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Evolutionary algorithms (EAs) simulate Darwinian evolution and adeptly mimic 
natural evolution. Most EA applications in biology encode high levels of abstraction 
in top-down population ecology models. In contrast, our research merges protein 
alignment algorithms from bioinformatics into codon based EAs that simulate 
molecular protein string evolution from the bottom up. We  apply our EA to 
reconcile a problem in the field of Wolbachia induced cytoplasmic incompatibility 
(CI). Wolbachia is a microbial endosymbiont that lives inside insect cells. CI is 
conditional insect sterility that operates as a toxin antidote (TA) system. Although, 
CI exhibits complex phenotypes not fully explained under a single discrete model. 
We instantiate in-silico genes that control CI, CI factors (cifs), as strings within the 
EA chromosome. We monitor the evolution of their enzymatic activity, binding, 
and cellular localization by applying selective pressure on their primary amino 
acid strings. Our model helps rationalize why two distinct mechanisms of CI 
induction might coexist in nature. We find that nuclear localization signals (NLS) 
and Type IV secretion system signals (T4SS) are of low complexity and evolve 
fast, whereas binding interactions have intermediate complexity, and enzymatic 
activity is the most complex. Our model predicts that as ancestral TA systems 
evolve into eukaryotic CI systems, the placement of NLS or T4SS signals can 
stochastically vary, imparting effects that might impact CI induction mechanics. 
Our model highlights how preconditions and sequence length can bias evolution 
of cifs toward one mechanism or another.
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Introduction

TA systems typically involve two linked genes encoding a toxin and antidote (Yamaguchi 
et al., 2011). They skew Mendelian inheritance in their favor by addicting organisms to the 
presence of an antidote and killing offspring that do not inherit the TA module, via the toxin. 
Thus, they ensure inheritance in the next generation by post segregational killing. Ancestrally, 
TA systems might have arisen as selfish systems linked to the replication of prokaryotic plasmids 
(Rankin et  al., 2012). How TA systems evolve is a chicken-egg paradox: a lone toxin is 
detrimental to host fitness and an antidote without a linked cognate toxin could be beneficial, 
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neutral, or detrimental, dependent on context. Prior models predict 
that TA systems assemble with selection on plasmids in contexts of 
genomic conflict or in situations where antidotes have beneficial 
functions in addition to toxin rescue (Rankin et al., 2012).

Wolbachia are bacteria that live inside insects (Hertig and 
Wolbach, 1924; Hertig, 1936; Werren et al., 2008). Wolbachia have the 
capability to conditionally sterilize mosquitos in a phenotype called 
CI (Laven, 1953, 1967a,b; Yen and Barr, 1971, 1973). CI is a unique 
biological instantiation of a TA system. The CI phenotype is useful to 
applied entomology (Laven, 1967b; Xi et al., 2005; Zheng et al., 2019). 
CI is currently applied as a biocontrol mechanism preventing the 
transmission of mosquito borne diseases across the world and on 
multiple continents in various applications. Mosquitos infected with 
Wolbachia exhibit reduced ability to transmit flaviviruses like Dengue 
and Zika (Teixeira et al., 2008; Ye et al., 2015). Ongoing attempts use 
the selective pressure of cifs to spread beneficial (probiotic) Wolbachia 
infections into wild mosquito populations to limit disease (Ross et al., 
2022). At the molecular level, the beneficial spread of Wolbachia is 
linked to the function of cif TA genes.

Much of the evolutionary dynamics of CI has been well described 
at the population level. CI is common because it increases equilibrium 
frequencies and infection persistence, thereby increasing the chances 
of Wolbachia being transferred to new species hosts (Turelli et al., 
2022). Yet in the insect, selection does not act to preserve or increase 
CI rates (Turelli, 1994). Importantly, evolutionary dynamics and 
selective pressures operating at the lowest molecular level and at the 
moment CI emerged in evolutionary history have never 
been described.

The genes that control this conditional sterility are two linked 
genes dubbed cifs that form complex TA systems (Beckmann and 
Fallon, 2013; Beckmann et al., 2017, 2019b). Uniquely, this TA system 
is viral, bacterial, and eukaryotic because it is encoded within/near 
WO-phages whose genomes reside in intracellular bacterial 
endosymbionts, which reside in insect hosts. The TA systems express 
extended phenotypes impacting the eukaryotic insect host. Cifs are 
uniquely positioned in that their evolutionary origin necessitates a 
functional jump from bacteria to eukaryotes. The cif TA system 
encodes a sperm delivered embryo killer toxin and a cognate rescuing 
antidote. If the insect host loses Wolbachia, remaining toxin sterilizes 
males, and these populations do not reproduce. Therefore, female 
insects keep Wolbachia because the antidotes are useful in the presence 
of toxins encountered in male sperm. Importantly, purifying selection 
does preserve the cif antidotes (Merçot and Poinsot, 1998; Meany 
et al., 2019; Driscoll et al., 2020); and on lower levels in the context of 
genomic conflict, selection can act to assemble the biochemical 
domains of toxin antidote systems (Rankin et al., 2012). Perhaps this 
is how the first CI system assembled. Though once assembled, 
selection on the insect level does not act to preserve the bacterial 
toxins which tend to pseudogenes and/or are replaced by subsequent 
invading cif systems (Martinez et al., 2020; Beckmann et al., 2021).

While molecular details on CI function are emerging, one 
problem is that rules governing induction of sterility via the Wolbachia 
TA system are debated. In general, the system behaves as a classical 
TA module, meaning one gene named cifB is inducer and its cognate 
partner cifA acts as antidote (Beckmann et al., 2019b). However, there 
remains unresolved nuance in the mechanism. Currently all data 
support the hypothesis that the first operon gene, cifA, is antidote 
(Beckmann et al., 2017; Shropshire et al., 2018). However, induction 

of CI and the exact source of the toxicity appears more, or less, 
complex in various models. The two main models each have empirical 
evidence to support them. These models are the TA model (Poinsot 
et al., 2003; Beckmann et al., 2019a,b) and the 2 × 1 model (Shropshire 
et al., 2019; Shropshire and Bordenstein, 2019). The TA model is more 
parsimonious and significant evidence supports it in fruit flies, 
mosquitos, yeast models, and structural studies (Beckmann et al., 
2017, 2019c; Bonneau et al., 2019; Adams et al., 2021; Xiao et al., 2021; 
Horard et al., 2022; Sun et al., 2022). In contrast, the 2 × 1 model posits 
that a single gene acts as rescue factor, but induction of sterility 
requires both cifA and cifB genes (LePage et al., 2017; Shropshire and 
Bordenstein, 2019).

Our hypothesis is that both models coexist in nature as alternate 
variations of the broader TA theme. These variations might arise as CI 
evolves from a simple prokaryotic TA module into a eukaryotic CI 
system (see Figures 1A,B). To explain, induction of sperm sterility in 
a eukaryote via a prokaryotic TA module necessitates the evolution of 
additional functions beyond toxin and antidote. In support of this 
hypothesis, prior models predicted that beneficial functions in 
addition to antidote functionality are prerequisites for TA module 
emergence (Rankin et al., 2012). In our case, Wolbachia must first 
secrete the toxin out one of its Sec-independent secretion systems; for 
the remainder of this study, we implicate the Rickettsiales vir homolog 
(rvh) type IV secretion system (T4SS) for CI protein secretion. T4SS 
substrates require a signal sequence, usually found at the C-terminus. 
Once secreted, the toxin must localize into the nucleus via a nuclear 
localization signal (NLS). Thus in simple terms, for a CI system to 
evolve requires additions of secretion signals and nuclear localization 
signals. In TA systems, the two proteins bind each other. There is a 
likely possibility that binding of cifA to cifB occurs prior to secretion 
and thus one protein might drag the other through a given secretion 
system. Under this hypothesis, it is possible that T4SS and NLS 
sequences could evolve in either antidote or toxin genes in different 
insect hosts. If the cifA antidote acquires an NLS and T4SS signal but 
cifB has neither, this leads to additional complexity in the system 
necessitating cooperative induction of sterility by cifA and cifB (hence 
a 2 × 1). While most empirical work evidences a strict TA in four 
known orthologs (cidwPip, cidwHa, cinwNo, and cinOtt), there is indication 
of 2×1 in two systems (cidwMel and cinwPip). Our research did not focus 
on determining if one model was correct at the complete expense of 
the other, but rather seeks to understand evolutionary pressures and 
selective mechanisms that might bias evolution of one model over 
another. Understanding the precise molecular mechanisms underlying 
the cif TA system and its evolution contributes information to “fine-
tune” Wolbachia based biocontrol. Once we have perfect knowledge 
for how the cif TA sterility is induced, we can design the most efficient 
and parsimonious transgene insertions to reconstruct sterility in 
transgenic mosquitos as a biotechnological tool (i.e., with 2 genes or 1).

It was our goal to gain insights on the molecular evolution of CI 
by modeling CI’s emergence with an evolutionary algorithm. Using 
EAs to model natural evolution has been a productive application 
(Lenski et al., 2003; Messer, 2013; Haller and Messer, 2016; Haller and 
Messer, 2019). Modeling gene drives in mosquitos with EAs, machine 
learning, and computer simulation has provided insights that 
predicted efficacy of actual biocontrol tools (Champer et al., 2018, 
2022; Li and Champer, 2023). Biological evolution can be modeled by 
EAs at different ecological levels. Various abstractions and assumptions 
are made by any given model. EAs are typically top-down ecological 
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models modeling populations of organisms. Top down EAs model 
gene flow of beneficial or deleterious traits. Within populations, each 
organism can be assigned a fitness value. Organisms and their genes 
can then mate, recombine, mutate, and die. These EA implementations 
tend toward Wright-Fisher models and often obey set rules. These 
models are useful for questions on evolutionary theory and adeptly 
model gene drives and selective sweeps, etc. However, the actual 
coded implementations are often abstract and difficult to translate into 
the evolution of amino acid sequence.

Popular bottom-up EA frameworks that modeled evolution 
upwards toward complexity are also abstract because they 
implemented computer assembly functions like “push” and “pop” as 
analogies of protein and metabolic pathways (Lenski et  al., 2003; 
Adami and LaBar, 2015). These studies have demonstrated that in 
bottom-up simulations, simple functions can give rise to more 
complex functions (like add and multiply) through evolution; 

however, these are abstract analogies, not actual DNA code. There is 
a gap in implementations of bottom-up biological models. Bottom-up 
implementations could implement DNA code as the starting point 
and model how code changes. A bottom-up implementation should 
instantiate the lowest levels of selection on actual genes (Dawkins, 
1976) and test the lowest level of function which is protein translations 
of that code. The in silico genes could be mutated and recombined as 
actual DNA molecules and fitness can determined by bioinformatic 
algorithms comparing string sequence similarity to proteins of known 
function. Our coded framework presented herein is novel in 
this respect.

Evolutionary algorithms are perfect for studying protein string 
evolution because the search space of protein strings is vast 
(considering 20 possible amino acids and strings in lengths of 
thousands  = 201000 unique strings). Research implementing codon 
based EAs is in early stages (Loose et al., 2006; Wnętrzak et al., 2018; 

FIGURE 1

Background infographic. (A) Schemas of Wolbachia TA modules in a more ancestral prokaryotic form. To evolve into CI systems, ancestral TA modules 
must add more complex features including an NLS (+ black circle) and a T4SS (+ cyan circle). (B) CI system schemas might evolve into two descriptive 
models which include the 2 × 1 and strict TA model. The location where NLS or T4SS features evolve could impact the mechanistic induction of CI. A 
CI schema where both NLS and T4SS features co-occur in cifA alone is predicted to require both cifA and cifB for induction. In contrast, if these 
features co-occur in cifB, then cifB would be sufficient for induction of CI and behave as a strict TA module. (C) In silico simulation of this evolution 
requires an initial instantiation of a population of TA strings. Our experiments tested three distinct methods of instantiation that include (i) instantiating 
random strings, (ii) instantiating semi-random strings comporting to conserved cif consensus sequence, and (iii) instantiating a single individual and 
deriving an entire population by mutagenesis of that founder. (D) After instantiation of the population, it evolves under the selective pressure of a 
fitness function and follows discrete generations. Our algorithm selects parents by K-tournament and distributes these individuals into a mating pool. 
Offspring are generated by recombination of parents wherein two strings swap discrete sub-strings to create a new child. After recombination, child 
strings are mutated. Fitness of the TA is then evaluated, and survivors are selected based upon truncation survivor selection. In truncation, the 
population is sorted and the lowest fitness individuals that fall below a threshold are culled such that population numbers remain at the carrying 
capacity. The algorithm terminates after 1,000x generations.
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Yoshida et al., 2018; Boone et al., 2021). For example, a few studies 
tested machine learning guided mutations and used EAs to design 
novel antimicrobial peptides (AMPs) (Loose et al., 2006; Yoshida et al., 
2018; Boone et al., 2021). These researchers guided evolution from 
known AMP strings rather than evolving novel de-novo protein 
strings. These studies provide some support for the concept of using 
sequence similarity as a proxy for fitness. Here we  use sequence 
similarity to cif consensus sequences as fitness proxy to process 
simulations orders of magnitude faster than possible with bioassay. To 
gain a better understanding of cif evolution, we encoded cif TA genes 
directly as chromosomes within a population based EA and observed 
the evolution of their strings (see Figures 1C,D).

Materials and methods

EA design

An overlapping generations (μ + λ) EA was coded in Python 31 
where population size (μ) was 5,000 individuals and offspring (λ) was 
100. Other variations were tested (see Figure 2A). Within the EA, code 
classes included an EA class (running the EA simulation functions, 
main methods, and data logging capacities), a TA class (housing the 
chromosome instantiations), and a main driver. The driver receives 
input from an editable JSON configuration file. All configuration files 
and outputs were saved and stored for reproducibility. The random 
seed is configurable for reproducibility.

EA class

EA algorithms are stochastic in nature. Evolutionary trajectories 
can proceed down different routes or converge. Thus, our main EA 
experiments consisted of 30 runs each (Figures 3, 4). Main methods 
within the EA class included class resets (to reset logs and class 
variables after each run); methods for population instantiation. 
In-Silico simulation of this evolution requires an initial instantiation 

1 https://www.python.org/

FIGURE 2

Evolutionary algorithms (EA) parameters were optimized for 
evolution and computational speed. (A) Population parameters were 
pre-tested to configure population (μ) and offspring (λ) sizes for 
subsequent larger experiments. Parameters (Y-axis) and best 
individual fitness (X-axis) were logged after 100 generations of 
simulated evolution. We chose 5 K/100 [see hashtag (#)] for 
population/offspring (μ/λ) because it yielded high fitness, diverse 
outcomes, and fast computation time. (B) EA parameters were tuned 
by recording best fitness after populations [μ/λ: 1000/100] were 
evolved for 100 generations. A baseline configuration (asterisks, *) 
was held constant while individual parameters were varied. Choosing 
the highest yielding fitness configuration for each parameter is 
shown at bottom as the “optimized EA,” though this was not 
necessarily the best because parameters exhibited interdependence. 
The optimized EA and baseline with 4-point crossover 
recombination evolved significantly better than baseline p < 0.0001 
by One-way ANOVA with Tukey post hoc analysis. We used the 
baseline configuration with 4-point crossover recombination for 
subsequent experiments. Results show means and standard 
deviation from five trial runs after 100 generations. To briefly explain 
algorithmic terminology, FPS is fitness proportional parent selection 

(Continued)

which assigns mating probability as proportional to fitness; Elitism 
ranks parents on fitness and sends the most fit individuals into the 
mating pool, recombination swaps DNA from two mated individuals 
at 1, 2, 3, 4, 6, or mixed points respectively; mating choice sorted 
sorts the mating pool and individuals mate with a partner closest to 
their fitness score, mating choice random allows individuals within 
the mating pool to randomly pick any other mate in the population; 
mating choice mating pool allows random choice of mates from 
within the mating pool only; mating choice mixed rolls a dice and 
chooses any method stochastically, mutation rate number indicates 
the number of dice rolls each individual child undergoes for chances 
to iteratively mutate the chromosome (the dice is an equal probability 
of 4 options to do nothing, bit flip, insert, or delete), truncation and 
K-tournament are selection methods described in EA-Class methods 
below, re-instantiation is a method to maintain diversity and it 
instantiates new TA modules from scratch and allows them to 
immigrate into the population at a set rate each generation.

Figure 2 (Continued)
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FIGURE 3

Output data from three large evolution experiments. Columns (i-iii) show results from three different instantiation methods described in Figure 1. Rows 
show average fitness of all TAs within a population versus generations (A,F,K). Average sub-feature fitness of all TAs within a population versus 
generations (B,G,L); Diversity index versus generations, where lower numbers indicate more similarity in string sequence and therefore loss of diversity 
(C,H,M); Average T4SS site location of the population (black line) versus generations (D,I,N); Average NLS site location (black line) of the population 
versus generations (E,J,O). Scoring for T4SS and NLS sites is as follows: a score of 0 indicates that the site evolved in the antidote gene (cifA) and a 1 
indicates that the site evolved in the toxin gene (cifB); therefore a score of 0.5 means that half the population had the site in cifA and the other half had 
the site in cifB. Mean values are plotted with black or colored lines. Standard deviation is marked in gray lines. Bias above 0.5 indicates preferential 
evolution of TA and below 0.5, 2 × 1. Panels (D,I,N) are all significantly different from each other at termination, (p < 0.05) by one-way ANOVA with Tukey 
post hoc analysis. Panels (E,O) were significantly different by the same.
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of a population of TA strings. Our experiments tested three distinct 
methods of instantiation that include (i) instantiating random strings, 
(ii) instantiating semi-random strings comporting to conserved cif 
consensus sequence, and (iii) instantiating a single individual and 
deriving an entire population by mutagenesis of that founder; sorting 
functions that sorted TA populations based on fitness; parent selection 
methods (which finally used K-tournament of K = 5 after preliminary 
testing; see Figure 2B). K-tournament selection runs multiple fitness 
tournaments among a few individuals chosen randomly from the 
population. Winners of a tournament with the best fitness are sent to 
the mating pool array to be selected for recombination. In experiments 
recombination used 4-point crossover recombination, but we tested 
other modes (Figure 2B). Mutation methods utilized an algorithm that 
randomly locates DNA base pairs and flips to a random choice of A, 
T, G, or C. Mutation also encoded insertion and deletion functions 
with randomly sized indels. The mutation method evaluates fitness by 
calling the fitness evaluation method from the TA class (see below). 
After fitness evaluation, survivors were selected via truncation 

survivor selection. Other survivor selection regimes were tested 
(Figure  2B). Truncation sorts the population and culls the lowest 
fitness individuals in a number equivalent to the number of offspring 
added per generation. Thus, carrying capacity remains constant at 
μ  = 5,000. Data logging functions were encoded, for example, 
calculateAverageFitness(), which tallies an average TA fitness. A 
termination condition method was coded but not used in final 
experiments. Logs were recorded in output files and saved. We tracked 
15 quantifiable observations: (1) highestTAFitness_HTF, (2) 
avgBindingFitness_ABF, (3) avgDUBFitness_ADF, (4) avgNucFitness_
ANF, (5) avgTAfitness_ATF, (6) avgToxinLength_ATL, (7) 
avgToxinAALength_ATAL, (8) avgAntidoteLength_AAL, (9) 
avgAntidoteAALength_AAAL, (10) avgTAMutationRate_ATMR, 
(11) avgNLSSITELocation_NLSL, (12) avgTypeIVSITELocation_
TYPL, (13) avgNLSFitness_ANLSF, (14) avgT4SSFitness_AT4F, (15) 
diversityIndex_DI.

TA class

TA class individuals were instantiated with chromosomes 
encoding the string toxin and string antidote in DNA code. TAs 
additionally hold class variables including a nuclease score (measuring 
how well the toxin schema matches a known cin toxin consensus 
sequence) and a deubiquitylating (DUB) score (measuring how well 
the toxin schema matches a known cid toxin consensus sequence) 
(Gillespie et al., 2018). They also hold a NLS score which is determined 
by presence or absence of a “KRAR” string (Rossi et al., 1993) and a 
T4SS score determined by presence or absence of a “R-X(7)-R-X-
R-X-R” string (Vergunst et al., 2005). All functional domains including 
nuclease domain, deubiquitylating domain, NLS, and T4SS signals are 
detected through a pairwise alignment algorithm and can be given 
partial scores if parts of the sequence are present. Pairwise alignment 
is built into the EA by importation of the Biopython2 module’s 
pairwise2 method. “Biopython is a set of freely available tools for 
biological computation written in Python by an international team of 
developers.” The pairwise2 method is called with a − 1 gap penalty, 
a − 0.1 gap extension penalty, and a false condition so that end gaps 
are not penalized. A binding score (measuring how well the pair bind 
each other) is determined by our own algorithm. This algorithm is 
based on a sliding window that slides two strings together in 
comparison to find and tally a score of the best matching residue 
configurations. Precisely 11 charged residues are known to underlie 
cifA and cifB binding (Xiao et al., 2021). Therefore, if a sliding window 
detects an alignment of K with D, a score would be increased by 1 and 
the process continues. Repelling charges are penalized by −1. A total 
matched binding sequence should not exceed 11 binding residues in 
accordance with crystal structure data (Xiao et  al., 2021). Class 
methods within the TA class include standard “getters” and “setters” 
[i.e., setSchemata() which instantiates the toxin strings], a translation 
method that translates the DNA code into proteins, a coded number 
parser to facilitate binding evaluations with integers rather than 
strings (to speed up computation), sub component fitness evaluation 
methods, and a “to string” reporting method.

2 https://biopython.org/

FIGURE 4

Parameters that control bias in the location of NLS and T4SS signals 
were tested. (A) We were able to control starting diversity by 
changing population size (μ). Small populations of 1,000 had 
significantly less diversity than populations of 20,000 by Mann–
Whitney U test. In turn, these changes significantly altered the bias of 
the signal during the course of evolution, but not the final result [see 
dotted line vs. solid line in (B,C); T4SS location and NLS location 
respectively]. The most significant terminal impact on bias of signal 
location was when we increased the average length of the toxins 
(see dashed line in B,C). Panels (B,C) are T4SS and NLS sites is as 
above. Mean values are plotted with black or colored lines. In 
(B) terminal conditions of doubling toxin length to μ = 20 k were 
significantly different for T4SS signal locations (p < 0.05) by unpaired 
t-test with Welch’s correction. These experiments all were 
performed under the third [(iii) founder] method of instantiation.
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Main class

The main driver simply imports and stores the JSON configuration 
files. It instantiates the EA class. Finally, it initiates the simulation.

Calculating fitness

The fitness function for an individual TA pair is defined as the 
sum of its binding score, nuclease score, deubiquitylating score, NLS 
score, and T4SS signal score. Each sub-component fitness can 
maximally be 1 and therefore the max fitness of a perfect TA is 5. To 
elaborate precisely on how sequence similarity is used as a proxy for 
fitness, we describe the situation for DUB fitness. The DUB domain is 
a catalytic sequence of amino acids that conforms to a schema. The 
DUB schema in cifs is precisely, “HWVTLVI---------YY-DSL--------
I---L-----D---------QQ-DG---CG----EN,” where dashes (−) are 
interchangeable spaces (do not cares) and letters are requirements of 
specific amino acids in specific positions. A perfect alignment score 
of 1 for a cif DUB would match this schema. Anything not conforming 
to the schema is penalized by the alignment algorithm for gaps and 
mismatches. The schema for the nuclease domain is as follows, 
“DL-LL-R----------PIIIELK---------------------DLVL----------
PIGLELK.” These two consensus schemas were originally derived 
directly from compilation of diverse CI and CI-like toxins (Gillespie 
et al., 2018). Schemas for NLS and T4SS signals are also pulled from 
literature and listed on the preceding TA Class description. Thus, by 
using sequence similarity to conserved schemas and the binding 
algorithm (described above) we can sum elements for a perfect TA 
fitness score of 5. Parsimony pressure is applied if a TA genome 
exceeds a threshold of 4,500 DNA base pairs (this is an estimate of 
average cif TA size) and pressure increases corresponding to the length 
of the additional extraneous code. Parsimony pressure thus acts to 
minimize the coding length of TA pairs and accurately reflects 
selective pressures inducing reduction of Wolbachia genomes. In toto, 
a final fitness score involves the sum of the five functional component 
scores with a penalty function subtracting a coefficient parsimony 
penalty based on sequence length. All code is publicly available for 
inspection and reuse on github.

Experimental setup

The EA evolves populations of TAs and evaluates their fitness. 
Simulations were initialized via three distinct methods described in 
Figure  1C. How the simulation is initiated impacts the levels of 
inherent diversity in the starter population. Methods i–iii decrease in 
starting diversity from most to least, respectively. After 1,000 
generations the simulation is terminated, and data collected. Data 
collected is given above and was graphed in Graphpad’s Prism 
software. Experiments were conducted with 30 runs each.

Statistical analysis

For experiments generating multiple comparisons like optimizing 
the EA (Figures 2, 3) we employed one-way ANOVA with Tukey post 

hoc analysis using Graphpad Prism software. We compared values 
present at the final generation at termination of the simulation. 
p-values were considered significant if less than the standard 0.05. In 
Figure 4, terminal data were compared using unpaired two-tailed 
t-test with Welch’s correction.

Results and discussion

Validating and tuning the EA’s fitness 
function

One prerequisite of implementing an EA is an ability to evaluate 
fitness of individuals. A protein’s function and thus its fitness is 
encoded in primary structure (amino acid strings). Protein function 
can be predicted by comparing strings to others with known function. 
Therefore, we use sequence similarity to cif domains as a proxy of 
fitness and thereby apply selective pressure. In our EA an individual 
in-silico cif is constituted of the two DNA genes and their translated 
protein strings. Many individual TA pairs are instantiated within 
populations. The EA mutates and recombines them exactly as DNA 
can mutate and recombine. Fitness of individual TA pairs is modelled 
as a sum of (1) how well a toxin can kill a cell (based on sequence 
similarity to known killer toxin domains from cins and cids) and (2) 
how well the antidote binds its partner toxin (modeled as matching 
charged residues within cognate TA pairs). Additionally, we add (3) 
NLS and (4) T4SS signal domains as additional summed components 
of fitness. We then quantified where NLS and T4SS signals evolved 
during simulations (in cifA or cifB) and tracked biased emergence of 
2×1 versus TA.

After initial design (Figure  1), coding, and parameter 
optimization (Figure  2), we  determined that the EA evolved 
efficiently and observed that population sizes of 5,000 individuals 
with offspring sizes of 100 individuals were optimal because they 
yielded high fitness, diverse outcomes, and fast computation time 
(Figure 2A). These assumptions have flaws (for example nature is not 
an algorithm that optimizes parameters to speed up evolution; 
discussed below), but these settings served as a starting point. Next, 
we tested different algorithmic methodologies for parent selection, 
recombination, mutation, survivor selection, and a “re-instantiation” 
method immigrating 10, 1%, or 0% de-novo individuals (described 
in methods). Results show means and standard deviation from five 
trial runs after 100 generations. Our goal was to determine optimal 
algorithms for maximizing cif fitness within simulation time periods. 
After observing EA behavior, we determined to use a “baseline” 
configuration of K-tournament selection where K  = 5 for parent 
selection. Selected parents are transitioned to the mating pool where 
mating only occurs between individuals within that selective 
sub-population. Mating of TA parents is implemented with 4-point 
crossover recombination with a self-adaptive mutation rate to 
generate offspring TAs. The self-adaptive mutation rate is encoded 
within an individual’s chromosome and can change if higher or 
lower mutation rates contribute to better fitness. Offspring TAs are 
loaded back into the main population (μ + λ) and compete for 
survival via truncation, which culls the lowest fitness individuals. 
Subsequent experiments used these conditions unless otherwise  
specified.
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Tracking evolution of cif domains shows 
that NLS and T4SS signals are quick to 
evolve

We performed three large experiments based upon three methods 
of instantiating populations. Our intention was to determine if starting 
preconditions biased preferential evolution of NLS or T4SS signals in 
cifA versus cifB. Any bias might indicate conditions under which 2 × 1 
or strict TA mechanisms would arise from the evolutionary process. 
In these first tests, the EA successfully evolved and evaluated the 
fitness of TA modules. In all experiments fitness of individuals 
gradually increased toward 5 (Figures  3A,F,K). The rising fitness 
values over the course of the simulation indicates that our code is 
selecting for progressive cif assembly. All three simulations show a 
start at low average TA fitness which improves as more successful TAs 
evolve and overtake the population.

We tracked each sub-component of fitness including nuclease, 
DUB, NLS, and T4SS signal evolution (Figures  3B,G,L). As each 
component assembles in the evolving cifs, their corresponding fitness 
values move upwards to 1. The speed at which each domain reaches 1 
indicates how difficult it is to evolve. These data also indicate our code 
works correctly as fitness of each sub-component increases with each 
generation towards a max score of 1. Importantly these data also 
indicate the inherent complexity of each sub-component and clearly 
show that NLS and T4SS signals are relatively quick to evolve in 
simulations (Figure 3; green and orange lines respectively). Binding is 
of intermediate complexity and arises slower (Figure 3; yellow lines). 
Nuclease and DUB catalytic domains are slow to evolve and do not 
completely reach perfect consensus sequences within the timeline of 
the evolutionary experiment (Figure  3; black and purple lines 
respectively). These data are in concordance with the given complexity 
of the domains. For example, the NLS is only 4 residues (“KRAR”) 
whereas max binding fitness requires 11 matching residues in both 
toxin and antidote, and consensus sequences of catalytic domains 
must match 23 conserved residues within their schemas.

The five components’ relative evolvability (or inherent speed of 
their evolution) indicates that CI systems might frequently lose, 
replace, adapt, and move NLS and T4SS signals, whereas binding and 
catalytic domains are more likely to remain conserved in-place due to 
difficulty of evolving them in the first place. If they are destroyed, they 
cannot quickly be replaced, whereas NLS and T4SS signals might 
be “fungible.” We note that a full spectrum of T4SS signals has yet to 
be  identified and this simulation only implements one example 
(Atmakuri et  al., 2003; Nagai et  al., 2005; Schulein et  al., 2005; 
Vergunst et al., 2005; Huang et al., 2011).

To facilitate data interpretation, we point out that Figures 3A–C, 
F–H,K–M are simply controls that demonstrate that the simulations 
are programmed correctly. The results leading to conclusions about 
2 × 1 vs. TA systems are contained in Figures 3D,E,I,J,N,O. These data 
plot the proportion of T4SS signals found in cifA/cifB (Figures 3D,I,N) 
and the proportion of NLS signals found in cifA/cifB (Figures 3E,J,O) 
for the populations under the three different simulations. In the plots, 
a score of 0 (below the midline and into the blue) indicates that the 
site evolved in the antidote gene (cifA) and implies 2 × 1 function has 
evolved whereas a score of 1 (above the midline and into the salmon) 
indicates that the site evolved in the toxin gene (cifB) implying a TA 
function has evolved; a score of 0.5 means that half the population had 
these sites in cifA and the other half had the site in cifB.

In many simulations, the algorithm terminates with both (2 × 1 
and TA) models co-existing. These data indicate that both strict TA 
and 2 × 1 systems could co-exist and might even inter-convert between 
mechanisms on evolutionary time scales with drift, mutation, and 
recombination. These in-silico observations are congruent with 
empirical literature demonstrating both systems are apparently extant 
(Beckmann et al., 2017; LePage et al., 2017; Shropshire et al., 2018; 
Shropshire and Bordenstein, 2019; Adams et  al., 2021; Sun et  al., 
2022). Cautiously, we note that these observations are premised on 
assumptions that there must be  some conditions selecting for the 
evolution of CI; these ecological conditions are not yet completely 
defined (Turelli, 1994; Martinez et al., 2020; Beckmann et al., 2021) 
yet must exist under some context that gives rise to CI and cifs; 
perhaps amongst discrete spatial limitations and genomic 
competitions (Rankin et al., 2012). Importantly, our model simply 
justifies how multiple CI mechanisms might evolve to coexist on the 
amino acid level.

Parameters of simulations bias evolution of 
TA versus 2 × 1

When we measured where NLS and T4SS signals evolved (in cifA 
or cifB) under three different starting conditions [method (i) random, 
(ii) consensus, and (iii) founder; see Figures 1C,D] we detected biases 
in the evolutionary trajectory of one model over another (Figures 3D,I,
N,E,J,O). After random instantiation (method i.) both NLS and T4SS 
signals’ scores were slightly less than 0.5 indicating a slight preference 
for evolution of those sequences in cifA genes (Figures 3D,E). After 
semi-random instantiation (method ii.) there was strong bias to evolve 
the T4SS within cifA genes indicating a bias toward 2 × 1 (Figure 3I). 
Only in the third method did both NLS and T4SS signals preferentially 
evolve in the cifB gene, thereby indicating bias toward TA mechanisms 
(Figures  3N,O). Each method showed statistically different 
termination conditions for T4SS locations with all p-values <0.05. 
Method i  significantly differed from method iii with respect to 
termination condition of NLS signal. Importantly, these results 
indicate that our model can detect significant evolutionary bias toward 
one mechanism over another and that preconditions at the start of 
evolution can bias the evolutionary trajectory toward either 2 × 1 or 
TA mechanisms.

We next sought to understand the conditions that drove biased 
evolution of one mechanism over another. Interestingly, some Culex 
mosquito populations maintain Wolbachia populations that contain 
multiple diversifying cid systems (Altinli et al., 2018; Bonneau et al., 
2019). To monitor cif genetic diversity within the populations 
we  tracked a diversity index, which was determined by randomly 
sampling 10 toxins from the population each generation and 
calculating the average similarity of those 10 toxins’ amino acid 
strings. In populations where individual TAs fix and overtake the 
population, diversity decreases to zero (Figures 3C,H,M). After 1,000 
generations, most populations are overtaken by one or a few TAs of 
high fitness. In method (iii), which resulted in biased evolution of 
strict TA systems, the diversity index was lowest (see Figure 3M). 
We tested whether diversity directly drove bias by altering the relative 
levels of genetic diversity within the population. We controlled this by 
simply changing population size (μ). Smaller populations carried less 
diversity (Figure 4A). The relative diversity did alter the course and 
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path of evolution, but not the outcome, which always converged on 
TA mechanisms (Figures 4B,C). Thus, population diversity did not 
drive the bias toward either TA or 2 × 1. We next tested whether length 
of the toxin protein impacted the outcome. When we doubled the size 
of the average size of the toxins, we significantly raised the bias of the 
model toward the TA model (Figure 4). We discuss the theoretical 
impacts of these observations below. Importantly, these observations 
demonstrate that we have successfully encoded an EA that evolves and 
tracks cif amino acid evolution.

To elaborate on the question of which instantiation method is 
more biologically realistic, we suggest the following thoughts. One 
assumption is that a prokaryotic TA model preceded the evolution of 
CI. There is evidence for this in the fact that cif operons have been 
observed within plasmids of Rickettsia (a sister lineage of Wolbachia), 
lending plausibility to the hypothesis that CI emerged from an 
ancestral prokaryotic TA plasmid selection system (Gillespie et al., 
2018). If this hypothesis is correct, method (i) random instantiation, 
is not biologically relevant as it begins selection on all four components 
simultaneously from completely random sequences. In contrast, 
method (ii) assumes a prokaryotic TA system already exists and 
reasonably comports with some known toxin consensus sequences 
then selects for the addition of NLS and T4SS signals in the jump from 
prokaryotic TA to eukaryotic CI. This method is biologically relevant 
only for the first emergence of CI’s evolution in deep evolutionary 
history. In that situation and according to the data observed here, this 
model shows preference for the evolution of 2×1 systems, but not to 
the complete exclusion of TA systems. The third instantiation method 
which started a population based on an individual founding sequence, 
method (iii), exhibited strong bias of NLS and T4SS assembly in cifB 
genes, indicating strong preference for a strict TA functionality. 
Notably, this model had the least diversity within its population and 
likely reflects more accurately the actual evolution in Wolbachia 
systems where an insect is colonized by a founder strain and diversity 
is only encountered in sporadic co-infections that only occur rarely in 
evolutionary history, but are likely the source for CI gene evolution if 
phages exchange genes during coinfection. Therefore, our analysis can 
explain the observed bias in favor of strict TA functionality by about 
60% of studied cif orthologs; notably in our simulation method (iii) 
the bias was also about 60%. To be cautious, however, we note that 
only ~6 ortholog TA pairs have been studied in detail and it remains 
to be  seen whether the observed frequency of TA or 2 × 1 
functionalities is some relic of sample bias. After emergence of TAs, 
our model’s data predicts they flux periodically from 2 × 1 to strict 
TA. Future studies can utilize this framework to determine more 
conditions that give rise to 2 × 1 versus TA systems.

Increasing length of toxin biases evolution 
toward TA mechanisms

Instantiation method (iii), where a population is generated by a 
founder, more accurately reflect the day-to-day evolution of Wolbachia 
organisms in their hosts. In each insect, the Wolbachia encountered 
will be  entirely derived from the ancestor of that infection and 
therefore recombination with sequences of radically different cifs is 
unlikely, though not impossible due to mobility of WO phage viruses 
and infrequent co-infections. Method (iii) most accurately reflects 
these conditions and in this model, there was strong bias toward the 

evolution of strict TA functionality (Figure 3). This suggests that over 
time, most (~3/4) CI systems should end up in a state of strict TA 
functionality with some variation induced by ongoing flux of NLS and 
T4SS signals. One of the key factors seemingly controlling this 
evolution is simply the length of the corresponding antidote and toxin 
(Figure 4). Because the NLS and T4SS signals are of low complexity 
and evolve quickly, they should stochastically arise more often in what 
is the longer gene of the pair. Of all syntenic cif operons, the length of 
the toxin is always longer than the length of the antidote. This also 
indicates a simple bias toward strict TA if NLS and T4SS signals 
simply drift into the larger ORF. Biology is complex, yet factors having 
the biggest role in these mechanistic biases might be as simple as gene 
length. However, sequence length does not explain everything about 
the model. In data from method (ii), where the strongest bias toward 
2 × 1 was observed, the toxins and antidotes on average are the same 
size. Therefore, size does not account for all the forces driving bias in 
either direction.

Conclusion, future directions, and 
limitations

The hypotheses and take-homes from our model are thus: (1) CI 
might evolve from less complex prokaryotic TA systems (Figure 1). 
(2) TA systems can convert to CI systems by the addition of at 
minimum NLS and T4SS signals (Figure 1) though these domains 
may not be completely sufficient. (3) Where NLS and T4SS signals 
evolve (in cifA or cifB) is predicted to be the determinant of 2 × 1 or 
strict TA mechanics (Figure 1). (4) In cases where CI and cifs diverge 
from a single founder, method (iii), the evolution is biased toward 
strict TA systems, but not at full exclusion of 2 × 1 systems 
(Figures 3N,O). (5) In our model, sequence length can predispose 
bias of signal evolution in a location; simply meaning that if B genes 
are longer than A genes, it is more likely that NLS and T4SS signals 
will arise inside them first. Finally, (6) Codon-based EAs can 
be applied in a bottom-up approach to address questions related to 
the evolution of protein strings.

In future experiments we plan to utilize this framework to test 
additional sequences of NLS and T4SS signals. Importantly, the signals 
we used are not the only ones that exist in nature. There can be cryptic 
and/or bi-partite combinatorial sequence motifs that contribute to 
secretion and localization (Schulein et al., 2005). To add to the nuance, 
our algorithm does not account for redundant sequences. For 
example, it does not quantify if additional NLS or T4SS signals evolve 
elsewhere, beyond the first. It would be interesting to re-program the 
system to measure and tally if multiple NLS and T4SS signals are 
evolving and where they are. One prediction our model makes is that 
because NLS and T4SS signals are of low complexity, there may 
be  multiple redundant signals within the same gene. In future 
experiments we will look for this.

Our model makes many assumptions. One assumption we made, 
to begin analysis somewhere, is that the parameters causing the 
fastest evolution of cifs in simulations were apt to simulate the natural 
evolutionary dynamics of these TA modules. However, evolution 
within the natural organism might not be so ideal. Therefore, favoring 
the most efficient methodologies and parameters to evolve high 
fitness quickly might be  incongruent with nature. Although 
we grounded the evolution of the EA in real biology using actual cif 
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sequences and known binding features. The benefit of our coded 
framework is that it can be  modified to test and address future 
criticisms and hypotheses. For example, while we  have only 
implemented the 2 × 1 and strict TA mechanisms, if ever a possibility 
of a third mechanism is observed or postulated, we can add that 
possibility to the code base.

Finally, our model encodes and models evolution of the most 
primal or basal level of CI (the amino acids). It is not an ecological 
model assessing TA allele fixation in populations. It would 
be inappropriate to directly compare our model with prior ecological 
models (Turelli, 1994; Rankin et al., 2012); although our model could 
be imported into those models as a foundation. The natural evolution 
of selfish TA elements involves multiple levels of evolutionary 
dynamics. For example, cif systems exist within WO-phages that exist 
within Wolbachia bacteria that live within insect hosts that live within 
populations. Cifs impact evolution and population dynamics on all 
these levels. Future models might incorporate our codon-based EA as 
a subcomponent of a larger multi-competitive EA framework. Such a 
program might provide vast insights into the complex evolutionary 
dynamics inherent to Wolbachia biology and make predictions about 
actual CI gene function.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

JB conceived of, conducted the experiments, and wrote the first 
draft manuscript. DT conceived of experiments and edited the 

manuscript. JG edited the manuscript. All authors contributed to the 
article and approved the submitted version.

Funding

Funding was provided by Auburn University’s Department of 
Entomology and Plant Pathology startup funds (JB) and US 
Department of Agriculture Hatch Grant USDA AFRI (ALA015-4-
19178) and USDA HATCH (ALA015-1-18014). JG acknowledges 
support from the NIH/NIAID (R21 AI146773, R21 AI156762, and 
R21 AI166832).

Acknowledgments

We thank Jason Barbieri, David Edwards, and Dennis Brown for 
constructive comments on the project design and manuscript.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Adami, C., and LaBar, T. (2015). From entropy to information: biased typewriters and 

the origin of life. ArXiv. Available at: https://arxiv.org/abs/1506.06988

Adams, K. L., Abernathy, D. G., Willett, B. C., Selland, E. K., Itoe, M. A., and 
Catteruccia, F. (2021). Wolbachia cifB induces cytoplasmic incompatibility in the malaria 
mosquito vector. Nat. Microbiol. 6, 1575–1582. doi: 10.1038/s41564-021-00998-6

Altinli, M., Gunay, F., Alten, B., Weill, M., and Sicard, M. (2018). Wolbachia diversity 
and cytoplasmic incompatibility patterns in Culex pipiens populations in Turkey. Parasit. 
Vectors 11:198. doi: 10.1186/s13071-018-2777-9

Atmakuri, K., Ding, Z., and Christie, P. J. (2003). VirE2, a type IV secretion substrate, 
interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens. Mol. 
Microbiol. 49, 1699–1713. doi: 10.1046/j.1365-2958.2003.03669.x

Beckmann, J. F., Bonneau, M., Chen, H., Hochstrasser, M., Poinsot, D., Merçot, H., 
et al. (2019b). The toxin-antidote model of cytoplasmic incompatibility: genetics 
and evolutionary implications. Trends Genet. 35, 175–185. doi: 10.1016/j.tig. 
2018.12.004

Beckmann, J. F., Bonneau, M., Chen, H., Hochstrasser, M., Poinsot, D., Merçot, H., 
et al. (2019a). Caution does not preclude predictive and testable models of cytoplasmic 
incompatibility: a reply to Shropshire et al. Trends Genet. 35, 399–400. doi: 10.1016/j.
tig.2019.03.002

Beckmann, J. F., and Fallon, A. M. (2013). Detection of the Wolbachia protein 
WPIP0282 in mosquito spermathecae: implications for cytoplasmic incompatibility. 
Insect Biochem. Mol. Biol. 43, 867–878. doi: 10.1016/j.ibmb.2013.07.002

Beckmann, J. F., Ronau, J. A., and Hochstrasser, M. (2017). A Wolbachia 
deubiquitylating enzyme induces cytoplasmic incompatibility. Nat. Microbiol. 2:17007. 
doi: 10.1038/nmicrobiol.2017.7

Beckmann, J. F., Sharma, G. D., Mendez, L., Chen, H., and Hochstrasser, M. (2019c). 
The Wolbachia cytoplasmic incompatibility enzyme CidB targets nuclear import and 
protamine-histone exchange factors. eLife 8:e50026. doi: 10.7554/eLife. 
50026

Beckmann, J. F., Van Vaerenberghe, K., Akwa, D. E., and Cooper, B. S. (2021). A single 
mutation weakens symbiont-induced reproductive manipulation through reductions in 
deubiquitylation efficiency. Proc. Natl. Acad. Sci. 118:e2113271118. doi: 10.1073/
pnas.2113271118

Bonneau, M., Caputo, B., Ligier, A., Caparros, R., Unal, S., Perriat-Sanguinet, M., et al. 
(2019). Variation in Wolbachia cidB gene, but not cidA, is associated with cytoplasmic 
incompatibility mod phenotype diversity in Culex pipiens. Mol. Ecol. 28, 4725–4736. doi: 
10.1111/mec.15252

Boone, K., Wisdom, C., Camarda, K., Spencer, P., and Tamerler, C. (2021). Combining 
genetic algorithm with machine learning strategies for designing potent antimicrobial 
peptides. BMC Bioinform. 22:239. doi: 10.1186/s12859-021-04156-x

Champer, J., Liu, J., Oh, S. Y., Reeves, R., Luthra, A., Oakes, N., et al. (2018). Reducing 
resistance allele formation in CRISPR gene drive. Proc. Natl. Acad. Sci. 115, 5522–5527. 
doi: 10.1073/pnas.1720354115

Champer, S. E., Oakes, N., Sharma, R., García-Díaz, P., Champer, J., and Messer, P. W. 
(2022). Modeling CRISPR gene drives for suppression of invasive rodents using a 
supervised machine learning framework. PLoS Comput. Biol. 17:e1009660. doi: 10.1371/
journal.pcbi.1009660

Dawkins, R. (1976). The selfish gene. New York: Oxford University Press.

Driscoll, T. P., Verhoeve, V. I., Brockway, C., Shrewsberry, D. L., Plumer, M., 
Sevdalis, S. E., et al. (2020). Evolution of Wolbachia mutualism and reproductive 

https://doi.org/10.3389/fmicb.2023.1116766
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://arxiv.org/abs/1506.06988
https://doi.org/10.1038/s41564-021-00998-6
https://doi.org/10.1186/s13071-018-2777-9
https://doi.org/10.1046/j.1365-2958.2003.03669.x
https://doi.org/10.1016/j.tig.2018.12.004
https://doi.org/10.1016/j.tig.2018.12.004
https://doi.org/10.1016/j.tig.2019.03.002
https://doi.org/10.1016/j.tig.2019.03.002
https://doi.org/10.1016/j.ibmb.2013.07.002
https://doi.org/10.1038/nmicrobiol.2017.7
https://doi.org/10.7554/eLife.50026
https://doi.org/10.7554/eLife.50026
https://doi.org/10.1073/pnas.2113271118
https://doi.org/10.1073/pnas.2113271118
https://doi.org/10.1111/mec.15252
https://doi.org/10.1186/s12859-021-04156-x
https://doi.org/10.1073/pnas.1720354115
https://doi.org/10.1371/journal.pcbi.1009660
https://doi.org/10.1371/journal.pcbi.1009660


Beckmann et al. 10.3389/fmicb.2023.1116766

Frontiers in Microbiology 11 frontiersin.org

parasitism: insight from two novel strains that co-infect cat fleas. PeerJ 8:e10646. doi: 
10.7717/peerj.10646

Gillespie, J. J., Driscoll, T. P., Verhoeve, V. I., Rahman, M. S., Macaluso, K. R., and 
Azad, A. F. (2018). A tangled web: origins of reproductive parasitism. Genome Biol. Evol. 
10, 2292–2309. doi: 10.1093/gbe/evy159

Haller, B. C., and Messer, P. W. (2016). SLiM 2: flexible, interactive forward genetic 
simulations. Mol. Biol. Evol. 34, 230–240. doi: 10.1093/molbev/msw211

Haller, B. C., and Messer, P. W. (2019). SLiM 3: forward genetic simulations beyond 
the Wright–fisher model. Mol. Biol. Evol. 36, 632–637. doi: 10.1093/molbev/msy228

Hertig, M. (1936). The Rickettsia, Wolbachia pipientis (gen. Et sp.n.) and associated 
inclusions of the mosquito, Culex pipiens. Parasitology 28, 453–486. doi: 10.1017/
S0031182000022666

Hertig, M., and Wolbach, S. B. (1924). Studies on Rickettsia-like micro-organisms in 
insects. J Med Res 44, 329–374.7.

Horard, B., Terretaz, K., Gosselin-Grenet, A. S., Sobry, H., Sicard, M., Landmann, F., 
et al. (2022). Paternal transmission of the Wolbachia CidB toxin underlies cytoplasmic 
incompatibility. Curr. Biol. 32, 1319–1331.e5. doi: 10.1016/j.cub.2022.01.052

Huang, L., Boyd, D., Amyot, W. M., Hempstead, A. D., Luo, Z. Q., O'Connor, T. J., et al. 
(2011). The E block motif is associated with Legionella pneumophila translocated 
substrates. Cell. Microbiol. 13, 227–245. doi: 10.1111/j.1462-5822.2010.01531.x

Laven, H. (1953). Reciprocally differentiable crossing of mosquitoes (Culicidae) and 
its significance for plasmatic heredity. Z. Indukt. Abstamm. Vererbungsl. 85, 118–136.

Laven, H. (1967a). Chapter 7: speciation and evolution in Culex pipiens, vol. 251 
(Elselvier: Academic Press), 251–275.

Laven, H. (1967b). Eradication of Culex Pipiens Fatigans through cytoplasmic 
incompatibility. Nature 216, 383–384. doi: 10.1038/216383a0

Lenski, R. E., Ofria, C., Pennock, R. T., and Adami, C. (2003). The evolutionary origin 
of complex features. Nature 423, 139–144. doi: 10.1038/nature01568

LePage, D. P., Metcalf, J. A., Bordenstein, S. R., On, J., Perlmutter, J. I., Shropshire, J. D., 
et al. (2017). Prophage WO genes recapitulate and enhance Wolbachia-induced 
cytoplasmic incompatibility. Nature 543, 243–247. doi: 10.1038/nature21391

Li, J., and Champer, J. (2023). Harnessing Wolbachia cytoplasmic incompatibility 
alleles for confined gene drive: a modeling study. PLoS Genet. 19:e1010591. doi: 10.1371/
journal.pgen.1010591

Loose, C., Jensen, K., Rigoutsos, I., and Stephanopoulos, G. (2006). A linguistic model 
for the rational design of antimicrobial peptides. Nature 443, 867–869. doi: 10.1038/
nature05233

Martinez, J., Klasson, L., Welch, J. J., and Jiggins, F. M. (2020). Life and death of selfish 
genes: comparative genomics reveals the dynamic evolution of cytoplasmic 
incompatibility. Mol. Biol. Evol. 38, 2–15. doi: 10.1093/molbev/msaa209

Meany, M. K., Conner, W. R., Richter, S. V., Bailey, J. A., Turelli, M., and Cooper, B. S. 
(2019). Loss of cytoplasmic incompatibility and minimal fecundity effects explain 
relatively low Wolbachia frequencies in Drosophila mauritiana. Evolution 73, 1278–1295. 
doi: 10.1111/evo.13745

Merçot, H., and Poinsot, D. (1998). And discovered on Mount Kilimanjaro. Nature 
391:853. doi: 10.1038/36021

Messer, P. W. (2013). SLiM: simulating evolution with selection and linkage. Genetics 
194, 1037–1039. doi: 10.1534/genetics.113.152181

Nagai, H., Cambronne, E. D., Kagan, J. C., Amor, J. C., Kahn, R. A., and Roy, C. R. 
(2005). A C-terminal translocation signal required for dot/Icm-dependent delivery of 
the Legionella RalF protein to host cells. Proc. Natl. Acad. Sci. 102, 826–831. doi: 
10.1073/pnas.0406239101

Poinsot, D., Charlat, S., and Mercot, H. (2003). On the mechanism of Wolbachia-
induced cytoplasmic incompatibility: confronting the models with the facts. BioEssays 
25, 259–265. doi: 10.1002/bies.10234

Rankin, D. J., Turner, L. A., Heinemann, J. A., and Brown, S. P. (2012). The coevolution 
of toxin and antitoxin genes drives the dynamics of bacterial addiction complexes and 
intragenomic conflict. Proc. Biol. Sci. 279, 3706–3715. doi: 10.1098/rspb.2012.0942

Ross, P. A., Robinson, K. L., Yang, Q., Callahan, A. G., Schmidt, T. L., Axford, J. K., 
et al. (2022). A decade of stability for wMel Wolbachia in natural Aedes aegypti 
populations. PLoS Pathog. 18:e1010256. doi: 10.1371/journal.ppat.1010256

Rossi, L., Hohn, B., and Tinland, B. (1993). The VirD2 protein of Agrobacterium 
tumefaciens carries nuclear localization signals important for transfer of T-DNA to plant. 
Mol Gen Genet 239, 345–353. doi: 10.1007/bf00276932

Schulein, R., Guye, P., Rhomberg, T. A., Schmid, M. C., Schröder, G., Vergunst, A. C., 
et al. (2005). A bipartite signal mediates the transfer of type IV secretion substrates of 
Bartonella henselae into human cells. Proc. Natl. Acad. Sci. U. S. A. 102, 856–861. doi: 
10.1073/pnas.0406796102

Shropshire, J. D., and Bordenstein, S. R. (2019). Two-by-one model of cytoplasmic 
incompatibility: synthetic recapitulation by transgenic expression of cifA and cifB in 
Drosophila. PLoS Genet. 15:e1008221. doi: 10.1371/journal.pgen.1008221

Shropshire, J. D., Leigh, B., Bordenstein, S. R., Duplouy, A., Riegler, M., Brownlie, J. C., 
et al. (2019). Models and nomenclature for cytoplasmic incompatibility: caution over 
premature conclusions - a response to Beckmann et al. Trends Genet. 35, 397–399. doi: 
10.1016/j.tig.2019.03.004

Shropshire, J. D., On, J., Layton, E. M., Zhou, H., and Bordenstein, S. R. (2018). One 
prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. 
Proc. Natl. Acad. Sci. 115, 4987–4991. doi: 10.1073/pnas.1800650115

Sun, G., Zhang, M., Chen, H., and Hochstrasser, M. (2022). The CinB nuclease from 
wNo Wolbachia is sufficient for induction of cytoplasmic incompatibility in Drosophila. 
MBio 13, e03177–e03121. doi: 10.1128/mbio.03177-21

Teixeira, L., Ferreira, Á., and Ashburner, M. (2008). The bacterial symbiont Wolbachia 
induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 
6:e1000002. doi: 10.1371/journal.pbio.1000002

Turelli, M. (1994). Evolution of incompatibility-inducing microbes and their hosts. 
Evolution 48, 1500–1513. doi: 10.1111/j.1558-5646.1994.tb02192.x

Turelli, M., Katznelson, A., and Ginsberg, P. S. (2022). Why Wolbachia−induced 
cytoplasmic incompatibility is so common. Proc. Natl. Acad. Sci. 119:e2211637119. doi: 
10.1073/pnas.2211637119

Vergunst, A. C., van Lier, M. C. M., den Dulk-Ras, A., Grosse Stüve, T. A., 
Ouwehand, A., and Hooykaas, P. J. J. (2005). Positive charge is an important feature of 
the C-terminal transport signal of the VirB/D4-translocated proteins of Agrobacterium. 
Proc. Natl. Acad. Sci. 102, 832–837. doi: 10.1073/pnas.0406241102

Werren, J. H., Baldo, L., and Clark, M. E. (2008). Wolbachia: master manipulators of 
invertebrate biology. Nat. Rev. Microbiol. 6, 741–751. doi: 10.1038/nrmicro1969

Wnętrzak, M., Błażej, P., Mackiewicz, D., and Mackiewicz, P. (2018). The optimality 
of the standard genetic code assessed by an eight-objective evolutionary algorithm. BMC 
Evol. Biol. 18:192. doi: 10.1186/s12862-018-1304-0

Xi, Z., Khoo, C. C., and Dobson, S. L. (2005). Wolbachia establishment and invasion 
in an Aedes aegypti laboratory population. Science 310, 326–328. doi: 10.1126/
science.1117607

Xiao, Y., Chen, H., Wang, H., Zhang, M., Chen, X., Berk, J. M., et al. (2021). Structural 
and mechanistic insights into the complexes formed by Wolbachia cytoplasmic 
incompatibility factors. Proc. Natl. Acad. Sci. 118:e2107699118. doi: 10.1073/
pnas.2107699118

Yamaguchi, Y., Park, J. H., and Inouye, M. (2011). Toxin-antitoxin systems in 
bacteria and archaea. Annu. Rev. Genet. 45, 61–79. doi: 10.1146/annurev-
genet-110410-132412

Ye, Y. H., Carrasco, A. M., Frentiu, F. D., Chenoweth, S. F., Beebe, N. W., van den 
Hurk, A. F., et al. (2015). Wolbachia reduces the transmission potential of dengue-
infected Aedes aegypti. PLoS Negl. Trop. Dis. 9:e0003894. doi: 10.1371/journal.
pntd.0003894

Yen, J. H., and Barr, A. R. (1971). New hypothesis of the cause of cytoplasmic 
incompatibility in Culex pipiens L. Nature 232, 657–658. doi: 10.1038/232657a0

Yen, J. H., and Barr, A. R. (1973). The etiological agent of cytoplasmic 
incompatibility in Culex pipiens. J. Invertebr. Pathol. 22, 242–250. doi: 10.1016/ 
0022-2011(73)90141-9

Yoshida, M., Hinkley, T., Tsuda, S., Abul-Haija, Y. M., McBurney, R. T., Kulikov, V., 
et al. (2018). Using evolutionary algorithms and machine learning to explore sequence 
space for the discovery of antimicrobial peptides. Chem 4, 533–543. doi: 10.1016/j.
chempr.2018.01.005

Zheng, X., Zhang, D., Li, Y., Yang, C., Wu, Y., Liang, X., et al. (2019). Incompatible and 
sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61. doi: 
10.1038/s41586-019-1407-9

https://doi.org/10.3389/fmicb.2023.1116766
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.7717/peerj.10646
https://doi.org/10.1093/gbe/evy159
https://doi.org/10.1093/molbev/msw211
https://doi.org/10.1093/molbev/msy228
https://doi.org/10.1017/S0031182000022666
https://doi.org/10.1017/S0031182000022666
https://doi.org/10.1016/j.cub.2022.01.052
https://doi.org/10.1111/j.1462-5822.2010.01531.x
https://doi.org/10.1038/216383a0
https://doi.org/10.1038/nature01568
https://doi.org/10.1038/nature21391
https://doi.org/10.1371/journal.pgen.1010591
https://doi.org/10.1371/journal.pgen.1010591
https://doi.org/10.1038/nature05233
https://doi.org/10.1038/nature05233
https://doi.org/10.1093/molbev/msaa209
https://doi.org/10.1111/evo.13745
https://doi.org/10.1038/36021
https://doi.org/10.1534/genetics.113.152181
https://doi.org/10.1073/pnas.0406239101
https://doi.org/10.1002/bies.10234
https://doi.org/10.1098/rspb.2012.0942
https://doi.org/10.1371/journal.ppat.1010256
https://doi.org/10.1007/bf00276932
https://doi.org/10.1073/pnas.0406796102
https://doi.org/10.1371/journal.pgen.1008221
https://doi.org/10.1016/j.tig.2019.03.004
https://doi.org/10.1073/pnas.1800650115
https://doi.org/10.1128/mbio.03177-21
https://doi.org/10.1371/journal.pbio.1000002
https://doi.org/10.1111/j.1558-5646.1994.tb02192.x
https://doi.org/10.1073/pnas.2211637119
https://doi.org/10.1073/pnas.0406241102
https://doi.org/10.1038/nrmicro1969
https://doi.org/10.1186/s12862-018-1304-0
https://doi.org/10.1126/science.1117607
https://doi.org/10.1126/science.1117607
https://doi.org/10.1073/pnas.2107699118
https://doi.org/10.1073/pnas.2107699118
https://doi.org/10.1146/annurev-genet-110410-132412
https://doi.org/10.1146/annurev-genet-110410-132412
https://doi.org/10.1371/journal.pntd.0003894
https://doi.org/10.1371/journal.pntd.0003894
https://doi.org/10.1038/232657a0
https://doi.org/10.1016/0022-2011(73)90141-9
https://doi.org/10.1016/0022-2011(73)90141-9
https://doi.org/10.1016/j.chempr.2018.01.005
https://doi.org/10.1016/j.chempr.2018.01.005
https://doi.org/10.1038/s41586-019-1407-9

	Modeling emergence of Wolbachia toxin-antidote protein functions with an evolutionary algorithm
	Introduction
	Materials and methods
	EA design
	EA class
	TA class
	Main class
	Calculating fitness
	Experimental setup
	Statistical analysis

	Results and discussion
	Validating and tuning the EA’s fitness function
	Tracking evolution of cif domains shows that NLS and T4SS signals are quick to evolve
	Parameters of simulations bias evolution of TA versus 2 × 1
	Increasing length of toxin biases evolution toward TA mechanisms

	Conclusion, future directions, and limitations
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note

	 References

