad host spectrum. Moreover, PCVs cross-species transmission 
is likely to be a serious threat to the global pig industry and other 
animal industries (Turlewicz-Podbielska et  al., 2022). However, 
there were few studies on PCV4 infection in species other than 
pigs. The cross-species transmission of PCV4 should be  paid 
more attention.

Whether dog was one of the hosts of PCV4 remained unknown. 
Based on this premise, the present study aimed to investigate the 
presence and circulation of PCV4 in dogs. Then, 264 dog samples were 
collected and detected for the presence of PCV4, and the complete 
genome was sequenced.

2. Materials and methods

2.1. Clinical samples collection and viral 
DNA extraction

A total of 264 clinical samples (fecal samples, rectal swabs, and 
nasal swabs) from dogs with several clinical manifestations 
(respiratory disease and diarrhea) were collected from 15 animal 
hospitals in 9 cities (Mianyang, Suining, Chengdu, Deyang, Luzhou, 
Dazhou, Guangan, Guangyuan, and Yibin) in the southwest of 
China during 2021–2022. The samples were dissolved in an 
Eppendorf tube containing phosphate-buffered saline (pH 7.2). 
The homogeneity was either used immediately for DNA extraction 
or stored at −80°C until use.

DNA was extracted using the Universal Genomic DNA Kit (CoWin 
Biotech Co, Ltd., Taizhou, China) in accordance with the manufacturer’s 
instructions. To detected PCV4, a SYBR Green І-based qPCR assay was 
performed as described previously (Xu et al., 2022a).

2.2. Complete genome sequencing

The positive samples were selected for the complete genome 
amplification of PCV4 as described previously (Xu et al., 2022b). Three 
overlap primer pairs for amplifying the whole genome are described in 
Supplementary Table S1. In brief, the PCR reaction mixture was 
performed in a 50 μL total reaction containing 25 μL of 2 × Phanta Flash 
Master Mix (Nanjing Vazyme Biotech Co., Ltd. Nanjing, China), 1 μL 
(25 μM) of each pair of primers, 4 μL of viral DNA, and 19 μL of 
ddH2O. The amplification was performed with initial incubation at 98°C 
for 30 s; 35 cycles of 10 s at 98°C, 60°C for 10 s, and 72°C for 5 s, and a 
final extension for 10 min at 72°C. The overlapping DNA fragments were 
sent to Tsingke Biotechnology Co., Ltd., Beijing, China for sequencing.

2.3. Sequence alignment and phylogenetic 
analysis

The dog-origin PCV4 strain in this study was further analyzed with 
51 PCV4 strains all available in GenBank database (accessed 22 October 
2022). All available information regarding reference strains is provided 
in Supplementary Table S2. The DNAstar software (DNAStar V7.1, 
Madison, WI, United States) was used for assembly and alignment. A 
neighbor-joining (NJ) phylogenetic tree was constructed with a 
p-distance model, and a bootstrap of 1,000 replicates using Molecular 
Evolutionary Genetics Analysis (MEGA) software (version 7.0).

3. Results and discussion

PCVs (PCV1-3) could propagated in hosts other than pigs and were 
associated with several clinical signs under field conditions (Song et al., 
2019a,b). Herbst and Willems (2017) detected PCV2 genome in feces of 
dogs in Germany (Herbst and Willems, 2017). Likewise, Sun et  al. 
(2021) reported PCV3 DNA in serum samples of dogs and PCV3-
positive rate was 23.6% (96/406) (Sun et al., 2019). Nevertheless, it is still 
unknown whether dog is one of the reservoirs of PCV4. The objectives 
of this study were to investigate the presence of PCV4 in dog and to 
perform further DNA sequencing analysis.

In this epidemiological work, a total of 264 clinical samples from 
dogs at various growth stages were collected from selected clinically 
unhealthy animals with clinical disease including respiratory signs and 
enteric signs. PCV4 DNA was detected in 3 out of 264 tested clinical 
samples (1.14%) in the present study (Figure 1), which was close to the 
prevalence found in clinical samples derived from pigs in the same 
geographical location (Southwest China) in a previous study (Xu et al., 
2022c). PCV4 was first reported in pig farms in Hunan province, China 
in 2019 with a high prevalence of 12.8%, and in another study in Henan 
and Shanxi Provinces even higher, showing a frequency of 25.40% 
(16/63) in pig farms (Zhang H. H. et  al., 2020; Tian et  al., 2021). 
Interestingly, 3 positive samples were collected from two animal 
hospitals in Dazhou, Southwest China in 2022, and in our previous 
study in the same city positive samples from pig farms was also 
detected, showing diarrheal symptoms co-infected with PEDV. Besides 
diseased pigs with clinical signs, the PCV4 genome was also detected 
in healthy pigs (Zhang H. H. et al., 2020). Subsequently, PCV4 was 
rescued from an infectious clone and pigs inoculated with rescued 
PCV4 showed no obvious clinical symptoms under experimental 
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infections, while obvious pathological changes in several organs of 
piglets inoculated with PCV4 suggested that it was pathogenic to piglets 
(Zhang H. H. et al., 2020). The clinical samples in this study were all 
from diseased dogs in animal hospitals, and the prevalence of PCV4 in 
healthy dogs and its pathogenicity in dogs need further study. To date, 
PCV4 has been identified in several provinces in China and Korea, with 
positivity rates ranging from 1.34% to 45.39% (Zhang H. H. et al., 2020; 
Sun et al., 2021; Hou et al., 2022; Nguyen et al., 2022; Xu et al., 2022a,c), 
but no evidence of PCV-4 presence was found in Italy, Spain, and 
Colombia through two exploratory studies (Franzo et  al., 2020a; 
Vargas-Bermudez et al., 2022). Anyway, the most likely reason for the 
different positive rates among published studies could be the species of 
animals, health status, different geographical locations, epidemiology 
of each period, and detection methods used. Two different studies 
recently identified PCV4 DNA in wild boar and dairy cattle in Jiangsu 
and Henan, respectively (Wu et al., 2022; Xu et al., 2022b), and the 
whole genome of PCV4 from fur animals (fox and raccoon dogs) in 
Hebei Province could also be  found in GenBank database without 
available corresponding published studies in the PubMed database. In 
addition, 2 out of 3 positive samples were nasal swabs and 1 was fecal 
sample. Notably, one serum was collected from one of three PCV4-
positive dogs, and PCV4 DNA was also detected in the serum. The 
serum was not described in detail in the “Materials and methods” 
section because it was collected from the same dog along with a fecal 
sample. This is the first time to provided supported evidence of PCV4 
prevalence in dogs in the southwest of China.

Host jumping of circovirus could be a potential threat to public health 
(Turlewicz-Podbielska et al., 2022). Regarding PCV1 and PCV2, replication 
was observed in human 293 and Hep2 cells (Hattermann et al., 2004), and 
antibodies against PCV1 or PCV2 could be detected in human serum, GI 
samples and respiratory samples (Bernstein et al., 2003; Li et al., 2010; 

Borkenhagen et  al., 2018). It is unclear whether PCV4 has zoonotic 
potential, if so, whether dogs, as human companion animals, play an 
important role in the transmission of PCV4 between humans and animals. 
Much attention should be paid to the abovementioned premises.

In this study, there were three PCV4 positive samples, of which two 
PCV4 whole genomes obtained from two dog samples collected from 
animal hospital in Dazhou in 2022, including one nasal swab and one fecal 
sample. However, another positive sample failed to be amplified. It is very 
likely that the low viral load of another positive sample may account for 
failure of full-genome amplification. Among which one unique sequence 
(SCABTC-Dog2022) were generated and deposited in the GenBank 
database under the following accession number (OP948894). The full-
genome of SCABTC-Dog2022 strain was 1,770 nt in length without 
deletions and insertions of nucleotides and further analyzed together with 
51 PCV4 strains all available in GenBank database (accessed 22 
October 2022).

Pairwise-sequence comparisons based on nucleotide sequences 
indicated the SCABTC-Dog2022 shared 97.9%–99.0% identity of complete 
genome with 51 PCV4 reference strains. Among which 5 reference strains 
were sequenced from raccoon dogs, 1 was sequenced from fox, 2 were 
sequenced from wild boars, and others were sequenced from domestic 
pigs. In addition, the 51 PCV4 reference strains were from different 
provinces in China and South Korea, and when the data was analyzed by 
the year, some strains came from the clinical samples that have been 
preserved for 10 years. These results suggested that PCV4 can 
be transmitted across species and regions and dates back at least a decade, 
and available reference strains from different geographical locations and 
species at different times shared high similarity of complete genome. 
Compared to PCV2 with high genomic variation, PCV4 shared higher 
similarity among available sequences, indicated a slower evolutionary rate 
of PCV4.

FIGURE 1

The geographical distribution of the 264 samples. In China, the provinces with PCV4 identification were filled with light green. The clinical samples in this 
study were collected from light gold-filled cities in southwestern China, and cities with positive samples were marked by red solid circles. The numbers 
indicate the positivity rate of PCV4 in different cities.
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FIGURE 2

Neighbor-joining trees were constructed with a p-distance model and 
bootstrapping at 1,000 replicates. Phylogenetic tree was constructed 
based on the complete genome of 52 PCV4 strains. The black solid 
triangle (▲) represented the PCV4 strains derived from raccoon dogs. 
The solid black diamond (◆) represented the fox-derived PCV4 strains. 
The solid black square (■) represents the PCV4 strains originating from 
wild boars. The black solid circle (●) represented the dog-derived PCV4 
strain (SCABTC-Dog2022) in this study. All unlabeled strains were from 
domestic pigs. The subtypes were proposed by Xu et al. (2022a).

The high similarity between the available sequences makes it difficult 
to determine further genotypic classification of PCV4, similar to that of 
PCV3. Although it is still too early for a definitive classification, two 
(PCV-4a and PCV-4b) or three major clusters (PCV4a, PCV4b and 
PCV4c) have been temporarily proposed for this virus (Xu et al., 2022a,b). 
The NJ phylogenetic tree was established based on the clade classification 
and amino acid marker positions proposed by Xu et  al. (2022b). 
Phylogenetic analysis showed that SCABTC-Dog2022 clustered with nine 
pig-origin reference strains in the proposed PCV4c, with three reference 
strains from Korea and six from three provinces (Fujian, Hunan, and 
Inner Mongolia) in China. PCV4a was comprised of 28 strains, two of 
which were from wild boars in Jiangsu Province, China, and others were 
from domestic pigs in four Chinese provinces (Jiangsu, Guangxi, Henan, 
and Hebei). In addition, 13 strains belonged to PCV4b, one of which was 
from domestic pig in Henan province and others were from fur animals 
(fox and raccoon dog) and domestic pig in Hebei. Geographically, Henan 
Province and Hebei Province are adjacent to each other. However, when 
a larger number of sequences were used, the current classification in 
Figure 2 was inconsistent with previous studies, indicating the necessity 

of a more reasonable classification scheme. The specific amino acid 
patterns for PCV4a (239 V in Rep, 27S, 28R, and 212 L in Cap) and PCV4b 
(239 L in Rep, 27S, 28G and 212 L in Cap) in this study were consistent 
with those described by Xu et al. (2022b). Compared to marker positions 
for PCV4a (239 V for Rep protein, 27 N, 28R, and 212 M for Cap protein), 
two strains (KU-02010 and KU-02011) in PCV4a contained an amino 
acid mutation (N27S) in Cap and one strains (FJ2020001) had an amino 
acid mutation (V239L; Xu et al., 2022b), suggesting that the proposed 
amino acid marker positions were not suitable for determining clade 
divisions. With the increase of sequences used, the classification of some 
strains in different studies was not consistent. The high homology of all 
available PCV4 sequences at the whole genome level does not support 
further classification of PCV4. Genetic distance and phylogenetic 
clustering should be the primary objective criteria, and other factors, 
including the number of sequences within clusters, host and geographic 
clustering, concordance between different genomic regions, and analytical 
methods are also taken into account to generate a classification that can 
be  used effectively for research and diagnosis (Franzo et  al., 2020b). 
Therefore, it is too early to classify PCV4 due to the limited sequence 
information, and because of this more, we encourage more research teams 
to upload annotated sequences from different geographical locations and 
different species in a free database.

Sequence analysis based on 52 PCV4 strains indicated that 36 and 
38 amino acid mutations were observed in the Rep and Cap, respectively 
(Figure. 3). All mutation sites were non-synonymous mutations. The 
resulting effects warranted further study. Regarding Rep, the N-terminal 
endonuclease domain including three conserved motifs 
(motifI−13FTLNN17, motifII−50PHLQG54 and motifIII−90YCSK93) and 
the helicase domain of superfamily 3 (SF3) containing three Walker 
motifs (Walker A-168GxxxxGKS175, Walker B-207DDY209, and Walker 
C-245ITSN248), describing in pig-origin strains (Nguyen et al., 2022), were 
also observed in SCABTC-Dog2022 (Figure  4). In this study, these 
functional regions were highly conserved among different PCV4 strains.

For the Caps of the other three PCVs (including PCV1, PCV2, and 
PCV3), the nuclear localization signal (NLS) region is an arginine-rich 
region within the genus circovirus that mediates nuclear targeting of the 
viral genome and has been experimentally confirmed (Liu et al., 2001; 
Shuai et al., 2008; Mou et al., 2019). Moreover, a recent study confirmed 
the NLS region in the N-terminus of PCV4 Cap, ranging from 1 to 20 
amino acid (Zhou et  al., 2021), which was also observed in Cap of 
SCABTC-Dog2022 without amino acid mutations. Among PCV4a 
strains, seven Chinese strains, including one strain (JXSC-2021) derived 
from Jiangxi Province and six strains (PCV4-LY2017, PCV4-HB2017, 
HN-ZK-201512, HN-ZZ-201603, HN-LY-201702, and HN-HB-201704) 
derived from Henan Province, had a characterized amino acid mutation 
(R15W) in the Cap protein (Figure 3). Besides, two amino acid mutations 
(P2L and I3V) were found in Hebei-Rac1 strain and JXSC-2021 strain, 
respectively. The amino acid mutation sites R15W, P2L, and I3V were 
found to occur in the NLS region of the Cap protein. Whether these 
amino acid mutations have any effect on the function of NLS deserves 
further study. Two patterns (P-x-x-P and Y-x-x-φ) are associated with 
lectin-mediated endocytosis and have been proven to play an essential 
role in the host entry mechanism of Circoviridae (Wei et al., 2018), which 
was recently described in PCV4 strains from pigs (Nguyen et al., 2022) 
as well as in SCABTC-Dog2022 sequenced in this study (Figure 5). Five 
potentially linear B-cell epitope regions with high antigenicity were 
predicted in a previous study, including amino acid positions 72–88, 
104–112, 122–177, 199–205, and 219–225 (Wang et al., 2021). Out of 38 
amino acid mutations in of Cap of 52 PCV4 strains, 12 were located in 
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the predicted epitope region, 12 were located in the predicted epitope 
region, which may have altered the antigenicity of PCV4 Cap, but the 
potential immunogenicity changes due to amino acid mutations in the 
Cap epitope region need to be demonstrated by further studies.

4. Conclusion

To our knowledge, this is the first time that the genome of PCV4 
has been identified in dogs. The first dog-origin complete genome 
sequence (SCABTC-Dog2022) shared a high homology (>97.9%) 

with 51 PCV4 reference strains derived from different species in 
different geographical locations, indicating a slow evolutionary rate 
of PCV4. The infectious mechanism and pathogenicity of PCV4 in 
dog merits further study.

Data availability statement

The datasets presented in this study can be  found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found in the article/Supplementary material.

FIGURE 3

Sequence alignment analysis indicated that there were 36 and 38 amino acid mutations in the Rep and Cap of 52 PCV4 strains. The light green, light blue 
and light orange colors indicated PCV4a, PCV4b, and PCV4c proposed by Xu et al. (2022b). The red open box showed the specific amino acid patterns of 
genotypes. Amino acid residues in gray areas contained represented in potential linear B-cell epitopes.

FIGURE 4

The N-terminal endonuclease domain and the helicase domain of superfamily 3 (SF3) described by Nguyen et al. (2022), were also observed in SCABTC-
Dog2022. proposed by Fux et al. The black solid circle (●) represented the dog-derived PCV4 strain (SCABTC-Dog2022) in this study.
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FIGURE 5

The NLS regions of PCVs (PCV1-4) were highlights in red and reported in several studies (Liu et al., 2001; Shuai et al., 2008; Mou et al., 2019; Wang et al., 
2021). The P-x-x-P and Y-x-x-φ patterns were first identified in other viruses belonging to the genus Circovirus. However, the second P-x-x-P was only 
detected in PCV4 strains (Nguyen et al., 2022). The “x” indicates any amino acid, and “φ” represents any of F (phenylalanine), I (isoleucine), L (leucine), 
or V (valine). The black solid circle (●) represented the dog-derived PCV4 strain (SCABTC-Dog2022) in this study.
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