AUTHOR=Xu Xingye , Ding Fangping , Hu Xiangqi , Yang Fan , Zhang Ting , Dong Jie , Xue Ying , Liu Tao , Wang Jing , Jin Qi TITLE=Upper respiratory tract mycobiome alterations in different kinds of pulmonary disease JOURNAL=Frontiers in Microbiology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1117779 DOI=10.3389/fmicb.2023.1117779 ISSN=1664-302X ABSTRACT=Introduction

The human respiratory tract is considered to be a polymicrobial niche, and an imbalance in the microorganism composition is normally associated with several respiratory diseases. In addition to the well-studied bacteriome, the existence of fungal species in the respiratory tract has drawn increasing attention and has been suggested to have a significant clinical impact. However, the understanding of the respiratory fungal microbiota (mycobiome) in pulmonary diseases is still insufficient.

Methods

In this study, we investigated the fungal community composition of oropharynx swab (OS) samples from patients with five kinds of pulmonary disease, including interstitial lung disease (ILD), bacterial pneumonia (BP), fungal pneumonia (FP), asthma (AS) and lung cancer (LC), and compared them with healthy controls (HCs), based on high-throughput sequencing of the amplified fungal internal transcribed spacer (ITS) region.

Results

The results showed significant differences in fungal composition and abundance between disease groups and HCs. Malassezia was the most significant genus, which was much more abundant in pulmonary diseases than in the control. In addition, many common taxa were shared among different disease groups, but differences in taxa abundance and specific species in distinct disease groups were also observed. Based on linear discriminant analysis effect size (LefSe), each group had its characteristic species. Furthermore, some species showed a significant correlation with the patient clinical characteristics.

Discussion

Our study deepened our understanding of the respiratory tract mycobiome in some diseases that are less studied and identified the commonalities and differences among different kinds of pulmonary disease. These results would provide the solid basis for further investigation of the association between the mycobiome and pathogenicity of pulmonary diseases.