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Just because two things are related does not mean they are the same. In 
analyzing microbiome data, we are often limited to species-level analyses, and 
even with the ability to resolve strains, we  lack comprehensive databases and 
understanding of the importance of strain-level variation outside of a limited 
number of model organisms. The bacterial genome is highly plastic with gene 
gain and loss occurring at rates comparable or higher than de novo mutations. As 
such, the conserved portion of the genome is often a fraction of the pangenome 
which gives rise to significant phenotypic variation, particularly in traits which are 
important in host microbe interactions. In this review, we discuss the mechanisms 
that give rise to strain variation and methods that can be  used to study it. 
We  identify that while strain diversity can act as a major barrier in interpreting 
and generalizing microbiome data, it can also be a powerful tool for mechanistic 
research. We then highlight recent examples demonstrating the importance of 
strain variation in colonization, virulence, and xenobiotic metabolism. Moving 
past taxonomy and the species concept will be  crucial for future mechanistic 
research to understand microbiome structure and function.
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Introduction

Humans may be  considered a holobiont: the sum of ourselves and our microbial 
inhabitants (Salvucci, 2016). The gastrointestinal tract is home to an extremely diverse set of 
taxa that are highly unique to each individual (Human Microbiome Project Consortium, 
2012). Adding to this complexity is the staggering amount of diversity that occurs among 
microbes of the same species which is commonly referred to as intraspecific, intraspecies, or 
strain diversity (Truong et al., 2017; Van Rossum et al., 2020). While these strains sometimes 
form coherent subpopulations termed subspecies, there is a broad spectrum of diversity 
within species that have led some to question the relevance of the species concept as it 
pertains to prokaryotes (Fraser et al., 2009). Recent estimates indicate that the gut microbiome 
is home to ~4,644 bacterial species that are a reservoir for ~170 million genes (Almeida et al., 
2021). Based on these estimates, a simplistic calculation would suggest the average bacterial 
species contains ~35,000 genes, an order of magnitude more than what is observed in most 
bacterial genomes (Land et al., 2015). The discrepancy between these two estimates underlies 
a fundamental principle of bacterial genetics and challenges the relevance of the species 
concept itself in gut microbes.
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Strain diversity and its origins

The species boundary in higher order sexually reproducing 
eukaryotes is relatively simple to qualify; however, the same cannot 
be said of prokaryotes. Early attempts to identify bacterial species were 
predominantly based on morphological observations and biochemical 
assays (Vandamme et al., 1996). Later, the molecular approach of DNA–
DNA hybridization helped define species (De Ley et al., 1970) which was 
eventually supplanted by the more accessible sequencing of the 16S 
rRNA gene (Woese and Fox, 1977). These later methods provided 
objective quantitative thresholds for species: 70% hybridization and 97% 
identity, respectively. 16S rRNA gene sequencing has been a mainstay of 
taxonomists for the greater part of 30 years; however, rapid developments 
in whole genome sequencing enabled the comparison metric of whole 
genome average nucleotide identity (ANI) wherein ≥94–95% has been 
generally accepted as the species boundary (Konstantinidis and Tiedje, 
2005). Despite the widespread adoption of these quantitative boundaries, 
modern taxonomy is still ripe with inconsistencies such as Shigella spp. 
being a subspecies of Escherichia coli and the polyphyletic nature of the 
genus Clostridium (Lan and Reeves, 2002; Yutin and Galperin, 2013; The 
et al., 2016).

The ANI definition leads to a common misunderstanding: it is not 
to say that 95% of the genome is the same; rather, the portions of the 
genome which are shared have on average ≥ 95% nucleotide identity. 
This subtle difference has a not-so-subtle effect on how we interpret the 
meaning of a species as it masks the important observation that 
members of the same species share only a fraction of the genome with 
their closest relatives (Figure  1A). The set of genes found within a 
species is referred to as its pangenome, which can be split into the core 
genome: those conserved among all members of the species, and the 
accessory genome: those which are variably present (Medini et  al., 
2005). Pangenomes can vary significantly in size, but until the recent 
explosion of metagenome assembled genomes (MAGs), estimates were 
only known for a limited number of organisms with a strong bias toward 
model organisms and pathogens for which a ubiquity of strains had been 
sequenced. Escherichia coli for example has a core genome of ~2,000 

genes, but a given strain can have an additional 1,900–3,800 accessory 
genes resulting in a pangenome that may be as large as 75,000 genes 
(Denamur et  al., 2021). Alternatively in Bacillus anthracis, a spore-
forming pathogen, the pangenome is much smaller, with a much larger 
core genome of ~4,000 genes, but a pangenome size of only 6,066 genes 
(Kim et al., 2017; McInerney et al., 2017). It is hypothesized that part of 
the difference in pangenome size can be attributed to differences in 
mutation and horizontal gene transfer (HGT) rates between species and 
how recently the species emerged (Segerman, 2012; Kim et al., 2017). It 
should however be noted that the B. anthracis example may illustrate 
another taxonomic inconsistency. B. anthracis may in fact be  a 
subspecies of B. cereus based on ANI and a variety of other genetic 
approaches (Helgason et  al., 2000). Indeed, re-analysis of estimates 
derived from MAGs indicates that a species’ pangenome grows near 
linearly with the number of sequenced genomes within that species 
(Rho = 0.6204, p = 2.2E-16, Figure 1B).

While de novo point mutations are common in bacterial genomes, 
gene gain and loss events have been estimated to occur at rates up to 4.4 
fold higher (Guttman and Dykhuizen, 1994; Vos et al., 2015). These 
observations demonstrate that the bacterial genome is highly plastic and 
prone to rapid remodeling over time scales incomprehensible when 
thinking about genome evolution in eukaryotes. Horizontal gene 
transfer (HGT) is a major driver of bacterial genome evolution wherein 
foreign genetic material is either incorporated into the genome or 
maintained on mobile elements such as plasmids (Soucy et al., 2015). 
Horizontal gene transfer occurs through three major routes: 
transformation, transduction, and conjugation (Soucy et  al., 2015). 
Transformation involves the uptake of free DNA from the environment 
without direct interaction between bacteria (Blokesch, 2016). 
Transduction is an almost accidental process by which a bacteriophage 
includes DNA from a donor bacterium during virion packaging, this 
DNA is then transferred to a recipient bacterium (Schneider, 2021). 
Alternatively, conjugation is a direct transfer of DNA between microbes 
via pili, which connect cells and is most commonly associated with the 
transfer of plasmids (Thomas and Nielsen, 2005). These traits have been 
well studied in the context of transferring antibiotic resistance (Lopatkin 

A B

FIGURE 1

(A) An alignment of individual Eggerthella lenta strain genomes demonstrates significant variation in presence/absence of large genetic islands within the 
species as a function of strain. Each track represents the genome of an individual strain and with shared regions indicated in black. (B) Pangenome size 
increases linearly with the number of genomes sequenced per species in gut microbes. Each point represents a species with the blue line representing a 
linear regression ±SE. Data for (A,B) reproduced from Bisanz et al. (2020) and Almeida et al. (2021), respectively.
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et al., 2016; Lu et al., 2017); however, they likely drive much of the 
genotypic variation among closely related organisms.

Just as genes can be gained through HGT, they can be lost through 
reductive evolution (Batut et al., 2014) or conversion to pseudogenes 
(Bolotin and Hershberg, 2015). Maintaining extra genetic material is 
energetically costly, and if they provide no benefit, they can be quickly 
lost. Most often gene loss is more pronounced in pathogenic strains of 
bacteria which have become dependent on association with their host 
(Moran, 2002). Essentiality describes genes that are required for an 
organism to live and proliferate. Screening methods have determined 
that only around 10% of genes in the E. coli genome are essential in rich 
media conditions (Albalat and Cañestro, 2016). This can also lead to the 
domesticated lab strain phenomenon wherein organisms can acquire 
new mutations and lose important genetic islands after repeated 
passaging on rich media (Sybesma et al., 2013; Denamur et al., 2021; 
Monteford et al., 2021). Additionally, as strains are separated by time 
and space, some amount of genetic drift can occur further differentiating 
strains (Bolotin and Hershberg, 2016). Recent experimental models 
investigated E. coli evolution in the context of host colonization 
following antibiotic-mediated engraftment (Frazão et al., 2022). Even in 
time scales of weeks with an estimated >6,000 bacterial generations, the 
authors uncovered both diversifying selection supporting coexistence of 
strains and directional selective sweeps which were determined to 
predominantly arise from new mutations and prophage acquisition, 
respectively. As bacterial strains are separated by spatial, temporal, and 
environmental elements, mutations, and gene loss events can reshape 
their genomes.

Measuring and manipulating strain 
diversity

While many modern sequencing approaches are capable of resolving 
strains in theory, in practice, it is easier said than done. 16S rRNA gene 
sequencing typically lacks the ability to resolve strains and often species 
as well (Johnson et al., 2019). While full-length 16S rRNA sequencing 
may improve species resolution, it is still limited in its ability to 
meaningfully resolve strains due to the slow rate of evolution in the 16S 
rRNA gene versus the rest of the genome (Callahan et al., 2019). On the 
other hand, metagenomic sequencing offers the possibility to resolve 
strains with certain limitations. Owing to a desire for dimensional 
reduction and effective communication, metagenomic data are often 
summarized to higher taxonomic levels such as the species, genus, 
family, or even phylum. Instead, accessible methods are needed to 
meaningfully quantify strains, and perhaps more importantly, 
understand the biological significance of that strain variation.

Culture represents a traditional way through which strain diversity 
can be determined and quantified. Conventional culture methods are 
capable of isolating hundreds or thousands of strains with sufficient 
effort (Poyet et al., 2019; Hitch et al., 2021; Afrizal et al., 2022). Resulting 
colonies can then be dereplicated on the basis of MALDI-TOF profiles 
and/or fingerprinting approaches such as RAPD or ERIC PCR 
(Versalovic et  al., 1991; Bazzicalupo and Fani, 1996). The resulting 
genomes of these strains can then be  sequenced which will lead to 
assemblies almost invariably higher quality than those derived from 
metagenomic methods. This approach also allows for direct phenotyping 
and laboratory experimentation on strains. The advantages of this 
method are offset by the significant resources and infrastructure 
required to conduct these approaches at large scales and culture bias 

against many of the most prevalent members of the gut microbiome: the 
inability to effectively culture as many as 80% of the microbes found in 
the gastrointestinal tract (Lagier et al., 2012).

Where strain isolates are available in culture, strain variation can 
be a powerful tool for comparative genomic approaches to discover 
genes and enzymes of interest. Traditional screening methods, such as 
a transposon mutagenesis screen, require a genetically tractable host to 
randomly inactivate genes followed by screening of thousands of clones 
to look for phenotypic changes (Barquist et al., 2013). Alternatively, 
strain variation gives rise to what could be  thought of as a “natural 
combinatorial knockout system.” In effect, if the trait of interest is 
variable among members of the species, which is often the case for traits 
involving host–microbe interactions, screening as few as 10 strains of 
the same species may be  sufficient to map the genetic determinant 
(Bisanz et al., 2020; Alexander et al., 2022). A variety of comparative 
genomics approaches may be used for these analyses; however, it should 
be  noted that the genetic determinants may be  driven by any 
combination of: gene presence/absence, single-nucleotide 
polymorphisms (SNPs), and structural rearrangements (Figure 2). Gene 
presence/absence can be inferred relatively easily through methodologies 
employing reciprocal blast (Li et al., 2003; Lechner et al., 2011; Page 
et al., 2015); however, most methodologies to call SNPs are tailored to 
call SNPs in the core genome rather than those in the accessory. 
Alternatively, we have shown that the use of tiled k-mers is capable of 
accurately detecting explanatory SNPs and other structural changes; 
however, their use comes at a significantly greater computational 
overhead (Maini Rekdal et al., 2019; Bisanz et al., 2020). Because of the 
potential for combinations of predictors driving phenotype: for example, 
gene A or gene B, or the presence of a gene A plus the absence of a 
negative regulator gene C, machine learning approaches provide a 
powerful tool. Random Forest classifier/regression models are 
particularly adept at this task as they have straight forward metrics for 
each feature’s importance/predictive value and they generally consider 
combinations of explanatory variables in their decision trees (Chen and 
Ishwaran, 2012). Indeed, we have used variants of this approach across 
multiple manuscripts (Koppel et al., 2018; Maini Rekdal et al., 2019, 
2020; Bess et al., 2020; Bisanz et al., 2020; Pröbstel et al., 2020; Alexander 
et al., 2022; Kyaw et al., 2022; Noecker et al., 2022; Paik et al., 2022). 
These comparative genomics approaches are attractive because 
phenotypes can be screened at a relatively low-throughput scale and 
they bypass the need for genetic tools. This immediately opens up new 
possibilities for the vast majority of gut microbes in which genetic 
manipulation is not yet possible.

Metagenomics is the current state of the art approach for 
cataloging strain variation at massive scales and for mapping strain 
dynamics within samples (Qin et al., 2010; Schloissnig et al., 2013). 
MAGs have allowed for unprecedented analysis of genetic diversity 
among gut microbiomes through binning genome fragments of an 
individual strain from the mixed population. This is typically 
accomplished through examining co-occurrence, co-abundance, 
and sequence composition of the fragmented assembly (Wang et al., 
2015; Zhernakova et al., 2016). The use of MAGs does however have 
some important limitations as it often struggles to bin low coverage/
low abundance organisms and there is a finite probability that when 
two strains are present within a sample at similar abundances, they 
will be combined into a single MAG (Chen et al., 2020). Current 
approaches can detect heterogeneity within genomes on the basis of 
variants and duplication of single copy genes; however, careful 
analysis and polishing is required (Parks et al., 2015; Mineeva et al., 
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2020), while new approaches to separate MAGs into separate strains 
are being developed (Quince et al., 2021). One challenge for the 
generation of high-quality MAGs from metagenomic data is 
limitations in sequencing technologies. Short-read sequencers are 
typically preferred due to lower error rates than long-read 
sequencers, but shorter reads are typically unable to resolve 
repetitive regions of genomes. This has led to the proliferation of 
hybrid assembly approaches combining both long-read and short-
read approaches to improve metagenomic-binning and genome 
assembly (Bertrand et al., 2019); however, recent advances in the 
accuracy of long-read technologies are beginning to enable the 
generation of high-quality MAGs based on long reads alone (Sereika 
et al., 2022).

As with the comparative genomics approaches previously identified, 
SNPs provide a powerful tool for strain genotyping in metagenomic data 
(Truong et  al., 2017; Shi et  al., 2022). One method, StrainPhlAn, 
reconstructs SNPs within species-specific marker genes and uses these 
to infer strain-level phylogenies (Truong et al., 2017). A more recent 
approach, GenoTyper for Prokaryotes (GT-Pro) uses a less 
computationally intensive alignment-free method based on unique 
k-mers that are compared to a catalog of SNPs to more efficiently 
genotype strains (Shi et al., 2022).

Rapid advances in single-cell genomics technologies have 
brought exciting opportunities for microbiome research through 
physical and chemical methods to resolve single strain genomes. 
Flow-Assisted Cell Sorting (FACs) has been used to isolate single 
cells for use in single-cell sequencing (Rinke et  al., 2014). More 
commonly, droplet-based microfluidics have been applied (Lan 
et al., 2017). The droplets trap individual bacterial cells from which 
sequencing libraries are then prepared at the single-cell scale 
(Hosokawa et al., 2017). Unfortunately, these methods often feature 
lower per-cell sequencing depth and require significant 
amplification to generate sufficient material for sequencing which 
limits the ability of these methods to resolve full genome assemblies. 
To aid in overcoming these limitations, single-cell sequencing and 
conventional metagenomic approaches may be combined to improve 
the quality and strain-level resolution (Arikawa et  al., 2021). 

Alternatively chemical methods may be employed such as high-
throughput chromosome conformation capture (Hi-C; Burton et al., 
2014; Du and Sun, 2022). Originally developed for analyzing 
chromatin structure, DNA in close proximity, i.e., belonging to the 
same bacterial chromosome, is ligated together before sequencing, 
revealing which fragments are most likely to be  from the same 
microbial genome (Pal et al., 2019).

Strain diversity as determinant of 
microbiome assembly and function

The biological impact of strain variation is widely recognized in the 
field of bacterial pathogenesis wherein virulence traits are known to vary 
significantly within species. Escherichia coli represents perhaps the best-
known example: members of this species can be the cause of severe 
diarrhea and dysentery (Kopecko et al., 1985), the most common cause 
of urinary tract infection (Johnson, 1991), or beneficial microbes 
administered intentionally as a probiotic to prevent diarrheal illness 
(Henker et al., 2007). Indeed, the virulence properties of many well-
known bacterial pathogens vary significantly as a function of gene 
content and lineage including Clostridioides difficile (Hunt and Ballard, 
2013), the Bacillus cereus group (Ceuppens et al., 2013), Cutibacterium 
[Propionibacterium] acnes (Tomida et al., 2013), and Bacteroides fragilis 
(Pierce and Bernstein, 2016). Bacteroides fragilis exists as one of the most 
common commensals of the human gut microbiome whose colonization 
is established early in life and may be  vertically acquired; however, 
conventional wisdom would suggest that this species is an opportunistic 
pathogen (Carrow et al., 2020). Bacteroides fragilis strains exhibit the 
variable presence of a metalloprotease toxin which disrupts barrier 
function and drives intestinal inflammation (Moncrief et al., 1995); 
however, opposing this function, some strains produce an extracellular 
polysaccharide (polysaccharide A) that helps promote barrier function 
through modulation of regulatory T cells (Round and Mazmanian, 2010).

Strain variation also drives community composition through 
competitive exclusion via a variety of mechanisms. Ecological 
theory dictates that strains or species that occupy the same niche 

FIGURE 2

Schematic representation of comparative genomics analysis to match genotype to phenotype. Phenotype A results from the variable presence of a gene 
(red), phenotype B from a SNP (blue), phenotype C from a structural variant (orange), and phenotype D from a combination of variants: the simultaneous 
presence of structural variation (orange) and a SNP (green).
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will compete resulting in exclusion from the community (Hardin, 
1960). This has been observed in Eggerthella lenta, Bacteroides spp., 
and most recently C. acnes (Hecht et al., 2016; Bisanz et al., 2020; 
Conwill et al., 2022). While the skin can be colonized by multiple 
strains of C. acnes, individual pores contain a clonal strain 
population indicating that there may be  a spatial component to 
strain variation across host-associated microbiomes (Conwill et al., 
2022). These observations have implications for the gut microbiome 
in terms of diversity and the use of fecal microbiota transplants 
(FMTs) to treat diseases. One important aspect of competitive 
exclusion is the timing of a strain being introduced into the 
community as established strains and species are not as likely to 
be  excluded from a community as newly introduced strains 
(Grainger et  al., 2019; Munoz et  al., 2022). This is particularly 
relevant as the gut microbiome is usually inherited from an 
individual’s mother (Mueller et  al., 2015; Asnicar et  al., 2017; 
Duranti et al., 2017). This has been experimentally demonstrated 
with Akkermansia muciniphila strains, wherein mice colonized with 
one strain were resistant to colonization by a second (Munoz et al., 
2022). However, strict strain homogeneity through competitive 
exclusion is not always the case, and some strains can co-exist as 
experimentally demonstrated for Phocaeicola [Bacteroides] vulgatus 
and E. lenta (Bisanz et al., 2020; Munoz et al., 2022). Acquisition of 
genes allowing for exploitation of a new nutrient source may 
partially alleviate this competition as has been engineered into 
Bacteroides spp. (Shepherd et al., 2018).

The ability of microbes to illicit immune responses can also be 
highly strain specific. Various strains of Ruminococcus gnavus, 
A. muciniphila, and B. fragilis can have wide reaching effects on 
modulation of the immune system (Troy and Kasper, 2010; Cassard 
et al., 2016; Henke et al., 2021; Liu et al., 2021). Ruminococcus gnavus 
shows strain-level differences in immune response with distinct immune 
responses found depending on the presence of a biosynthetic pathway 
for production of a capsular polysaccharide (Henke et  al., 2021). 
Similarly, A. muciniphila displays variable anti-inflammatory effects 
through unknown mechanisms (Zhai et al., 2019; Liu et al., 2021). A 
range of immune responses are also detected with Lactobacillus 
paracasei strains which can have a range of inhibiting activation of 
mouse mast cells and human basophils (Cassard et al., 2016).

Other than virulence, perhaps, the best-known examples of strain 
diversity are in drug-microbe interactions. It is becoming increasingly 
acknowledged that there are extensive interactions between gut 
microbes and orally consumed drugs/xenobiotics (Maier et al., 2018; 
Zimmermann et  al., 2019; Klünemann et  al., 2021). These drug 
metabolism traits are particularly interesting as we are quickly gaining 
answers as to how microbes can metabolize drugs, but not why. In 
most cases, we have not determined a fitness advantage from drug 
metabolism which creates the perfect opportunity for these pathways 
to largely exist in the accessory genome. Indeed, we were inspired by 
early work examining strain variation in Lactobacillus spp. (Douillard 
et al., 2013; Smokvina et al., 2013) to map variation in E. lenta, a 
highly prevalent, but relatively understudied member of the gut 
microbiome (Koppel et al., 2018). Eggerthella lenta was known to 
metabolize the cardiac drug digoxin as early as the 1980s (Dobkin 
et  al., 1982); however, the mechanisms were unknown until 2013 
when RNA-seq revealed an operon whose expression was induced by 
the presence of the drug (Haiser et  al., 2013). Using comparative 
genomics approaches, we identified that this operon was part of a 
gene cluster which was variably present across strains of the species 

which explained why the presence of E. lenta was insufficient to 
predict digoxin metabolic activity (Koppel et al., 2018). Taking this a 
step further, we later determined that a single coding variant of the 
active enzyme CGR2 dictated its activity resulting in three phenotypes 
in effect: no metabolism, low metabolism, and high metabolism. 
Similarly, E. lenta operates in a meta-organismal pathway leading to 
the production of phytoestrogens which we mapped to the presence 
of a single enzyme variably present in the genome (Bess et al., 2020). 
Eggerthella lenta also cooperates with Enterococcus faecalis in the 
premature breakdown of the Parkinson’s drug levodopa which is 
determined by a SNP affecting enzyme activity (Maini Rekdal et al., 
2019). Understanding the mechanisms of strain-level variation in 
drug interactions opens up new possibilities for precision medicine 
and pharmacological therapy: i.e., rather than try to sequence 
microbiome composition or quantify specific microbes, we  could 
instead design targeted assays to predict drug metabolism based on 
detection/quantification of specific genes or variants.

Concluding remarks

Advancing microbiome science from a descriptive to a 
mechanistic science requires a detailed understanding of microbial 
function, but these functions are often not conserved at the species 
level. If we stereotype all E. coli as pathogens, or A. muciniphila as 
beneficial, we are likely to miss the trees for the forest. By viewing our 
data through a taxonomic lens, we may lose the ability to find the 
important determinants of microbiome structure and function. 
We need to be aware of strain variation in our data and carefully 
catalog it. Recent advances in sequencing technology are making it 
quickly possible to follow strains in metagenomic samples, but 
we then need databases incorporating functional annotations and 
phenotypic information to draw mechanistic insight from this data. 
By pairing these approaches with wet lab experimentation, we can 
turn strain variation from one of the major challenges in microbiome 
research to one of its greatest tools.
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