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Drought and limited su�cient water resources will be the main challenges for

humankind during the coming years. The lack of water resources for washing,

bathing, and drinking increases the use of contaminated water and the risk

of waterborne diseases. A considerable number of waterborne outbreaks are

due to protozoan parasites that may remain active/alive in harsh environmental

conditions. Therefore, a regular monitoring program of water resources using

sensitive techniques is needed to decrease the risk of waterborne outbreaks.

Wellorganized point-of-care (POC) systemswith enough sensitivity and specificity

is the holy grail of research for monitoring platforms. In this review, we

comprehensively gathered and discussed rapid, selective, and easy-to-use

biosensor and nanobiosensor technologies, developed for the early detection of

common waterborne protozoa.
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1. Introduction

Healthy water resources are still one of the main challenges in most countries,

particularly less developed regions in dry parts of the world (WHO/UNICEF, 2014;

Andrade et al., 2018). The lack of sufficient and appropriate water resources increases

the use of contaminated water sources and wastewater for drinking, washing, and

irrigation. Accordingly, employing contaminated water not only directly increases the risk

of contamination by waterborne pathogens but also enhances the risk of contamination of

vegetables with waterborne pathogens, particularly in farmlands irrigated using wastewater

(Karanis et al., 2006; Javanmard et al., 2019, 2020).

Waterborne diseases include a large group of illnesses with mild to severe symptoms,

which are caused by a broad spectrum of pathogens including bacteria, fungi, parasites, and

viruses (Kalyoussef and Feja, 2014). Parasites, both protozoa and helminths, are important

group of foodborne and waterborne pathogens, which can be transmitted from wild and

domestic animals and contaminated water resources to humans (Sharma and Mutharasan,

2013; Vasilescu and Marty, 2016; Pazoki et al., 2020). The transmission route of foodborne

and waterborne protozoa (FWP) is mostly oral-fecal and infection occurs when cysts or

oocysts of a parasite are unintentionally ingested by a host (Kalyoussef and Feja, 2014).
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Waterborne protozoa are responsible for a considerable

number of outbreaks in the world. Regarding a recently published

systematic review, 86.7% of eastern African countries reported

at least one waterborne parasite from 1953 to 2019 (Ngowi,

2020). However, there is no periodical monitoring strategy for the

detection of waterborne parasites (particularly protozoa) in less-

developed regions like African countries. In contrast, outbreak

surveillance in Europe between 2000 and 2007 indicated the

presence of 354 and 70 outbreaks, related to drinking water and

bathing water, respectively, in which protozoa were responsible for

17 (4.7%) drinking water and 38 (54.3%) bathing water outbreaks

(ENHIS, 2009). Moreover, it was estimated that ∼7,150,000 (95%

CrI 3,880,000–12,000,000; 21.3%) illnesses in the United States in

2014 were associated with waterborne agents, of which Giardia

lamblia and Cryptosporidium spp., were responsible for 415,000

(95% CrI 140,000–816,000) and 322,000 (95% CrI 61,700–993,000)

illnesses, respectively (Collier et al., 2021). In addition, more

than 10% of the total waterborne outbreaks from 1991 to 2008

were attributed to parasitic agents, particularly protozoa (Karanis

et al., 2006; Efstratiou et al., 2017). More recently, Cryptosporidium

spp., G. lamblia, Cyclospora cayetanensis, Toxoplasma gondii,

Blastocystis sp., Entamoeba histolytica, microsporidia, andNaegleria

fowleri were reported as the main causative agents detected in

251 waterborne outbreaks from 2017 to 2020 (Ma et al., 2022).

Interestingly, most waterborne outbreaks due to protozoa have

been reported in developed countries, indicating the importance

of periodical monitoring of water resources, as well as diagnostic

capabilities (Ma et al., 2022).

Significant progress has been made in recent decades in

developing portable, reusable, and effective miniaturized systems

or point-of-care (POC) platforms. POC tests can be performed

outside a clinical laboratory setting, at or near the site of

patient care. In addition, along with climate change, particularly

in recent years, the risk of transmission of infectious diseases

and the number of areas, which were previously unaffected by

specific infectious diseases, have increased (Mora et al., 2022).

In contrast, global warming, as a coming challenge in the

world, decreases access to healthy water resources and increases

emerging water and food safety concerns (Duchenne-Moutien and

Neetoo, 2021). In fact, drought due to climate changes increases

seasonal water resources, which aggregates animals and human

communities in a region, recycled water resources, groundwater,

and even lagoon water, and therefore, the risk of transmission

of potentially pathogenic microorganisms, particularly parasites,

from animals to humans (Titcomb et al., 2021). Moreover, because

of the presence of a resistant stage, cyst/oocyst/egg, in the life

cycle of parasites, particularly protozoa, these microorganisms

endure harsh conditions such as drought much more than other

microorganisms. All of these reasons highlight the importance

of protozoa infections and the development of POC techniques

for the detection of these parasites in the future. Guidelines,

commonly needed for establishing well-organized POC systems,

are presented by the World Health Organization (WHO). These

guidelines are identified as ASSURED, in which the abbreviation

ASSURED stands for affordable, sensitive, specific, user-friendly,

rapid, equipment-free, or minimal, and delivered to those who

require them (Syedmoradi et al., 2017, 2021; Omidfar et al., 2020).

This study highlights the need for rapid, selective, and easy-

to-use technology for the early detection of common waterborne

parasitic pathogens. The purpose of the current review is to provide

a comprehensive overview of conventional methods and emerging

biosensors and nanobiosensors, with a focus on recent advances in

smart-based devices.

2. A brief look at the significant
waterborne parasites

Although a broad spectrum of parasites is reported from

waterborne outbreaks, Cryptosporidium spp., G. lamblia, T.

gondii, and E. histolytica are among the most frequently detected

waterborne parasites in the world (Al-Shamiri et al., 2010;

Robert-Gangneux and Dardé, 2012; Plutzer and Karanis, 2016;

Sarkari et al., 2016; Ma et al., 2022). Nevertheless, microsporidia,

Blastocystis sp., Dientamoeba fragilis, Balantidium coli, C.

cayetanensis, and Isospora belli are the neglected waterborne

parasites (Karanis et al., 2006; Plutzer and Karanis, 2016).

Regarding the worldwide waterborne outbreaks reported

by Baldursson and Karanis (2011), from 2004 to 2010,

Cryptosporidium spp., and G. lamblia were the major causative

agents in 60.3% (120) and 35.2% (70) of 199 outbreaks, respectively,

while T. gondii, C. cayetanensis, Acanthamoeba spp., E. histolytica,

and Blastocystis sp., were the other reported agents. Recently, an

update on waterborne outbreaks due to parasites from 2017 to

2020 signified the high prevalence of Cryptosporidium spp., and

G. lamblia as the major reported agents, followed by D. fragilis, T.

gondii, C. cayetanensis, Blastocystis sp., E. histolytica, N. fowleri,

and microsporidia (Ma et al., 2022).

2.1. Cryptosporidium spp.

Cryptosporidium spp. are apicomplexan protozoa, with several

known species that infect humans and many other vertebrates, and

are transmitted via the fecal-oral route through ingesting oocytes

in contaminated food or water (Leitch and He, 2012; Gerace et al.,

2019; Zahedi and Ryan, 2020). Cryptosporidium spp. can infect

both immunocompetent and immunocompromised individuals, of

which two species, Cryptosporidium parvum and Cryptosporidium

hominis, are the most prevalent species in humans (Mmbaga and

Houpt, 2017).

Cryptosporidium spp. are known as the main protozoa parasite

reported from waterborne outbreaks (Zahedi and Ryan, 2020;

Gururajan et al., 2021; Zahedi et al., 2021). A most recent study

reported that, from 251 waterborne outbreaks with parasitic agents,

Cryptosporidium was identified among 198 outbreaks (Ma et al.,

2022). C. parvum is a zoonotic species, which is isolated from

humans and a broad spectrum of animals; therefore, there is an

increased risk of contamination of water resources not only by

human feces but also by excreted oocysts from free-range animals

(Fernández et al., 2021; Mohammad Rahimi et al., 2022). In

addition, it was documented that routine wastewater treatment

processes including sedimentation, activated sludge, chlorination,

and filtrations are not enough to eliminateCryptosporidium oocysts
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from water samples (Sroka et al., 2013; Ramo et al., 2017),

which increases the concern for the contamination of downstream

farmlands irrigated with treated wastewater (Javanmard et al.,

2020).

2.2. Giardia lamblia

G. lamblia (also known as Giardia intestinalis and Giardia

duodenalis) is an anaerobic-flagellated non-invasive protozoan,

which can infect the small intestine and, in a few cases, the distal

small bowel, cecum, stomach, and pancreas of humans and many

other vertebrates (Einarsson et al., 2016; Bahramdoost et al., 2021).

G. lamblia is more prevalent in children living in developing

countries and is classified as FWP. This protozoan is transmitted

via the fecal-oral route through ingestion of the cystic form in

contaminated food or water (Bello et al., 2011).

G. lamblia is the second-most reported protozoa from

waterborne outbreaks worldwide (Karanis et al., 2006; Efstratiou

et al., 2017; Ma et al., 2022). Similar to Cryptosporidium spp., the

main reason for the high prevalence of G. lamblia in waterborne

outbreaks is the capability of this protozoan to remain viable

during water treatment processes (Sroka et al., 2013; Ramo et al.,

2017). Large waterborne outbreaks due to G. lamblia have been

reported all over the world, particularly in developed countries.

Nygård et al. (2006) documented a large outbreak of giardiasis

among at least 1,300 cases in Norway that was linked to leakage of

wastewater pipes and insufficient wastewater treatment. Recently, a

large giardiasis outbreak related to tap water occurred in Bologna

Province, Italy, and the presence of G. lamblia was documented

in 228 stool samples (Resi et al., 2021). However, the number of

reported outbreaks due to G. lamblia and Cryptosporidium spp., in

developed countries is significantly higher than in less-developed

regions, which could be due to the use of more sensitive detection

technologies in developed countries (Ma et al., 2022).

2.3. Toxoplasma gondii

T. gondii is an obligate intracellular parasite, which infects

most warm-blooded animals, and Felidae family members are its

definitive hosts (Tenter et al., 2000; Mendez and Koshy, 2017).

T. gondii is transmitted via several routes including vertical

transmission (Kanková and Flegr, 2007; Robbins et al., 2012;

Chaudhry et al., 2014), transfusion and needle stick (Foroutan-Rad

et al., 2016), and fecal-oral route via eating or drinking oocyst-

contaminated food and water (Hill and Dubey, 2002). However, T.

gondii is considered a neglected waterborne protozoan (Baldursson

and Karanis, 2011; Karanis et al., 2013; Plutzer and Karanis,

2016). Nevertheless, in an outbreak related to drinking water

in the Champagne-Ardenne region, France, Villena et al. (2004)

detected T. gondii DNA in 10/125 analyzed samples. Then, Aubert

and Villena (2009) analyzed water samples, which were collected

in 2001 in Champagne-Ardenne, France, and characterized T.

gondii DNA in 37/482 environmental samples. These two studies

suggested the high contamination of water samples with T. gondii

in the studied region in France. The presence of T. gondii

DNA in wastewater samples in Germany was as high as that

reported in France. Accordingly, Gallas-Lindemann et al. (2013)

scrutinized influent and effluent samples of wastewater in Germany

and reported the presence of T. gondii DNA in 8/83 (9.6%)

samples using loop-mediated isothermal amplification (LAMP).

Microscopically, oocyst-like positive samples for T. gondii were

also detected in environmental water samples collected in the

Galápagos Islands, Ecuador, although molecular identification of

the samples was not successful (Verant et al., 2014). T. gondii

DNA was also identified using real-time PCR in 2/8 wastewater

samples, together with G. lamblia, E. coli, Entamoeba dispar,

Entamoeba hartmanni, Blastocystis sp., and Acanthamoeba spp.

in Spain (Moreno-Mesonero et al., 2022). These studies, as well

as a large outbreak due to the consumption of drinking water

contaminated with T. gondii, which was reported in 2018 from

Santa Maria, Brazil (Minuzzi et al., 2021), highlight the importance

of waterborne toxoplasmosis and the neglected role of T. gondii in

waterborne outbreaks due to insufficient detection techniques.

3. Available diagnostic techniques for
the detection of waterborne parasites

Diagnosis plays a critical role in the discovery of new pathogens,

monitoring and surveillance, the prediction of epidemics and

pandemics due to emerging and re-emerging pathogens, and

antibiotic resistance (Mohammad Rahimi et al., 2019). In recent

decades, various methods have been developed for the diagnosis of

intestinal parasites. However, conventional diagnostic methods are

still employed for the detection of intestinal parasites, particularly

in less-developed regions (Mohammad Rahimi et al., 2019).

Accordingly, the detection of G. lamblia, Cryptosporidium spp.

and E. histolytica is mainly based on the optical detection of

cysts/oocysts and trophozoites of parasites using microscopy

(Destura et al., 2015; Ricciardi and Ndao, 2015; Hooshyar et al.,

2019), while the most common diagnostic method for T. gondii is

immunoassay techniques (Elgun and Koltas, 2011; Rostami et al.,

2018).

Despite the advantages of microscopic methods, there are

some limitations such as the technique being time-consuming

and optical skills of laboratory technicians (Laude et al., 2016;

Sakamoto et al., 2018). In addition, due to the low number of

FWP in a large volume of environmental samples like water,

employing microscopic techniques is an important challenge. For

example, the concentration of G. lamblia in water samples has been

reported to be 0.01 to 100 cysts/L (WHO, 2014); thus, developing

methods for the detection of 1 cyst/oocyst of G. lamblia and

Cryptosporidium spp., in 10–100 L of water samples is desirable,

particularly when we consider that Cryptosporidium spp., and G.

lamblia are among the waterborne pathogens with a high priority

and with infectivity dosage less than 10 oocysts/cysts (WHO, 2014).

In contrast, the development of molecular techniques in recent

decades has overcome the limitations of conventional methods and

has provided more sensitivity and specificity for the detection of

pathogens (Tavares et al., 2011).

Although progress has been made in molecular techniques,

there are still some disadvantages and limitations that restrict

the application of molecular techniques. Multiple steps including
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TABLE 1 Comparative evaluation of conventional methods for the detection of FWP.

Technique Detection principle Advantages Disadvantages Time

Microscopy

techniques

Using microscopes to screen

samples

• Low cost and high feasibility

• Study the structure

• Low sensitivity

• Requires highly trained and

experienced technician

• Need for sample concentration prior

to screening

30–45min to overnight

staining

Culture technique Cultivation of parasites in a

specific medium to either keep

parasites alive or increase their

number

• Specificity up to 100%

• Availability of isolate

• Providing a system to assess

vaccine research

• Study the biochemistry,

physiology, and metabolism of

the pathogens

• Study of drug resistance

• Low sensitivity

• High probability of contamination

• Requires specific

cultivation conditions

• Time-consuming

3–15 days

Immunological

techniques (ELISA)

Based on a specific

antigen-antibody interactions

and antigen or antibody

detection

• Low cost

• Sensitivity and specificity in the

range of 93–100%

• Screening a large number of

samples

• Providing large amounts of data

about every contact to studied

agent

• Cross reactions

• Not suitable for real time screening of

an infection

• Not suitable for detection of most of

intestinal parasites

15 min−5 h

Molecular

techniques (PCR-

based techniques)

Detection of a specific region of

a target gene

• High sensitivity and specificity

• Fingerprinting

• Phylogenetic analysis

• High cost and need for specific

equipment and instruments

• Need for sample treatment before

tests such as DNA/RNA extraction

• The negative role of inhibitors in the

amplification process

• Wrong estimation of an infection due

to amplification of

dead microorganisms

2–4 h

DNA or RNA extraction, primer design challenges, false results

due to undesirable primer interactions, and expensive equipment

are the common challenges facing molecular methods (Garibyan

and Avashia, 2013; Khurana and Chaudhary, 2018). Regarding

the abovementioned limitations of conventional and advanced

molecular methods, designing high-efficiency and field-adopted

diagnostic devices with a simple user interface and a rapid protocol

is the main priority (Luka et al., 2019) (Table 1).

In recent years, advanced devices have been developed to

overcome the limitations of available techniques. For example, the

sensitivity of microscopic techniques is not high enough, and a

well-trained technician is needed to reduce the possibility of a false

report. In addition, the staining procedure may take much time;

these reasons are challenges at the time of outbreaks. In contrast

to microscopic methods, serological and molecular techniques are

not labor intensive, provide high sensitivity and specificity, and

do not need a microscopist. Nevertheless, serological methods

may provide cross reaction, and are not suitable for screening

a population at the time of outbreaks or most intestinal FWP.

In addition, due to expensive equipment and instruments for

molecular methods, and the need for a well-equipped laboratory,

most molecular-based approaches are not suitable for investigation

of an outbreak (Mohammad Rahimi et al., 2019; Mahdavi Abhari

et al., 2023). Therefore, focus has been dramatically increased on

biosensors, such as POC tests, which can provide enough sensitivity

and specificity, without the need for a well-trained technician or a

specific facility.

4. Biosensors: Development and types

The importance of food and water safety in various industries

has led to the mining and improvement of nanoscale analytical

devices known as nanobiosensors. Due to the numerous advantages

of these devices such as portability, low cost, rapid assay time,

ease of use, and high selectivity and sensitivity (Terry et al., 2005;

Ahmadi et al., 2022; Khoshfetrat et al., 2022; Saeidi et al., 2022),

particularly for the detection of infectious agents and pollutants

in the environment (Pejcic et al., 2006; Sin et al., 2014; Ahmadi

et al., 2021c), focus on the fabrication of biosensors as a diagnostic

technology for the detection of different analytes in food, water,

and environmental samples has intensely increased (Terry et al.,

2005; Pejcic et al., 2006; Metkar and Girigoswami, 2018; Salouti and

Khadivi derakhshan, 2020) (Figure 1).

A biosensor consists of at least two functional elements,

namely, a molecular recognition element (receptor), which

selectively interacts with its target analyte, and a physicochemical

transducer. Biological elements are generally classified into

enzymes, antibodies, and nucleic acids. A transducer is a

component of biosensors which plays an important role in the

signal detection process, and converts biological responses into a

measurable signal with high quality (Khodaei et al., 2019; Ahmadi

et al., 2021a,b).

Biosensors are generally classified into label-free and labeled.

The latter biosensor employs labeled molecules for the detection of

a target (Proll et al., 2007; Rhouati et al., 2016). Common labeling
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FIGURE 1

Schematic diagram of a typical biosensor consisting of various types of bioreceptors and transducers used in the biosensors.
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platforms are fluorescence or luminescence labeling, radiolabeling,

isotope labeling, and enzymes (Deline and Nason, 2019; Ranjbar

Bahadori et al., 2021). In these procedures, the final sensor signal

represents the number of labels bound to target molecules. As a

drawback, label-based technologies are labor- and cost-intensive

and time-consuming (Cunningham and Laing, 2008). In addition,

labeling of biomolecules can block active binding sites and alter the

binding properties (Schöning and Poghossian, 2018).

In contrast, label-free biosensing technologies do not employ

labels to facilitate measurements and instead incorporate the

intrinsic physical properties of an analyte, such as the molecular

weight, size, charge, electrical impedance, dielectric permittivity,

and refractive index of a sample. In recent years, label-free

biosensors have been developed due to their ability for rapid and

inexpensive bio-detection in small reaction volumes (Schöning and

Poghossian, 2018). Moreover, they can be integrated into lab-on-

a-chip platforms, allowing monitoring of target analytes in real

time. Label-free biosensors are usually designed based on optical,

electrical or electrochemical, and acoustic parameters (Citartan

et al., 2013).

Based on the biological elements, biosensors are categorized

into genosensors, immunosensors, and aptasensors (Low et al.,

2012; Kokkinos et al., 2016; Campuzano et al., 2017; Mohammed

et al., 2017; Felix and Angnes, 2018).

In genosensors, oligonucleotide sequences (DNA or RNA) are

usually employed as bio-receptors, which are immobilized onto

the transducer surface and hybridized with the single-stranded

target DNA. In fact, the oligonucleotide sequences, such as a

probe, recognize the analyte (sample DNA or RNA) by matching

with the complementarity sequences. Genosensor-based devices

are widely used for the detection of a broad spectrum of pathogens

(Drummond et al., 2003; Babkina and Budnikov, 2006; Gao et al.,

2010; Mohammed et al., 2017) (Figure 2A).

Immunosensors play an important role in the evaluation of

specific elements in biological fluids. Currently, such assays have

been extensively utilized in food safety and environmental analysis

(Felix and Angnes, 2018; Hosu et al., 2018) (Figure 2B).

A single-stranded functional nucleic acid or peptide with a

strong receptor property is recognized as an aptamer. Aptamers are

usually constructed from combinatorial single-stranded libraries

by the systematic evolution of ligands using the exponential

enrichment (SELEX) method, and are applied to detect multiple

target analytes (Shamah et al., 2008; Liu et al., 2020). Aptamer-

based techniques have been applied for the detection of

numerous pathogens such as human immunodeficiency virus

(HIV), hepatitis B virus (HBV), hepatitis C virus (HCV),

Mycobacterium, Salmonella, Listeria, Staphylococcus, Clostridium,

Bacillus, Escherichia, Aspergillus, Penicillium, SARS-CoV, influenza

virus, respiratory syncytial virus (RSV),Trypanosome, Plasmodium,

Cryptosporidium, and Leishmania (Cho et al., 2011; Nagarkatti

et al., 2012; Martín et al., 2013; Iqbal et al., 2015; Babamiri et al.,

2018; Lavania et al., 2018; Li et al., 2018, 2020; Suh et al., 2018;

Wei et al., 2018; Xi et al., 2018; Cai et al., 2019; Singh et al.,

2019; Zou et al., 2019). The number of aptasensor-based studies

for the detection of FWP is low. In this regard, Iqbal et al. (2015)

developed an electrochemical nanomaterial-based aptasensor using

a gold nanoparticle (NP)-modified screen-printed carbon electrode

(SPCE) to detect C. parvum oocysts in spiked fresh fruits. In this

system, 14 aptamer colons were discovered and anti-aptamer and

thiolated DNA primers were mixed to produce a hybrid compound

that was assembled onto the SPCE. The fabricated aptasensor

recognized C. parvum with a wide dynamic range from 150 to 800

oocysts and a detection limit of∼100 oocysts. This study suggested

promising findings for the detection of C. parvum in food products

(Iqbal et al., 2015) (Table 2; Figure 3).

5. A brief look at nanomaterials
incorporated into sensors

Improvements in nanotechnology science have provided

the opportunity for researchers to work at nanoscale levels.

Nanomaterials range from 1 to 100 nm and are classified into

various groups, namely, nanoparticles (NPs), quantum dots (QDs),

carbon nanotubes (CNTs), graphene, graphene oxide (GO), and

nanochannels (Avant et al., 2019; Saleem and Zaidi, 2020; Pandey

and Chusuei, 2021). Incorporating NPs with a biosensor system

is performed for modifying and improving the sensor platforms

and to overcome the limitations of conventional diagnosis tools

(Luo et al., 2006). NPs are employed in the main types of

biosensor systems including electrochemical, calorimetric, optical,

and acoustic (Malik et al., 2013). NPs have critical functions such

as reducing the time of reactions, catalysis, and immobilization

of biomolecules (nucleic acid, antibody, and enzymes) into the

electrochemical biosensors (Luo et al., 2006). In addition, due to

their large specific surface, NPs are useful for improving electron

transfer between biomolecules and the surface electrode (Cho et al.,

2020). CommonNPs includemetal NPs (Au, Ag, and Pt), oxideNPs

(SiO2, TiO2, ZrO2, and MnO2), and semiconductor NPs (CdS and

PbS); metal NPs are more common due to their excellent catalytic

properties in catalyzing electrochemical reactions (Tang et al.,

2005). Moreover, silver and gold NPs have excellent conductivity

properties, which enhance electron transfer between biomolecules

and electrodes (Alaqad and Saleh, 2016). Moreover, gold NPs play

an important role in increasing the sensitivity of electrochemical

biosensors (Saha et al., 2012).

Magnetic NPs (MNPs) are used for designing magnetic

biosensors, which have been broadly applied in medical areas such

as diagnostic assays, DNA or RNA isolation, magnetic resonance

imaging (MRI), and drug delivery (Khoo et al., 1997; Kudr et al.,

2017; Wang et al., 2017; Ali et al., 2021). MNPs are a class of

nanomaterials composed of metals such as cobalt, nickel, and

iron, with paramagnetic, ferromagnetic, and superparamagnetic

properties (Aboul-Enein et al., 1999; Akbarzadeh et al., 2012).

Magnetic iron oxide NPs are employed for biomedical applications

such as magnetic separation (Wu et al., 2015). For example,

immunomagnetic separation (IMS) is now employed as a standard

method for the detection and separation of Cryptosporidium spp.,

and G. lamblia oocysts/cysts from 10 to 150 L water samples

(USEPA, 2012), although several studies have been conducted to

increase the recovery rate of the method using either additional

concentration methods or alternative elution (Hu et al., 2004;

Fradette and Charette, 2022).

Oxide NPs have several chemical properties and possess a

high surface energy (Stankic et al., 2016). For example, MnO2

NPs can directly react with biomolecules (Vukojević et al., 2018).
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FIGURE 2

Schematic representation of electrochemical (A) genosensors and (B) immunosensor.

In addition, oxide NPs, for instance, SiO2 NPs, can also be

used as labels for biomolecules. SiO2 NPs, as an oligonucleotide

label, have been used for electrochemical sensitive detection in

genosensors and immunosensors (Ma et al., 2008; Wang et al.,

2013).

Quantum dots are semiconductor nanocrystals made up of

a reactive core, which contains semiconductor particles such as

cadmium selenide (CdSe), cadmium telluride (CdTe), indium

phosphide (InP), or zinc selenide (ZnSe). However, QDs, as ideal

materials, have been widely used in the development of sensing

technology due to their extraordinary chemical properties such as

excellent optical aspects (Ding et al., 2022).

Carbon nanotubes are the most popular advanced sensing

technology, and have recently attracted interest for their unique

properties such as excellent electronic conductivity features

and large surface-to-volume ratios (Zaporotskova et al., 2016).

Nanotubes have cylindrical structures with several hexagonal

graphite planes rolled in tubes, which are divided into single-

walled NTs (SWNTs) and multi-walled NTs (MWNTs), based on

the number of walls (Saxena and Srivastava, 2020).
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TABLE 2 Summary of selected biosensors for detection of various FWP.

Analyte Type of
sensor

Transducer Type of chip Limit of detection Range (linear range) Source References

G. lamblia Immunosensor PEMC (piezoelectric excitation of

millimeter cantilever)

PbZr0.52Ti0.48O3 (PZT) films

and glass layer

1–10 cysts/mL per 15min 0.5–5.0 mL/min/10–10,000

cysts/mL

Water Xu and Mutharasan, 2010

C. parvum Genosensor Chronopotentiometric

(electrochemical)

Screen-printed carbon strip

electrodes (SPEs)

ng/mL levels of the

Cryptosporidium DNA target

2.0 microgram/mL to ng/mL Untreated drinking

and river water

Wang et al., 1997

C. parvum Immunosensor

(labeled)

Evanescent wave fiber (optic

chemical sensor)

RAPTOR Plus 4S 105 oocysts/mL 106/mL oocysts Water Kramer et al., 2007

E.

histolytica

Immunosensor Electrochemical sensor

(voltammetry)

Gold screen-printed electrode 10 pg/mL (588 fM). 10 pg /mL (588 fM) to 500

pg/mL (29.4 pM)

Stool samples Grewal et al., 2014

C. parvum Immunosensor Colorimetric detection

(non-labeling fluorescence sensor)

Polydiacetylene-based

fluorescence chip

1× 103 oocysts/mL 1× 105 oocysts/mL C.

parvum (in tap water) and 1

× 105 cysts/mL G. lamblia (in

PBS buffer)

Water Park et al., 2008

C. parvum Immunosensor

(label-free)

Electrochemical, FITc Interdigitated gold electrodes

(IDE)

40 cells/mm2 Between 15 and 153

cells/mm2

Water Luka et al., 2019

T. gondii Genosensor Magnetic-fluorescent CdTe@Ni

quantum dots (mQDs)

Not reported 2.70× 10−9 mol/L Not reported T. gondii DNA Xu et al., 2013

T. gondii Immunosensor Piezoelectric Gold electrodes 1:5500 ∼1:5000–1:75 Infected rabbit serum Wang et al., 2004

T. gondii Genosensor Magnetic fluorescent nanoparticles

(Fe3O4/CdTe)

Not reported 8.339 x 10−9 M 1IF=1.805c+ 10.804 T. gondii DNA He et al., 2015

C. parvum Immunosensor Piezoelectric-excited

millimeter-sized cantilever (PEMC)

PZT and glass film 100, 1000, and 10,000

oocysts/mL

100 to 10,000 oocysts/mL Drinking water Campbell and Mutharasan,

2006

C. parvum Immunosensor Electrochemical (potentiometric) Screen printed electrode 5× 102 oocysts/mL 102-106 oocysts/mL Fresh bovine feces Laczka et al., 2013

C. parvum Immunosensor Optical surface plasmon resonance

[SPR] biosensor

Gold chip 1×106 oocysts/mL C. parvum oocyst

stock

Kang et al., 2006

C. parvum Immunosensor Piezoelectric electrochemical

biosensor

Quartz crystal microbalance 3× 105-1× 107 oocysts/mL

(∼5min).

3× 105-107 oocysts/mL Water Poitras et al., 2009

C. parvum Genosensor Amperometric electrochemical

biosensor

Interdigitated

ultramicroelectrode array

(IDUA) integrated with gold

electrode

1 oocyst/mL Not reported Cryptosporidium

oocysts DNA.

Nugen et al., 2009

C. parvum Immunosensor

(label-free)

Electrochemical impedance

spectroscopy (EIS)

Biochip-based biosensing

platform

<10 cells/µL 1.43433× 10−5
× C

(oocysts/µl)+ 7.545921×

10−4

Water Houssin et al., 2010

C. parvum Immunosensor

(label-free)

EIS electrochemical biosensor Microfabricated gold

electrode

20 cells/5 µL Up to 200 cells/5 µL Water Luka et al., 2022

C. parvum Aptasensor Square wave voltammetry

electrochemical sensor

Screen-printed carbon

electrode

100 oocysts/mL 200–700 oocysts/mL Fresh fruits Iqbal et al., 2015
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FIGURE 3

Illustration of a screen-printed aptamer-based electrochemical biosensing platform for the detection of C. parvum oocysts. Reproduced from Iqbal

et al. (2015).

Graphene and GO nanomaterials present unique chemical

and electrical features, which have highlighted them as promising

materials to improve signal responses in novel sensing technologies

such as electrochemical biosensors, fluorescence resonance

energy biosensors transfer (FRET), laser desorption/ionization

mass spectrometry (LDI-MS), and surface-enhanced Raman

spectroscopy (SERS) (Chauhan et al., 2017; Janegitz et al., 2017;

Morales-Narváez et al., 2017). GO possesses a hydrophobic domain

structure and hydrophilic oxygen-containing functional groups,

which provide good biocompatibility and water dispersibility

(Ghulam et al., 2022). However, their features, including high

surface area and a high affinity for a variety of biomolecules

(antibodies, enzymes, DNA, cells, and proteins), have made them

ideal for next-generation biosensors (Lee et al., 2016).

The recent trends are the use of both single and array

nanochannels for electrical biosensing applications. Graphene and

its analogs are among the emerging materials used to obtain

nanochannels (de la Escosura-Muñiz and Merkoçi, 2012). The

applications of nanochannels are focused on the detection of DNA,

protein, virus, toxin, and other analytes (Wang et al., 2015; Sun

et al., 2016; Shiohara et al., 2022).

6. Applications of biosensors based on
transducer types

The biosensor system employs a sensing technique and reacts

with an analyte to produce a measurable electrochemical, electrical,

mechanical, optical, or thermal signal (Mehrotra, 2016; Naresh and

Lee, 2021). Biosensors can also be classified as electrochemical,

optical or mechanical biosensors (Cammann, 1977; Thevenot et al.,

1999; Ronkainen et al., 2010; Bermejo et al., 2011; Monosik et al.,

2012; Ozdemir et al., 2013).

6.1. Electrochemical

In recent years, most studies on biosensors have focused on

electrochemical systems (Ronkainen et al., 2010; Low et al., 2012;

Kokkinos et al., 2016). The wide practical fabrication and usage of

these biosensors are based on their advantages such as feasibility,

portable, rapidness, low fabrication cost, simplicity of operation,

and high selectivity of this system, which make these sensors

quite desirable and attractive for the POC approach. Electrodes

play an important role in the performance of electrochemical cells

and biosensors. The electrode structure and properties influence

the cost, sensitivity, selectivity, and limit of detection (LoD) of

these biosensors (Faulkner and Bard, 2002; Cesewski and Johnson,

2020). In this regard, a label-free interdigitated-based capacitive

biosensor was designed on interdigitated gold electrodes for the

detection of Cryptosporidium oocysts in water samples (Luka

et al., 2019). In this study, a capture probe, anti-Cryptosporidium

monoclonal antibodies (IgG3) and bovine serum albumin (BSA),

was employed to increase the specificity and to avoid non-specific

interactions. The linear detection range for this technique was 15–

153 oocysts/mm2 with a detection limit of 40 oocysts/mm2 (Luka

et al., 2019).
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FIGURE 4

Chip-based device for label-free detection of Cryptosporidium oocysts in water. The figure shows the schematic process of the immobilization of

anti-Cryptosporidium antibodies onto the Au electrode. Reproduced from Luka et al. (2022).

Potentiometric biosensors have also been used for the

detection of waterborne protozoa. Laczka et al. (2013) reported

a novel electrochemical approach based on a potentiometric

immunosensor for the rapid detection of C. parvum based on

(HRP)-labeled secondary antibody, which was able to detect 5

× 102 Cryptosporidium oocysts/mL in 60min. In comparison to

available ELISA techniques, Laczka et al. (2013) improved the

LoD from 100- to 1,000-fold for the detection of oocysts, without

the need for any specific antibody. In a study performed by

Wang et al. (1997), a new electrochemical hybridization biosensor

based on screen-printed carbon strip electrodes (SPEs) by the

chronopotentiometry approach, as an electrochemical technique,

was fabricated to detect a short specific nucleotide sequence of

Cryptosporidium in untreated drinking and river water using the

chronopotentiometric (CP) transduction method. This approach

was able to discriminate Cryptosporidium DNA with an extremely

low LoD, 50 ng/mL, and a short hybridization time of the probe,

3min (Wang et al., 1997). Chronopotentiometry is a galvanostatic

method that is used to study the mechanism and kinetics of

chemical reactions with a constant level of current for a given

period of time (Lingane and Peters, 1971; Kinyua Muthuri et al.,

2021).

Electrochemical impedance spectroscopy (EIS) has been

designed as a highly effective method based on label-free methods

for the detection of biomolecules. It is used to investigate binding

events that occur at the electrode surface (Magar et al., 2021). In the

field of parasitology, Grewal et al. (2014) developed a nano-yeast-

single-chain Fv (scFv) affinity reagents on a low-cost commercial

gold screen-printed electrode for the sensitive detection of E.

histolytica cyst antigens in stool samples at concentrations down

to 10 pg/mL in buffer, with an inter-assay reproducibility of (%

RSD, n = 3) 4.1%. A number of studies have also utilized this

method for the detection of Cryptosporidium spp. A non-labeled

detection system using a polydiacetylene (PDA)-based fluorescence

chip based on a colorimetric detection system was developed for

the detection of C. parvum with an LoD of 1 × 103 oocysts/mL

(Park et al., 2008). Themain advantages of this study were real-time

detection of Cryptosporidium spp. oocysts, rapidness, simplicity,

and no need for any labeling or staining for analyses (Park et al.,

2008). Houssin et al. (2010) fabricated a label-free EIS biochip-

based biosensing platform for the detection of Cryptosporidium

in water samples using EIS via an interdigitated microelectrode

array with an LoD lower than 10 cells/µL. The authors suggested

that this method could be proposed as an alternative technique to

current staining procedures, which was able to differentiate live and

dead oocysts based on electrical impedances between 10 kHz and

100 kHz (Houssin et al., 2010). More recently, Luka et al. (2022)

reported a chip-based electrochemical biosensor for the sensitive

and label-free detection of Cryptosporidium oocysts in water

samples based on anti-Cryptosporidium monoclonal antibodies

(IgG3). This novel platform was a fast, real-time, and inexpensive

tool, which was utilized tomeasureC. parvum in the range of 0–300

oocysts, with an LoD of∼20 oocysts/5 µL (Figure 4).

6.2. Optical (fluorescence,
chemiluminescence-based biosensor, and
surface plasmon resonance [SPR])
biosensors

The main components of an optical diagnostic device are

a light source, optical transmission medium (fiber, waveguide,

etc.), immobilizedm biological recognition element (enzymes,

antibodies, or microbes), and optical detection system (Chen and

Wang, 2020). An optical sensor converts light rays into electronic

signals via measuring the physical quantity of light and translating

it into a readable signal (Deshmukh et al., 2020). Optical sensing

technologies are also divided into label-based techniques such as

fluorescent labeling and label-free methods (Tang et al., 2010;

Bermejo et al., 2011).

Fiber optic biosensors (FOBs), as fluorescence-based optical

biosensors, are increasingly being employed for the detection

of foodborne and waterborne pathogens. This technique utilizes
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FIGURE 5

Procedure applied for covering the surface of IDE with SAM, and the attachment of anti-Cryptosporidium antibodies. Reproduced from Luka et al.

(2019).

antibodies or other molecules to capture the target pathogen

from a sample (Narayanaswamy, 2006; Hayman, 2008). In this

regard, Kramer et al. (2007) developed an optical sensor (rapid

automated FOB assay) based on a sandwich immunoassay using

anti-Cryptosporidium oocyst polyclonal andmonoclonal antibodies

to detect the parasite in potable water. In this study, the

polyclonal antibody captured the target pathogen and marked

it with a cyanine 5-labeled (Cy5) detector monoclonal antibody.

The LoD was 105 oocysts/mL, while a 10-fold increase in

sensitivity was achieved using the polyclonal antibody followed

by boiling samples before the detection (Kramer et al., 2007);

however, owing to the low infectivity dosage of Cryptosporidium

spp., and the low concentration of oocysts in water samples,

concentration and preparation steps before employing detection

techniques are still required (WHO, 2014). To overcome the short

lifetime of the excited state limitation of fluorescence (Berezin

and Achilefu, 2010), a luminescence process, in which a photon

may be released after any time, was developed (Gaft et al.,

2015). Chemiluminescence-based biosensors are another type of

optical sensing device (Aboul-Enein et al., 1999), which measure

the rate of photon production and generate light through a

chemical reaction (Kim et al., 2021). In this optical biosensor,

the analyte interacts with the immobilized biomolecule, which

is marked with chemiluminescence species. Some advantages of

chemiluminescence tools are high sensitivity for the detection of

pathogens, fast dynamic response, and a wide calibration range

(Yan et al., 2021).

As a label-free-based biosensor, Luka et al. (2019) fabricated an

interdigitated-based capacitive biosensor to detectCryptosporidium

oocysts in water samples. In this system, the number of

Cryptosporidium oocysts captured on the surface of the electrode

was identified by means of a fluorescein isothiocyanate (FITC)

immunofluorescence assay. The result of this study indicated

an LoD of 40 cells/mm2 and a linear range of detection

between 15 and 153 cells/mm2 in environmental water samples.

Briefly, anti-Cryptosporidium monoclonal antibodies (IgG3), as

the capture biomolecules, were attached to the interdigitated gold

electrodes (IDE) using the protein G/thiol. Finally, upon the

formation of the Cryptosporidium-antibody complex, changes in

the capacitive/dielectric properties were detected (Figure 5).

SPR biosensors have been developed based on refractive index

to increase the sensitivity of optical biosensors (Zeng et al.,

2021). This system is a label-free optical phenomenon without

radioactivity and fluorescence, which is recently considered a very

powerful tool to study the interactions between the analyte and

biorecognition molecules. This type of biosensor has remarkable

advantages such as high sensitivity and specificity, label-free

measurement, real-time analysis, and high-throughput capacity

(Olaru et al., 2015). In addition to the common analytical

applications, SPR devices are suitable for food safety monitoring

and environmental applications (Olaru et al., 2015). In this

regard, Kang et al. (2006) developed a flow-type SPR biosensor

for the rapid detection of Cryptosporidium oocysts. Accordingly,

an SPR biosensor was designed based on mixed self-assembled

monolayers (SAMs) using 3-mercaptopropanol (3-MPOH) and

11-mercaptoundecanoic acid (11-MUA). These groups enhance

the accessibility of analytes to the sensor surface using biotin–

streptavidin biomolecules. This system was able to identify C.

parvum oocysts in real time with an LoD of 1 × 106 oocyst/mL,

and the sensitivity was increased to ∼1 × 102 oocyst/mL using

biotin–streptavidin biomolecules (Figure 6).

6.3. Mechanical biosensors

Mechanical biosensors are sensitive to alterations inmechanical

characteristics. These types of assays play a critical role in different

bioanalytical settings (Arlett et al., 2011; Zhang andHoshino, 2019).

The functions of mechanical biosensors are mostly based on either

the induced stress on the cantilever platform or the alteration in

the resonant frequency of a mass-spring device (Xu et al., 2019;

Chalklen et al., 2020).

The piezoelectric system is a class of mass-based biosensors,

which measures changes in the oscillating crystal resonance

frequency due to the interaction between bioreceptor and biological

elements (antibodies, enzymes, and antigens) (Nicu et al., 2005).

Various piezoelectric (like quartz crystal) (Lim et al., 2020;Wu et al.,

2021) and biosensing materials have been used in piezoelectric

biosensors (Skládal, 2016).
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FIGURE 6

Schematic view of (A) evanescent wave fiber optic chemical sensor and (B) detection-based SPR technique.

FIGURE 7

Schematic diagram of quartz crystal microbalance (QCM) technique.

Piezoelectric quartz crystal (PQC) immunosensors, as

mass-sensitive devices, have been fabricated to calculate the

quantification of biomolecular interactions (Bunde et al., 1998;

O’Sullivan and Guilbault, 2000). Wang et al. (2004) developed

a new, simple, rapid, and highly sensitive technique that was a

promising alternative approach to detect anti-T. gondii antibodies

(TgAbs) in clinical samples. The authors demonstrated that the

latex piezoelectric immunoassay (LPEIA) was improved by using

gold NPs, as an alternative to latex particles.

Another type of piezoelectric biosensor is a piezoelectric-

excited millimeter-sized cantilever (PEMC) sensor that consists

of a piezoelectric and a borosilicate glass layer with a sensing

area (Zuehlke, 2022). A PEMC sensor was fabricated to detect

the waterborne parasite, G. lamblia, in aquatic samples (Xu

and Mutharasan, 2010). The resonant frequency of the sensor

was continuously monitored using monoclonal antibodies against

G. lamblia cysts, which were immobilized on PEMC sensors.

In this procedure, 1–10,000 G. lamblia cysts/mL samples in a

flow interacted with the antibody-immobilized sensor, and, upon

binding cysts to the antibody, and changes in the resonant

frequency of the cantilever sensor were continuously recorded.

This method detected 10 cysts/mL for 15min. Similarly, a PEMC

biosensor was designed using immobilized IgM to detectC. parvum

oocyst in a flow configuration at 1 mL/min. The PEMC detected

C. parvum at 100, 1,000, and 10,000 oocysts/mL in less than 1min.

The resonance frequency response of the sensor was logarithmically

correlated with the concentration of C. parvum oocysts, and due to

the high sensitivity and specificity, it was employed for monitoring

drinking water (Campbell and Mutharasan, 2008).

A quartz crystal microbalance (QCM) with dissipation

monitoring (QCM-D) was employed to detect Cryptosporidium

oocysts in water samples (Poitras et al., 2009). Water samples are

usually contaminated by a wide range ofmicroorganisms, including

bacteria, viruses, and parasites, that may cause interference during

the detection of target pathogens in the biosensing system. To

overcome this limitation, the QCM-D was used as a platform for

the specific binding of C. parvum to an antibody-covered gold-

coated crystal surface to increase the specificity of the method. This

technique was able to detect oocyst concentrations from 3× 105 to

1 × 107 per mL of water with a rapid operation (∼5min) (Poitras

et al., 2009) (Figure 7).

MNP-based approaches are able to rapidly detect FWP

with high sensitivity and selectivity (Akbarzadeh et al., 2012).

MNPs have been intensively studied due to their capability to

be employed in many areas such as magnetic storage devices,

optical magnetic materials, magnetic separation, andDNA-targeted

diagnosis (Duguet et al., 2006; Reddy et al., 2012). In the field of

parasitology, in a study developed by Xu et al. (2013), magnetic-

fluorescent CdTe@Ni quantum dots (mQDs) were utilized to

design a sensitive nanobiosensor based on fluorescence resonance
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FIGURE 8

(A) Microfluidic micromixer device. (1) The captured oocysts at di�erent lengths in the device were systematically counted randomly in 10 areas. (2)

The number of oocysts per area was averaged at each length. * indicates statistical significancy. Reprinted from Diéguez et al. (2018). (B) Microfluidic

chip. (1) The inlet (I) port allows entry into the separation channel (SC), which then widens into a large channel (LC) that splits into three outlet

collectors (C, E1, and E2). (2) Scanning electron microscopy images, and (3) schematic view of a vertical section, the Zeonor-TPE chip assembly with

the Luer lock (LL) ports, separation channel, and input and output collectors. Reproduced from Ganz et al. (2015) with permission from the American

Society of Microbiology (ASM) publication.

energy transfer (FRET) in order to detect T. gondii DNA. In this

study, mQDs and commercial BHQ2 were the energy donors and

acceptors, respectively. To produce a sensing probe, sCdTe@Ni

mQDs and BHQ2 were used to label a stem-loop T. gondii DNA

oligonucleotide at the 5
′

and 3
′

ends, respectively. This system

was able to detect the target DNA of T. gondii with a LoD

of ∼2.70 × 10−9 mol/L. In addition, a study developed by He

et al. (2015) detected T. gondii using the quenching of magnetic

fluorescence NPs (Fe3O4/CdTe) based on CdTe QDs, which were

synthesized using 3-mercaptopropionic (MPA) capping for T.

gondii DNA detection, with a LoD of 8.339 × 10−9 M of DNA.

In this study, similar to Xu et al. (2013), a stem-loop T. gondii

DNA oligonucleotide was employed, which was conjugated to

Fe3O4/CdTe at the 5
′

end as the energy donor and BHQ2 at the

3
′

end as the acceptor.

7. Microfluidic devices

Microfluidic systems are geometrically small scale (typically

sub-millimeter) and can be incorporated with biosensor systems.

Theoretically, microfluidic devices are comprised of thin grooves

or small wells, channels, micro-channels, and chambers. These

devices are rapid and accurate, and are increasingly employed

for the detection of waterborne pathogens (Woolley and Mathies,

1994; Stone et al., 2004; Fiorini and Chiu, 2005; Chin et al.,

2012).

In a biosensor-independent manner, there is a commercial

microfluidic device for the detection of Cryptosporidium oocysts in

water samples with on-chip integrated sample preparation features,

named CryptoDetect CARD. This technology involves integrated

immunomagnetic separation (IMS); however, the technology needs

more development to specify the LoD and sensitivity, and the need

for sample preparation, filtration, and concentration still limits its

use (Rheonix, 2011).

As a first strategy, hydrodynamic trapping together with

immunofluorescence detection was utilized (Zhu et al., 2004;

Taguchi et al., 2005, 2007; Lay et al., 2008; Mudanyali et al., 2010).

In this regard, Taguchi et al. (2005) developed a micro-well array

strategy to capture oocysts. For trapping oocysts in wells, micro-

wells with a 10µm or 30µm diameter and a 10µm depth were

developed to capture oocysts of Cryptosporidium. This technology

was able to detect the oocysts in very small sample volumes and

could therefore be used instead of visual inspection of microscope

slides. The micro-wells were coated with streptavidin and anti-C.

parvum antibodies, and the samples containing C. parvum oocysts

(107 oocysts/mL) suspended in PBS were simply deposited onto the

array. This approach was able to detect Cryptosporidium oocysts

for 60min at a maximum flow rate of 350 µL/min (5mL could

be processed in under 15min), with a LoD of 36 oocysts/mL

(Taguchi et al., 2005). Diéguez et al. (2018) purposed a disposable

microfluidic micromixer, which was able to specifically capture,

isolate, and concentrate Cryptosporidium from water samples. This

designed device was able to analyze the quantification of captured

oocysts using immunofluorescence microscopy, as well as an

imaging flow cytometer. In addition, the microfluidic micromixer

device provided a rapid and efficient detection method, with a

capture efficiency of 96% compared to other available laboratory-

scale technologies for the detection of Cryptosporidium oocysts

(Figure 8A).

In addition, a microfluidic inertial separation chip was designed

and fabricated for the separation ofGiardia cysts from food samples
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FIGURE 9

Schematic overview of the experimental setup of a micromesh microfluidic. (1) View of the SUS micromesh. (2) Side view of a PDMS microfluidic

device equipped with the SUS micromesh, and (3) side view of a PDMS microfluidic device with microchannel, sample inlet, and outlet. Reproduced

from Taguchi et al. (2007) with permission from Wiley & Sons.

(Ganz et al., 2015). The microfluidic chips consisted of an inlet, a

main separation channel with a rectangular microfluidic channel,

and a large channel, which was divided into three smaller channels

connected to three output channels. The method was very efficient

and specific for G. lamblia, and recovered an average of 68.4% of

cysts, with a LoD of 38 cysts from a 25 g lettuce sample (Ganz et al.,

2015) (Figure 8B).

Hydrodynamic trapping of Cryptosporidium oocysts, either in

wells or filters, through pre-filter structures or a raindrop filter,

was also developed. This microfluidic device was incorporated

into a SUS micromesh to capture C. parvum oocysts. Trapped

C. parvum oocysts were visualized by fluorescent staining. The

concentration of added C. parvum oocysts and oocysts detected

by the SUS micromesh was linearly correlated within the range

of 18–200 oocysts/mL. The results of this technique were in

agreement with the direct immunofluorescence assay coupled

with the immunomagnetic separation (DFA-IMS) method, while

the recovery of SUS micromesh (93%) was higher than DFA-

IMS (90%), suggesting that the SUS micromesh is a promising

procedure for counting C. parvum oocysts (Taguchi et al., 2007)

(Figure 9).

As a second strategy, it was illustrated that trapping of

Cryptosporidium oocysts using sieves or filters may increase the

sensitivity of microfluidic systems (Zhu et al., 2004; Lay et al.,

2008). A fully automated system consisting of a filtration unit

and pumping system (1,000 L within 24 h), complemented by

a microfluidic chip, Crypto-Tect bio-slide, was developed by

the Shaw Water Ltd. Company, which stained and counted
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FIGURE 10

View of a PDMS microchannel. The channel was fabricated in silicon and placed on a glass slide, where gold was deposited. Reprinted with

permission from Esch et al. (2001) copyright from the American Chemistry Society.

FIGURE 11

Schematic picture of a microfluidic impedance cytometer. (a) Two parallel facing electrodes. The electrodes were fabricated within a microfluidic

channel. (b) The current flowing through the bottom electrodes was measured using a custom detection circuit. The circuit consists of

trans-impedance amplifiers, which convert current (I) into voltage (V), and a di�erential amplifier. Reproduced from McGrath et al. (2017).
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TABLE 3 Studies on microfluidic systems for the detection of FWP.

Type of
detection

Target Limit of
Detection (LoD)

Fabrication technique Sample
source

References

Microfluidic device

(micro-well array)

C. parvum 36 oocysts/mL in

60min

Micro-well array strategy to trap and

capture oocysts

Water Taguchi et al., 2005

Microfluidic micromixer

device

C. parvum 10 oocysts/L Microfluidic micromixer to capture

and isolate oocysts

Water samples Diéguez et al., 2018

Microfluidic inertial

separation chip

Giardia 38 cysts/mL Microfluidic chips consists of a

rectangular microfuidic channel

Food samples Ganz et al., 2015

Microfluidic device

(optical detection)

C. parvum Not reported Microfluidic device was incorporated

with a SUS micromesh to trap oocysts

Water Taguchi et al., 2007

Filter-based microfluidic

device

C. parvum and G.

lamblia

Not reported Filter-based microfluidic device with

immunofluorescent labeling to rapidly

detect C. parvum and G. lamblia

Not reported Zhu et al., 2004

Microfluidic chip C. parvum 5 fmol of amplicon in

12.5 µL of sample

solution

Detection of RNA, amplified by

nucleic-acid-sequence-based

amplification (NASBA) to detect

viable C. parvum

Water Esch et al., 2001

Microfluidic impedance

cytometry (MIC) system

C. parvum, C.

muris and G.

lamblia

<10 C. parvum oocysts/

µL

Detection of Cryptosporidium and G.

lamblia based on integration of

electrochemical biosensors into

microfluidic systems

Not reported McGrath et al., 2017

Optical

microfluidic biosensors

C. parvum 1–10 oocysts/mL in 10

minutes

Microfluidic chip based on

agglutination assay

Water Angus et al., 2012

FIGURE 12

Schematic overview of a smartphone microscope setup. (A) Fabrication of ball lens onto mounting plate and the smartphone camera. (B) The set up

of measurement system. Reproduced from Shrestha et al. (2020).

Cryptosporidium oocysts with a LoD slightly higher than 10 oocysts

(Shaw, 2009), while 1,000 L drinking water was concentrated

to a 1.5mL sample, which was suitable for introducing to the

microfluidic system. In addition, a microfluidic device based on

the detection of C. parvum and G. lamblia oocysts/cysts using

positive pressure was developed that identified C. parvum and G.

lamblia fluorescent labels, while the staining solution was 10 to 100

times more diluted than the recommended concentration in the

conventional glass method (Zhu et al., 2004).

Microfluidic trapping devices can also be integrated with

on-chip molecular methods for further applications (Mahdavi

Abhari et al., 2023). Molecular sensing techniques include

pre-amplification of the microorganism genomic material, either

via fluorescence or electrochemical tools. These reliable and

rapid detection techniques still require genomic materials. The

detection of C. parvum in water resources still requires the

parasite to be collected and concentrated from a large water

sample volume. In fact, during the analysis of water samples, the

numbers of recovered parasites are usually low and cannot be

detected without DNA amplification. To overcome this limitation,

Esch et al. (2001), developed a microfluidic chip, which was

amplified by nucleic-acid-sequence-based amplification (NASBA),

using DNA-modified liposomes to detect RNA in viable C. parvum.

A NASBA-generated amplicon was placed between the capture
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FIGURE 13

Fabricated chip and 3D portable holder assembly integrated with a smartphone. (a) The major components of the detection system, (b) the

assembled detection system, and (c) schematic overview of sensing platform. Reproduced from Luka et al. (2021).

and reporter probes in a microfluidic channel. To generate

fluorescence, reporter probes were tagged with carboxyfluorescein-

filled liposomes, which increased the sensitivity of detection, even

in very low concentrations of targets. The LoD of the microfluidic

chip was reported to be 5 fmol of amplicon in 12.5 µL of sample

solution (Figure 10).

Recent developments have been presented in novel engineering

systems for the detection of Cryptosporidium and G. lamblia

based on the integration of electrochemical biosensors into

microfluidic systems. A microfluidic impedance cytometry (MIC)

system based on the detection of viable parasites was proposed

and designed by McGrath et al. (2017), which was able

to rapidly discriminate live and inactive C. parvum oocysts

with over 90% certainty, and to identify the viability of

Cryptosporidium and Giardia at the single (oo)cyst level (Figure 11;

Table 3).
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8. Smartphone microscopic method

In recent years, smartphone microscopic methods have been

described and used as an alternative platform for the detection

of targeted pathogens, incorporated with traditional optical

microscopic methods. The strengths of these techniques are the low

cost, small size, being portable, and easy transportation to rural

and remote settings. In fact, portable devices that can transmit

relevant data to remote experts have a large impact on the quantity

and quality of care. In addition, cell phone cameras are the most

ubiquitous optical sensors in the world (Breslauer et al., 2009;

Rajchgot et al., 2017).

In the field of waterborne protozoa, Shrestha et al. (2020)

developed a smartphone-based microscopic assay for the

simultaneous detection of oocysts/cysts of Cryptosporidium

and G. lamblia in vegetable and water samples. The device

consisted of a ball lens 1mm in diameter, an aluminum mounting

plate to transform a smartphone, and a white LED as an

illumination source. After concentration of oocysts and staining

with Lugol’s iodine, oocysts were counted using the smartphone

microscope. In comparison to commercial bright field and

fluorescence microscopes, the smartphone-based microscopic

assay was a low-cost alternative for screening oocysts/cysts of

Cryptosporidium spp., and G. lamblia. The LoD of Giardia ranged

from 24 cysts/100 g for cucumber to 73 cysts/100 g for cabbage.

The LoD for Cryptosporidium ranged from 11 oocysts/100 g

for radish to 25 oocysts/100 g for cabbage, while the LoD of

Cryptosporidium was lower than that of Giardia (Shrestha et al.,

2020) (Figure 12).

Recently, Luka et al. (2021) fabricated a 3D portable and

smartphone-integrated on-chip colorimetric biosensor, which was

invisible to the naked eye. In this regard, oligonucleotide-modified

gold NPs (AuNPs) were used for the detection of Cryptosporidium

RNA using UV–Vis spectroscopy. The color change of the AuNPs

from red to blue after 5min was an indicator for Cryptosporidium

RNA. The advantages of thesemethods were the low sample volume

(15 µL), short analysis time (∼30min), and high detection limit

(5µM) (Figure 13).

8.1. Future outlook

In recent years, advanced diagnostic procedures have been

presented to overcome the limitations of available common

techniques. Molecular biology assays, as gold standard methods,

have been routinely utilized for rapid detection, identification, and

differentiation of FWP. In addition, in recent decades, various

studies have been conducted based on electrochemical and optical

biosensors and nanobiosensors for the early detection of common

waterborne pathogens. Although these methods frequently profit

from good accuracy, reliability, and multiple sample processing,

most of them suffer from the need for specialized expensive

equipment, centralized services, infrastructure/or professional

staff, and a lack of point-of-use (PoU) employment capabilities.

The ASSURED criteria are an important guideline provided by the

WHO for developing efficient POC devices to distinguish major

human diseases (Syedmoradi et al., 2017; Ahmadi et al., 2020).

Advances in digital health include mobile health, health

information technology (IT), and wearable devices, and the

acronym REASSURED (real-time connectivity, ease of specimen

collection, affordable, sensitive, specific, user-friendly, rapid

and robust, equipment-free or simple environmentally friendly,

deliverable to end-users) has been offered for the development

of diagnostic methods to address vital priorities such as global

health emergencies (Land et al., 2019; Mahmoudi et al., 2022).

Factors associated with the effective implementation of ASSURED

diagnostic systems that should be considered in addressing POC

diagnostic tests are real-time connectivity and ease of specimen

collection (Land et al., 2019). Finally, for the successful diagnosis

and management of infectious diseases, the necessity to fabricate

smart biosensing systems is vital. We believe that smart biosensing

platforms play an extremely significant role in diagnosing, as

well as in predicting and controlling, future trends in infectious

diseases, either epidemics or pandemics.
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