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Numerous studies have investigated the effects of nitrogen (N) addition on soil

organic carbon (SOC) decomposition. However, most studies have focused on the

shallow top soils <0.2 m (surface soil), with a few studies also examining the deeper

soil depths of 0.5–1.0 m (subsoil). Studies investigating the effects of N addition on

SOC decomposition in soil >1.0 m deep (deep soil) are rare. Here, we investigated

the effects and the underlying mechanisms of nitrate addition on SOC stability in

soil depths deeper than 1.0 m. The results showed that nitrate addition promoted

deep soil respiration if the stoichiometric mole ratio of nitrate to O2 exceeded the

threshold of 6:1, at which nitrate can be used as an alternative acceptor to O2 for

microbial respiration. In addition, the mole ratio of the produced CO2 to N2O was

2.57:1, which is close to the theoretical ratio of 2:1 expected when nitrate is used

as an electron acceptor for microbial respiration. These results demonstrated that

nitrate, as an alternative acceptor to O2, promoted microbial carbon decomposition

in deep soil. Furthermore, our results showed that nitrate addition increased the

abundance of SOC decomposers and the expressions of their functional genes,

and concurrently decreased MAOC, and the ratio of MAOC/SOC decreased from

20% before incubation to 4% at the end of incubation. Thus, nitrate can destabilize

the MAOC in deep soils by stimulating microbial utilization of MAOC. Our results

imply a new mechanism on how above-ground anthropogenic N inputs affect

MAOC stability in deep soil. Mitigation of nitrate leaching is expected to benefit the

conservation of MAOC in deep soil depths.
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GRAPHICAL ABSTRACT

Mechanisms of nitrate on deep soil MAOC.

1. Introduction

Globally, the stock of soil organic carbon (SOC) is estimated to
be as high as 2300 Pg in the 3 m depth, which is about 3-fold the
size of the atmospheric carbon dioxide (CO2) pool (770 Pg) (Lal,
2004). The annual CO2 emissions due to soil respiration are reported
to range from 60 to 100 Pg C yr−1, which is an order of magnitude
greater than current fossil fuel CO2 emissions (Bond-Lamberty and
Thomson, 2010; Oertel et al., 2016; Xu and Shang, 2016) and account
for 5∼25% of total annual CO2 emissions globally (Raich and Potter,
1995; Wang et al., 2018). CO2 is the dominant greenhouse gas and
the atmospheric concentration of CO2 has increased from 277 µl l−1

in 1750 to 411 µl l−1 in 2019 (Friedlingstein et al., 2020; Walker et al.,
2021). Thus, any enhanced loss of CO2 via SOC decomposition has
significant implications for global warming (Zhang et al., 2020).

Anthropogenic nitrogen (N) inputs are reported to significantly
affect SOC content (Mazzoncini et al., 2011; Riggs and Hobbie, 2016;
Chen et al., 2021). Globally, anthropogenic N inputs have increased
from 156 Tg N yr−1 in 1995 to 193 Tg N yr−1 in 2010 (Galloway
et al., 2008; Fowler et al., 2015), and it is estimated that by 2050
the global rate of N inputs will double the rate in 1995 (Penuelas
et al., 2020). A considerable portion of the anthropogenically derived
N is transformed into nitrate, which can leach to depth (>1 m)
within the soil profile (Van Meter et al., 2016; Xin et al., 2019;
Yang et al., 2020; Gao et al., 2021). As the soil profile deepens,
persistent hypoxia or even anoxia can establish, potentially resulting
in nitrate being reduced via the denitrification or dissimilatory nitrate
reduction to ammonium (DNRA) pathways, which require SOC

as an electron donor (Laursen and Seitzinger, 2002; Giblin et al.,
2013). Consequently, anthropogenic N inputs potentially affect SOC
decomposition not only at the soil surface but also in the deeper soil
profile.

The SOC in deep soil is expected to respond to N addition
differently from that of surface soil due to carbon sources being
distinctively different between the surface soil and deep soil (Salomé
et al., 2010). In surface soil, plant residues and root exudates are
important sources of SOC. In line with this, increased CO2 emission
following N addition were found to be derived from plant residues
and root exudates (Schulte-Uebbing and de Vries, 2018; Xu et al.,
2021). This mechanism would be expected to be less significant in
deep soil since the contribution of plant residue and roots to SOC
sharply decreased with the increasing soil depth (Poirier et al., 2018).
Furthermore, oxygen (O2), an electron acceptor for SOC oxidation,
is more available to SOC decomposers in surface soil than in deep
soil. The soil O2 concentration generally declines sharply from the
surface to a depth of approximately 1.0 m, then continues to decline
slowly with the increase of soil depth (Sierra and Renault, 1998; Orem
et al., 2011; Kautz, 2015). Thus, nitrate in deep soil has a larger
opportunity to replace O2 as an alternative electron acceptor for SOC
oxidation. Compared with the SOC in surface soil, the SOC in deep
soil is generally absorbed or co-precipitated with minerals as mineral
associated organic carbon (MAOC), which potentially decreases its
accessibility for soil microbial decomposition (Stuckey et al., 2018;
Jilling et al., 2021). The observed increase in decomposers, induced
by N addition in deep soil, is expected to enhance the potential for
decomposers to destabilize MAOC (Feng et al., 2022).
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Thus, the response of the carbon following N addition differs
since the distinct SOC in surface and deep soils. Most previous studies
have only investigated the response of SOC following N addition in
the surface soil (<1.0 m depth). Many of these studies reported that
N addition increased SOC content (Riggs et al., 2015; Philben et al.,
2019), while other studies reported that N addition decreased (Mo
et al., 2008; Treseder, 2008; Bulseco et al., 2019) or did not affect SOC
content (Högberg, 2007; Lu et al., 2011), this may be attributed to the
form of N, the level of application and soil type. While, few studies
have investigated the effects of N addition on carbon decomposition
in deep soil (Li et al., 2014; Xu et al., 2021). Such information is
relevant for understanding MAOC stability in the deep soil and
carbon sequestration.

In this study, we investigated the responses and relevant
mechanisms of MAOC stability following nitrate addition to deep
soil. Nitrate was selected as the N source because it is the main form
of anthropogenic N that leaches into deep soil.

2. Materials and methods

2.1. Experimental site and sample
collection

Soil samples were collected from the campus of the Fujian
Agriculture and Forestry University, Fuzhou, China (26◦06′ N,
119◦13′ E). Three depths of soil (1.5–1.7, 2.0–2.2, and 2.5–2.7 m) were
collected. Deep soil in this study is defined as soil depths >1.0 m. The
soil samples were passed through a 2 mm sieve to remove as much live
and dead root material, then basic soil physicochemical properties
were determined, which are shown in Table 1. Soils were placed in
sealed ziplock bags, with excess air removed using vacuum package
machine to minimize exposure to O2, and stored at −20◦C about
3 days, then we started the experiments. Soils were thawed at 4◦C and
preincubated at 20◦C (Fontaine et al., 2007; Condron et al., 2014) for
5 days under anaerobic condition to recover microbial activity prior
to commencing experiments.

The SOC content was determined using an elemental analyzer
(Vario Macro Cube, Elementar, Germany). Soil moisture content

TABLE 1 The basic physicochemical properties of the soil.

Soil depth

1.5–1.7 m 2.0–2.2 m 2.5–2.7 m

SOC (g C kg−1 dry soil) 4.25± 0.09a 4.14± 0.01a 3.50± 0.04b

DOC (mg C kg−1 dry soil) 73.81± 11.78a 68.33± 5.75a 59.69± 6.19a

NO3
− (mg N kg−1 dry soil) 3.09± 0.19b 11.20± 0.26a 2.22± 0.21c

NO2
− (mg N kg−1 dry soil) 1.14± 0.06b 2.20± 0.48a 1.34± 0.08b

NH4
+ (mg N kg−1 dry soil) 15.26± 0.73a 16.91± 3.63a 14.85± 0.90a

Moisture content 19.98% 26.96% 23.87%

EC (mS cm−1) 79.1 94.5 50.9

pH 5.17 5.05 5.15

Sand (%) 69.13 59.62 46.16

Silt (%) 29.27 37.46 48.47

Clay (%) 1.6 2.92 5.36

Different letters indicate significant differences (P < 0.05) among the soil depths.

was determined by drying fresh soil samples to constant weight at
105◦C oven. Soil samples were extracted with 1 M KCl solution (soil:
liquid ratio was 1:5) and then filtered (0.45 µm, Jinteng, China). The
soil extracts were then analyzed for dissolved organic carbon (DOC)
concentration using a total organic carbon analyzer (TOC-LCPH,
Shimadzu, Japan), for nitrate, nitrite and ammonium concentrations
using a UV-1800 spectrophotometer (Shimadzu, Japan) and the
colorimetric method (Norman and Stucki, 1981; Dorich and Nelson,
1983; Norman et al., 1985), and for pH using a pH meter (LeiCi PHSJ-
3F, China). After extracting soil samples with distilled water (soil:
water ratio was 1:5) and filtering, the electrical conductivity (EC)
was determined with a conductivity meter (LeiCi DDSJ-308F, China).
Soil texture was determined using a laser particle analyzer (Malvern
Mastersizer 3000, UK) according to the protocol (Pieri et al., 2006).

2.2. Experimental design

2.2.1. Experiment 1: Effects of nitrate addition on
deep soil respiration, microbial community
structure and key functional genes responsible for
C degradation

In order to determine the effect of nitrate addition on CO2
emission from deep soil, two treatments were conducted: (1) nitrate
addition treatment: 15 g of fresh soil was placed in to 120 ml flasks
and a KNO3 solution was added to the flasks to reach 100 mg
NO3

−-N kg−1 dry soil; (2) control treatment: 15 g fresh soil received
an equal amount of distilled water. Moisture is reported to be the
most important factor affecting SOC mineralization (Huang and Hall,
2017). Thus, three gravimetric water contents were applied: 35%
(2 ml 50 mM KNO3), 70% (5 ml 20 mM KNO3), and 200% (20 ml
5 mM KNO3). There was a total of 54 flasks (2 treatments × 3 soil
depths × 3 soil moisture contents × 3 replicates). All flasks were
sealed with air-tight butyl rubber septa and aluminum caps. The
headspace gas was alternatively evacuated (0.1 kPa) and flushed with
pure helium (99.999%, 120 kPa) five times to remove O2 (Yuan et al.,
2019), the initial O2 concentrations was 35.5 µmol L−1 at this time.
All flasks were incubated at 20◦C (Fontaine et al., 2007; Condron
et al., 2014) in the dark for 55 days.

During the incubation, the headspace CO2 concentrations were
periodically determined using a robotized sampling and analysis
system (Molstad et al., 2007). Briefly, the robotized system consisted
of an incubation system linked with a gas collection and analysis
system. It enabled sampling of the headspace gas by puncturing the
butyl rubber septa of the anaerobic flasks and then pumping of 2 ml
sample gas through the loop of the GC with a peristaltic pump. An
electron capture detector (ECD) was used for determination of N2O
and a thermal conductivity detector (TCD) was used to measure CO2,
O2 and N2.

At the end of the 70% water content incubation, soil
samples from the nitrate addition and control treatments, for
each soil depth, were collected to determine the soil microbial
community structure, and the key functional genes responsible
for C degradation. Soil microbial DNA was extracted from
these samples using the PowerSoil DNA isolation kit (MoBio,
Carlsbad, CA) according to the manufacturer’s instructions.
V3-V4 variable region of the 16S rRNA gene were amplified
with primers 338F (ACTCCTACGGGAGGCAGCAG)/806R
(GGACTACHVGGGTWTCTAAT). The sequencing operation was
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completed by Beijing Allwegene technology Co., Ltd. (Beijing,
China). Sample sequences were clustered with a threshold of 97%
similarity to obtain representative operational taxonomic units
(OTUs). Paired-end sequencing was performed using an Illumina
Miseq PE300 platform (Wu et al., 2019).

The total RNA was extracted from 1 g soil samples using the
RNA Extraction Kit (Tiangen Biochemical Science Technologies
Co., Ltd., Beijing, China) according to the manufacturer’s protocols.
The RNA concentration and purity were determined using an ND-
2000 spectrophotometer (Thermo Scientific), then RNA integrity
was assessed using a Tanon 1600 imaging system (Tanon Science
and Technology Co., Ltd., Shanghai, China). The primers were
synthesized by Invitrogen (Shanghai, China), subsequently, RNA
was converted to cDNA using the Prime ScriptTM RT reagent Kit
with gDNA Eraser (TaKaRa). Then quantitative Real-Time PCR
(qRT-PCR) was performed using an ABI7500 quantitative PCR
system (Applied Biosystems, USA) with each sample conducted
in triplicate. The relative abundances of genes responsible for the
degradation of starch, hemicellulose, cellulose, chitin, aromatics,
lignin and lignin from labile to recalcitrant (amyA, arA, cbhI, chi,
AceB, lip, and laccase-like multi-copper oxidase (Lmco), respectively)
were determined using the 2−11Ct method (Wang et al., 2019),
with the 16S rRNA gene used as an internal reference gene, the
denitrification genes for qRT-PCR were narG, nirK, and nosZ genes.
The primer sequences of qRT-PCR are presented in Supplementary
Tables 1, 2.

2.2.2. Experiment 2: Effects of supplemental
amount of nitrate on deep soil CO2 emissions

We further tested whether the increase in soil CO2 emissions
was linearly correlated with the supplemental rate of nitrate addition,
using the soil sample from 2.0 to 2.2 m depth with a 70% water
content, including the subsequent experiments. The reason for
continuing using 2.0–2.2 m depth was the higher level of nitrate
concentration in this layer than other layers and the reason for
continuing using 70% moisture content was more reasonable and
a real condition to explore the mechanism. Five nitrate levels were
applied: 0, 10, 20, 50, and 100 mg NO3

−-N kg−1 dry soil. Each
level was replicated three times and flasks were incubated in the
dark at 20◦C for 98 days. The CO2 concentration was determined
every 7 days and analysis methods were identical to that used
in Experiment 1.

2.2.3. Experiment 3: Effects of ammonium addition
on deep soil CO2 emissions

We further tested if other inorganic N types beside nitrate,
e.g., ammonium, could promote deep soil CO2 emissions. Three
treatments were applied, (1) nitrate addition treatment: 15 g fresh
soil of the 2.0–2.2 m depth was cultured in 120 ml flasks with 5 ml
of 20 mM KNO3 (the final nitrate content was 100 mg NO3

−-
N kg−1 dry soil); (2) ammonium addition treatment: 15 g fresh
soil of the 2.0–2.2 m depth was cultured in 120 ml flasks with

FIGURE 1

Nitrate addition effects on the cumulative CO2 emissions from deep soil depths: 1.5–1.7 m (A,D,G), 2.0–2.2 m (B,E,H), and 2.5–2.7 m (C,F,I) with soil
gravimetric water contents of 35% (A–C), 70% (D–F), and 200% (G–I) in Experiment 1. The blue lines and red lines represent control and nitrate addition
treatments, respectively. Data are shown as the mean ± standard deviation (n = 3).
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5 ml of 20 mM NH4Cl (the final ammonium content was 100 mg
NH4

+-N kg−1 dry soil); (3) control treatment: 15 g fresh soil of the
2.0–2.2 m depth received 5 ml of distilled water. The flasks were
incubated in the dark at 20◦C for 98 days and headspace gas sampling
occurred every 7 days.

2.2.4. Experiment 4: Effects of O2 level on the
stimulation of nitrate on deep soil CO2 emissions

We further determined if nitrate acted as an alternative electron
acceptor to O2 in stimulating deep soil CO2 emission. The initial
O2 concentration in the flasks was set at 1% by volume. During the

incubation, the O2 concentration was expected to gradually decrease.
Two treatments were set up: (1) 1% O2 treatment: 15 g fresh soil from
the 2.0 to 2.2 m depth was incubated with 5 ml of distilled water in
120 ml flasks; (2) 1% O2 + NO3

− treatment: 15 g fresh soil from
the 2.0 to 2.2 m depth was incubated with 5 ml of 20 mM KNO3

solution in 120 ml flasks. The headspace of the flasks was alternatively
evacuated (0.1 kPa) and re-flushed with high-purity helium/O2

mixture gas (1% O2 and 99% helium, 120 kPa) five times, the initial
O2 concentrations was 565 µmol L−1 at this time, and supplemented
with 1% O2 again when O2 concentrations declined below 100 µmol
L−1. A total of 96 flasks were prepared (48 flasks for each treatment)

FIGURE 2

Correlation between the rate of the supplemented nitrate and the increasing concentration of 1CO2 under the nitrate addition treatment in
Experiment 2 (A); correlation between the increasing amounts of the produced 1CO2 and 1N2O at 100 ppm NO3

–-N treatment in Experiment 2 (B);
ammonium versus nitrate addition effects on the cumulative CO2 emissions from deep soil in Experiment 3 (C); dynamics of CO2 (D), O2 (E) and NO3

–

(F) concentrations in flasks under 1% O2 and 1% O2 + NO3
– treatments in Experiment 4. Delta indicates the value of nitrate addition treatment minus

non-nitrate control within each sampling day. The gray areas in panels (A,B) indicate 95% confidence intervals. The gray areas in panels (D–F) indicate
anaerobic conditions with O2 concentrations below 100 µmol L–1. Asterisk denotes significant difference (P < 0.05) between the two treatments. Data
are shown as the mean ± standard deviation (n = 3).
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FIGURE 3

Dynamics of NO3
– (A), N2O (B), and N2 (C) concentrations in flasks under control and nitrate addition treatments. NH4

+ concentrations at initial and end
of the incubation under two treatments (D).

and incubated under dark conditions at 20◦C for 98 days. At the
beginning of the incubation, three flasks from each treatment were
randomly selected for periodically determining the headspace O2
and CO2 concentrations at a frequency of four measurements per
month, using the robotized sampling and analyzing system as noted
above in Experiment 1. To calculate the stoichiometric mole ratio of
nitrate and oxygen when nitrate was used as an electron acceptor,
during the incubation, three flasks of each treatment were randomly
selected each week to destructively sample the soil for determining
the nitrate concentrations.

2.2.5. Experiment 5: Effects of nitrate addition on
microbial biomass N and C contents, MAOC, and
redox potential in deep soil

We further tested whether the promotion of microbial respiration
by nitrate would stimulate microbial proliferation and consequently
increase the microbial utilization of on MAOC in deep soil. Two
treatments were conducted: (1) 15 g soil samples from the 2.0
to 2.2 m depth were incubated with 5 ml of 20 mM KNO3; (2)
15 g soil samples from the 2.0 to 2.2 m depth were incubated
with 5 ml of distilled water. A total of 54 flasks (27 flasks
for each treatment) were prepared and their headspaces were
exchanged with high-purity helium as described in Experiment 1.
The flasks were incubated in the dark at 20◦C for 98 days. Three
flasks for each treatment were randomly selected every 14-day for
destructive sampling to determine the MAOC content using the
citrate-bicarbonate-dithionite (CBD) method (Lalonde et al., 2012).
At the end of the incubation, three flasks from each treatment
were used to measure the microbial biomass carbon (MBC) and

nitrogen (MBN) using the fumigation-extraction method (Vance
et al., 1987) and perform 16S DNA gene copy numbers together
to estimate microbial proliferation. The last three flasks for each
treatment were used to measure soil redox potential (Eh) using an Eh
meter (Model HLY-216, China) and pH by using the probe inserted
into the soil.

2.3. Statistical analysis

The statistical package SPSS 24.0 (SPSS Inc., Chicago, IL, USA)
was used to perform all statistical analysis. Analysis of variance
(ANOVA) was used to determine the difference (P < 0.05) among
treatments after the Shapiro–Wilk and Levene tests were used to
confirm the normality and homogeneity of the data.

3. Results and discussion

3.1. Nitrate addition promote microbial
respiration in deep soil by acting as an
alternative electron acceptor to O2

The results of Experiment 1 showed that there was little difference
in the cumulative CO2 emissions from deep soil between the nitrate
addition treatment and the control treatment during the initial
10 days of incubation (Figure 1). With increasing incubation time,
the cumulative CO2 emissions differed significantly between the two
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FIGURE 4

Nitrate addition effects on the MBC (A), MBN (B), and 16S DNA gene
copies (C) in deep soil after 98 days at the end of Experiment 5. Data
are shown as the mean ± standard deviation (n = 3). Asterisk denotes
significant difference (P < 0.05) between the two treatments.

treatments (Figure 1). At the end of Experiment 1 (55 days of
incubation), the cumulative CO2 emissions under the nitrate addition
treatment had increased 40–140% relative to the control treatment,
with the increase dependent on soil water moisture content and
soil depth (Supplementary Figure 1). The 200% water content
significantly contributed to 1CO2 at three depths compared to the 35
and 70% water contents, soil moisture affects the various life activities
of soil microorganisms, under low soil moisture conditions microbial
activity may be limited, while increased moisture could significantly
enhance microbial activity, leading to an improvement in soil
respiration. Compared to depths 1.5–1.7, 2.0–2.2, and 2.5–2.7 m
depth had higher 1CO2 at 35, 70, and 200% water content, reaching
60, 120, and 150%, respectively, indicating a higher sensitivity for
the deeper soils. These results demonstrate that nitrate addition
stimulated the microbial respiration in the deep soil depths under
anaerobic conditions. Results of Experiment 2, where the increase in
CO2 emission was significantly correlated (P < 0.01) with the nitrate
addition rate (Figure 2), also support this.

There was a lag in the CO2 emission response to nitrate addition
during the incubation (Figure 1). This lag was probably caused by the
residual O2 in the soil pores which removed the need for nitrate to

be used as an alternative electron acceptor (Parkin and Tiedje, 1984;
Song et al., 2019). This was tested by monitoring the responses of
soil respiration to varying O2 concentration. The results showed that
the promoting effects of nitrate addition on soil respiration appeared
when the headspace O2 concentration was below 100 µmol L−1,
then disappeared after the injection of additional O2, and finally
re-appeared after the O2 concentration was again below 100 µmol
L−1 (Figure 2). By calculation, we found that the role of nitrate
was activated when the stoichiometric mole ratio of nitrate to O2
exceeded 6:1 (77.4 µmol/12.7 µmol). Further evidence supporting
the effect of nitrate in promoting soil respiration was the mole ratio
of the CO2 to N2O produced under the nitrate addition treatment,
which was 2.57:1 and close to the theoretical mole ratio 2:1 (Mørkved
et al., 2006) when nitrate is used as an electron acceptor for microbial
respiration (Figure 2).

Apart from acting as an alternative electron acceptor for
microbial respiration, nitrate is a key N source for soil microbes
(Geisseler et al., 2010; Wang et al., 2015). Previous studies have shown
that N addition can promote surface soil respiration by serving as
a nutrient (Soong et al., 2018). In order to test whether the positive
effects of nitrate on soil respiration were caused as the result of
enhanced N supply, equal amounts of nitrate-N or ammonium-N
were added into the 2.0–2.2 m depth soil in Experiment 3. The results
showed that, contrary to the nitrate-N treatment, the ammonium-N
treatment did not significantly increase soil respiration (Figure 2).
These results indicated that deep soil respiration could not be
facilitated by merely changing the soil N status without acting as an
electron acceptor. Briefly, above results suggested that the positive
effects of nitrate on deep soil respiration were the result of it acting
as an electron acceptor.

3.2. The enhancement of microbial
respiration by nitrate promotes microbial
growth and consequently destabilize
MAOC in deep soil

The increase in microbial access to an electron acceptor for
respiration following nitrate addition tends to promote microbial
assimilation and reproduction (Dyckmans et al., 2006). As Figure 3
shows, the soil ammonium concentration did not change significantly
(P > 0.05) between the beginning and end of the incubations,
which indicated that dissimilatory nitrate reduction to ammonium
(DNRA) was negligible. In addition, study showed that DNRA
may be a minimal pathway at high nitrate concentrations
(Handler et al., 2022), it is generally believed that low nitrogen
and high carbon will tilt the balance to DNRA (Van Den Berg
et al., 2016; Pandey et al., 2020; Wei et al., 2022), the opposite
is the high nitrogen and lower carbon contents in this study.
Denitrification was the main nitrate reduction pathway, the amount
of nitrate consumed (65 µmol N) was significantly larger than the
cumulative amount of the N2O plus N2 (31 µmol N) produced
by day 98 (Experiment 2). This indicates that about ∼50% of the
added nitrate could have been assimilated by microbes for cell
proliferation. In deep soils, microorganisms are expected to be in
short supply of both C and N, because the microbial available C
and N species, such as glucose, nitrate and ammonia, generally
decrease sharply from the surface soil to deep soil. Consequently,
the nitrate addition is expected to relief the microbial N starvation
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FIGURE 5

Nitrate addition effects on the relative gene abundances of denitrification genes (narG, nirK, and nosZ) and key and recognized C degradation genes
(amyA, arA, cbhI, chi, AceB, lip, and Lmco) in deep soil depths of 1.5–1.7 m (A,D), 2.0–2.2 m (B,E), and 2.5–2.7 m (C,F) after 55 days at the end of
Experiment 1. Data are shown as the mean ± standard deviations (n = 3). Asterisk denotes significant difference (P < 0.05) between the two treatments.

in deep soil and in turn promote the microbial growth there.
In support of this were the measured increases (P < 0.05) in
microbial DNA concentration (Supplementary Figure 2), MBC
and MBN, and 16S DNA gene copy numbers (Figure 4) under
nitrate addition relative to the control treatment at the end of
Experiment 1 and 5. Thus, nitrate addition promoted microbial
growth.

Apart from increasing microbial biomass, the nitrate addition
treatment in Experiment 1 also significantly changed the soil
microbial community composition (Supplementary Figure 2).
Compared with the control treatment, nitrate addition significantly
increased the relative abundances of Bacillus, Aquabacterium,
Sediminibacterium, and Acidibacter at the genus level across
all depths, and Caproiciproducens at 1.5–1.7 and 2.0–2.2 m
(Supplementary Figure 3). It has been suggested that Bacillus
and Aquabacterium contribute to denitrification in terrestrial and

possibly other ecosystems (Verbaendert et al., 2011; Zhang et al.,
2016). In addition, Bacillus and Aquabacterium were previously
reported to play a key role in accelerating SOC decomposition
(Lin et al., 2019; Yin et al., 2019). Caproiciproducens genus could
accelerate the use of carbon sources for conversion to CO2 (Kim et al.,
2015). In this study, the amounts of CO2 and N2O emitted were
correlated with the relative abundances of Bacillus, Aquabacterium
and Sediminibacterium (Supplementary Figure 4), indicating that
these microbes could have contributed to the positive effects of
nitrate addition on deep soil respiration. In addition, the expressions
of functional genes of narG and nirK under the nitrate addition
treatment was significantly (P < 0.05) higher than control treatment,
while the nosZ gene was not significantly different between the
two treatments (P > 0.05) at 2.0–2.2 and 2.5–2.7 m depths except
for a decrease for the nitrate addition treatment at 1.5 m depth
(Figure 5).
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FIGURE 6

Nitrate addition effects on the content of MAOC in the 2.0–2.2 m
depth over time in Experiment 5. Data are shown as the
mean ± standard deviations (n = 3).

The SOC in deep soils is generally bound to soil minerals,
which protect SOC from microbial attack (Han et al., 2016; Gartzia-
Bengoetxea et al., 2020). Previously, it was reported that the
fluctuation of pH and Eh may also cause solubilization of MAOC,
with the solubilization rapidly activated when the Eh decreased
below 150 mV (Grybos et al., 2009). In this study, the pH and
Eh were not significantly different (P > 0.05) between the control
treatment (5.09 ± 0.07 and 156.67 ± 4.04 mV) and the nitrate
addition treatment (5.15 ± 0.06 and 153.00 ± 4.36 mV) at the end
of incubation (Supplementary Figure 5), indicating that the pH and
Eh were not responsible for the difference in MAOC between the
two treatments. On the contrary, the expressions of functional genes
typically responsible for carbon decomposition, such as amyA at 1.5–
1.7 and 2.5–2.7 m, AceB at 2.0–2.2 m and lip and Lmco at all three
depths were significantly greater (P< 0.05) under the nitrate addition
treatment than under the control treatment at the end of Experiment
1 (Figure 5). The increases in carbon decomposer abundance, as
noted above, and their functional gene expression were previously
reported to increase the microbial utilization of MAOC (Li H. et al.,
2021). Our results show that the content of the MAOC under the
nitrate addition treatment was significantly lower than that under
the control treatment from as early as day 28 of the incubation,
and the ratio of MAOC/SOC decreased from 20% before incubation
to 4% at the end of incubation (Figure 6), which is in accordance
with previous studies reporting that N addition not only modified
the composition and abundance of bacteria, but also decreased the
MAOC complexes (Qin et al., 2020; Li J. et al., 2021). These results
indicate that the increase in microbial utilization of MAOC, under
the nitrate addition treatment, destabilizes the MAOC.

4. Conclusion

This study demonstrated that nitrate acted as an alternative
electron acceptor to O2 for microbial respiration and consequently
promoted the growth of SOC decomposers in deep soil
(depths > 1 m). The increases in SOC decomposer abundances
and functional genes known to align with SOC decomposition in
turn increased the microbial utilization of the MAOC, resulting in

the acceleration of SOC decomposition in deep soil. Our results
have implications for understanding the contribution of deep
SOC to atmospheric CO2 in response to anthropogenic reactive
N enrichment of the environment. According to the results of
this study, increased nitrate leaching under anaerobic conditions
will enhance the decomposition of MAOC in deep soil. Since the
promoting effects of nitrate on soil respiration is derived from its
role as alternative respiration acceptor to O2, the potential of nitrate
to destabilize MAOC is expected to be favored in deep soils with clay
texture and higher water content. Consequently, reducing nitrate
leaching will assist in preserving MAOC in deep soil.
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