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Halotolerant microorganisms have developed versatile mechanisms for coping 
with saline stress. With the increasing number of isolated halotolerant strains 
and their genomes being sequenced, comparative genome analysis would help 
understand the mechanisms of salt tolerance. Six type strains of Pontixanthobacter 
and Allopontixanthobacter, two phylogenetically close genera, were isolated 
from diverse salty environments and showed different NaCl tolerances, from 3 to 
10% (w/v). Based on the co-occurrence greater than 0.8 between halotolerance 
and open reading frame (ORF) among the six strains, possible explanations for 
halotolerance were discussed regarding osmolyte, membrane permeability, 
transportation, intracellular signaling, polysaccharide biosynthesis, and SOS 
response, which provided hypotheses for further investigations. The strategy 
of analyzing genome-wide co-occurrence between genetic diversity and 
physiological characteristics sheds light on how microorganisms adapt to the 
environment.
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Introduction

Halotolerance is a relative term that refers to the ability to tolerate salt concentrations higher 
than those necessary for growth, and microorganisms are considered halotolerant if they survive 
at high salt concentrations but do not require these conditions for growth (Anton, 2014). With 
advances in technology, halotolerance mechanisms have been investigated using omics 
approaches. For instance, comparative transcriptomic and physiological analysis revealed that 
the halotolerant bacterium Egicoccus halophilus EGI 80432T increased inorganic ions uptake and 
accumulated trehalose and glutamate in response to moderate salinity condition, while the high 
salt condition led to up-regulated transcription of genes required for the synthesis of compatible 
solutes, such as glutamate, histidine, threonine, proline, and ectoine (Chen et al., 2021). The role 
of glutamate as a key compatible solute for halotolerance was also reported in a halotolerant 
strain of Staphylococcus saprophyticus based on transcriptome comparison of cells cultivated in 
media containing different concentrations of NaCl (0, 10, and 20%; Jo et al., 2022). In the 
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exoproteome of the halotolerant bacterium Tistlia consotensis grown 
at high salinity, proteins associated with osmosensing, exclusion of 
Na+ and transport of compatible solutes, such as glycine betaine or 
proline are abundant (Rubiano-Labrador et al., 2015). Similarly, the 
proteomic analysis of halotolerant nodule endophytes, Rahnella 
aquatilis strain Ra4 and Serratia plymuthica strain Sp2 identified that 
different trans-membrane ABC transporters (ATP-binding cassettes) 
were the most represented among the up-regulated proteins in 
response to salt stress (Novello et al., 2022). Moreover, the proteome 
comparison of halotolerant bacterium Staphylococcus aureus under 
different osmotic stress conditions revealed the differentially expressed 
proteins (DEPs) involved in fatty acid synthesis, proline/glycine 
betaine biosynthesis and transportation, stress tolerance, cell wall 
biosynthesis, and the TCA cycle, which may contribute to the osmotic 
stress tolerance of S. aureus (Ming et al., 2019). These findings shed 
light on halotolerance mechanisms. However, halotolerance-related 
genes may be ignored in transcriptomic and proteomic comparison if 
there is no significant change in their expression under the 
experimental conditions.

Genomic comparisons

Genomic comparisons of closely related halotolerant 
microorganisms can identify genes conserved among species as well 
as genes that may give an organism its unique characteristics, which 
helps to understand the mechanisms of salt tolerance. For example, 
through comparative genome analysis it was uncovered that the 
members of Acidihalobacter genus contained similar genes for the 
synthesis and transport of ectoine, as well as genes encoding low 
affinity potassium pumps. Variations were observed in genes encoding 
high affinity potassium pumps and proteins involved in the synthesis 
and/or transport of periplasmic glucans, sucrose, proline, taurine, and 
glycine betaine (Khaleque et al., 2019). To elucidate salt adaptation 
strategies in Nitriliruptoria, the genomes of five members from group 
Nitriliruptoria were analyzed. The results showed that Nitriliruptoria 
harbor similar synthesis systems of solutes, such as trehalose, 
glutamine, glutamate, and proline, and on the other hand each 
member of Nitriliruptoria species possesses specific mechanisms, K+ 
influx and efflux, betaine and ectoine synthesis, and compatible solutes 
transport (Chen et  al., 2020). Using whole-genome analysis, the 
halotolerant strains of Martelella soudanensis, NC18T and NC20, were 
predicted to harbor various halotolerant-associated genes, including 
K+ uptake protein, K+ transport system, ectoine transport system, 
glycine betaine transport system, and glycine betaine uptake protein, 
indicating that strains NC18T and NC20 might tolerate high salinity 
through the accumulation of potassium ions, ectoine, glycine betaine 
(Lee and Kim, 2022). Although these findings help to understand the 
versatile mechanisms of halotolerance existing in halotolerant 
microbes, genomic comparisons are usually based on genome-wide 
searches for homologs of known halotolerance-related genes, such as 
those involved in K+ and Na+ influx and efflux and the synthesis and 
transport of compatible solutes.

The aim of this perspective is to provide new insights into the 
development of novel hypotheses and promote further studies  
on the halotolerance mechanisms. Therefore, co-occurrence analysis 
between halotolerance and open reading frames (ORFs) was 
performed to provide intuitive information on halotolerance.

Strains used for analysis

Microorganisms develop abilities that enable them to deal with 
evolutionary pressure from the environment, such as salinity, 
temperature, and the power of hydrogen (pH). The phylogenetically 
closely related strains, which showed similar growth temperature and 
pH range but different halotolerance, would simplify the analysis. 
Furthermore, considering the ionic strength of different media may 
affect the cell growth, the tolerance to NaCl used for co-occurrence 
analysis should be determined by using same medium. Herein six type 
strains from two phylogenetically close genera, Pontixanthobacter and 
Allopontixanthobacter, were chosen for this study. Because of their 
close phylogenetic relationship, Allopontixanthobacter sediminis and 
Allopontixanthobacter confluentis have been previously classified as 
Pontixanthobacter species (Xu et al., 2020; Liu et al., 2021b), and later 
were reclassified as Allopontixanthobacter species (Xu et al., 2020; Liu 
et  al., 2021a,b). Notably, all the type strains belonging to the two 
genera were isolated from the Yellow Sea and surrounding areas, but 
from diverse salty environments, such as Pontixanthobacter aestiaquae 
KCTC 42006T and Pontixanthobacter rizhaonensis KCTC 62828T from 
seawater (Jung et  al., 2014; Liu et  al., 2021b), Pontixanthobacter 
gangjinensis JCM 17802T and Pontixanthobacter luteolus KCTC 12311T 
from tidal flat (Yoon et al., 2005; Jeong et al., 2013), Pontixanthobacter 
aquaemixtae KCTC 52763T from the junction between ocean and 
fresh spring (Park et al., 2017), A. sediminis KCTC 42453T from lagoon 
sediments (Kim et al., 2016), and A. confluentis KCTC 52259T from 
water of estuary environment (Park et al., 2017). These strains showed 
similar optimum NaCl concentrations for growth (1–3%, w/v), but 
displayed different halotolerances, from 3 to 10% (w/v; Table  1), 
indicating that these strains adapt to their diverse habitats, including 
lagoon, junction between ocean and fresh spring, tidal flat, and 
seawater. The availability of their genomes provides remarkable 
opportunity to understand their different halotolerances by 
comparative genome analysis. Here, co-occurrence between 
halotolerance and the open reading frames (ORFs) was calculated 
among six strains of Pontixanthobacter and Allopontixanthobacter, and 
the ORFs showing high co-occurrence were discussed for possible 
contribution to halotolerance.

Clusters highly co-occurred with 
halotolerance

Open reading frames in the six genomes were predicted and 
clustered based on similarity using R package micropan (Snipen and 
Liland, 2015). Analysis of co-occurrence between ORFs and the 
maximum NaCl concentration tolerated among the six strains was 
conducted, and 113 clusters of ORFs were identified with co-occurrence 
greater than 0.8 (Table 2). The co-occurrence for the remaining clusters 
is listed in Supplementary material, as well as ORFs predicted in the six 
genomes and the index for clusters and ORFs. ORFs were annotated by 
searching standard database using protein–protein BLAST.1

1 https://blast.ncbi.nlm.nih.gov
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Osmolyte

The ORFs of Cluster_111 (co-occurrence of 0.97, Table 2) were 
annotated as TauD/TfdA family dioxygenase. TauD is involved in the 
utilization of taurine (VanderPloeg et al., 1996), an organic osmolyte 
involved in cell volume regulation (Harris and Wen, 2012). Taurine is 
used as an osmoprotectant, such as in Escherichia coli at high 
osmolarity (McLaggan and Epstein, 1991) and in microbial 
communities from biofilms in metal-rich environment (Mosier et al., 
2013). The ORFs of Cluster_111 only exist in three halotolerant 
strains, suggesting that taurine may be  accumulated as an 
osmoprotectant. Interestingly, halotolerant strains harbor genes 
involved in various pathways related to glutamate generation. For 
instance, according to annotation, ORFs of Cluster_113 
(co-occurrence of 0.81, Table  2) belong to the hydantoinase B/
oxoprolinase family, which includes 5-oxoprolinase, catalyzing the 
formation of L-glutamate from 5-oxo-L-proline (Niehaus et al., 2017). 
Besides, ORFs of Cluster_1328 (co-occurrence of 0.81, Table  2) 
possess similarity to p-aminobenzoyl-glutamate (PABA-GLU) 
hydrolase subunit from Altererythrobacter insulae (GenBank 
Accession Number: RGP41665.1). PABA-GLU is a folate catabolite 
found in bacteria, and the enzyme PABA-GLU hydrolase breaks down 
PABA-GLU by cleaving glutamate (Larimer et al., 2014). Additionally, 
ORFs of Cluster_1747 (co-occurrence of 0.81 Table  2) showed 
similarity to asparagine synthase from Salinigranum halophilum 
(GenBank Accession Number: WP_136601134.1). Asparagine 
synthetase catalyzes an ATP-dependent amidotransferase reaction 
between aspartate and glutamine, which produces asparagine and 
glutamate (Richards and Kilberg, 2006).

Permeability

To ensure a physiologically acceptable level of cellular hydration 
and turgor at high osmolarity, many bacteria accumulate compatible 
solutes as osmoprotectants (Ziegler et al., 2010). ORFs of Cluster_875 
(co-occurrence of 0.81, Table 2) were annotated as proteins of Betaine/
Carnitine/Choline Transporter (BCCT) family. The BCCT family 
includes transporters for carnitine, choline and glycine betaine, and 
some of which exhibit osmosensory and osmoregulatory properties 
(Ziegler et  al., 2010). Furthermore, the ORFs of Cluster_1740, 
annotated as ABC transporter ATP-binding proteins, were present 

only in these three halotolerant strains. The salt-induced ABC 
transporter Ota from Methanosarcina mazei Gö1 acts as a glycine 
betaine transporter (Schmidt et al., 2007). Another ABC transporter 
in Listeria, OpuC, is shown to be necessary for glycine betaine and 
choline chloride uptake (Verheul et al., 1997). Compared to the wild 
type of S. aureus, mutating OpuC did reduce their ability to grow 
under osmotic stress (10% NaCl; Kiran et al., 2009). The function of 
ORFs of Cluster_1740 and their contribution to halotolerance can 
be further characterized. Additionally, previous studies have shown 
that water permeability is clearly affected by the number of double 
bonds in the fatty acid conjugates of lipids, the higher the degree of 
unsaturation, the greater the water permeability (Graziani and Livne, 
1972), and sterol type is one of the determining factors in the 
permeability of membranes to small solutes (Frallicciardi et al., 2022). 
The genomes of three halotolerant strains contain ORFs of 
Cluster_1548, annotated as sterol desaturase family proteins, 
indicating that sterols might be used to change permeability.

Cell signaling

Cluster_1549 also consists of three ORFs present in the three 
halotolerant strains, which showed similarity to the domain 
superfamily found in a large number of proteins including magnesium 
dependent endonucleases and phosphatases involved in intracellular 
signaling (Dlakic, 2000). Its role in the regulation of gene expression, 
such as triggering the salt-stress response, is worth of further study.

Polysaccharide

It has been reported that extracellular polysaccharides (EPS) may 
influence the salt tolerance of certain rhizobial strains (Samir and 
Kanak, 1997) and the lipopolysaccharide pattern could alter according 
to different salinities in a salt-tolerant strain of Mesorhizobium cicero 
(Soussi et  al., 2001). All three halotolerant strains harbor ORFs 
annotated with polysaccharide/lipopolysaccharide biosynthesis 
(Cluster_2062, 2065, 2067, 2069, 2071, 2074, and 2076 in Table 2), 
such as 3-deoxy-d-manno-octulosonate cytidylyltransferase, a key 
enzyme in the biosynthesis of lipopolysaccharide (LPS) in Gram-
negative organisms (Yi et  al., 2011). Furthermore, ORFs of 
Cluster_2473 (co-occurrence as 0.81 Table  2) were annotated to 

TABLE 1 Strains used for analysis in this study.

Species Strain Maximum 
NaCl (%, 
w/v)

Optimum 
NaCl (%, 
w/v)

Habitat GenBank accession 
number

Pontixanthobacter aestiaquae KCTC 42006 10 2–3 Seawater GCF_009827455.1_ASM982745v1

Pontixanthobacter gangjinensis JCM 17802 9 2 Tidal flat GCF_009827545.1_ASM982754v1

Pontixanthobacter luteolus KCTC 12311 9 2 Tidal flat GCF_009828095.1_ASM982809v1

Pontixanthobacter aquaemixtae KCTC 52763 5 2 Junction between ocean and fresh 

spring

GCF_009827395.1_ASM982739v1

Allopontixanthobacter sediminis KCTC 42453 4 1 Lagoon sediments GCF_009828115.1_ASM982811v1

Allopontixanthobacter confluentis KCTC 52259 3 1–2 Water of estuary environment GCF_009827615.1_ASM982761v1

The tolerance of NaCl for all the six strains were investigated based on marine broth (MB). The strain Pontixanthobacter rizhaonensis KCTC 62828T was excluded from this study, because it is 
tested on different medium (Liu et al., 2020, 2021b).
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TABLE 2 Clusters highly co-occurred with halotolerance.

Cluster Co-occurrence Annotation

Cluster_111 0.97 TauD/TfdA family dioxygenase

Cluster_229 0.97 Hypothetical protein

Cluster_593 0.97 Metal-dependent hydrolase

Cluster_762 0.97 TonB-dependent receptor

Cluster_1374 0.97 Carbon-nitrogen hydrolase family protein

Cluster_1548 0.97 Sterol desaturase family protein

Cluster_1549 0.97 Endonuclease/exonuclease/phosphatase family protein

Cluster_1706 0.97 Hypothetical protein

Cluster_1740 0.97 ABC transporter ATP-binding protein

Cluster_1899 0.97 VirB4 family type IV secretion/conjugal transfer ATPase

Cluster_2062 0.97 Polysaccharide pyruvyl transferase family protein

Cluster_2063 0.97 Hypothetical protein

Cluster_2065 0.97 EpsG family protein

Cluster_2067 0.97 Glycosyltransferase

Cluster_2069 0.97 Polysaccharide biosynthesis C-terminal domain-containing protein

Cluster_2071 0.97 KpsF/GutQ family sugar-phosphate isomerase

Cluster_2074 0.97 3-Deoxy-manno-octulosonate cytidylyltransferase

Cluster_2076 0.97 3-Deoxy-8-phosphooctulonate synthase

Cluster_2401 0.97 Hypothetical protein

Cluster_2536 0.97 Histone deacetylase

Cluster_2670 0.97 Hypothetical protein

Cluster_2677 0.97 SOS response-associated peptidase family protein

Cluster_614 0.87 Putative quinol monooxygenase

Cluster_1440 0.86 Tail fiber protein

Cluster_1633 0.84 2OG-Fe(II) oxygenase

Cluster_11 0.81 Hypothetical protein

Cluster_12 0.81 DUF885 domain-containing protein

Cluster_59 0.81 PspA/IM30 family protein

Cluster_113 0.81 Hydantoinase B/oxoprolinase family protein

Cluster_115 0.81 DUF969 domain-containing protein

Cluster_116 0.81 DUF979 domain-containing protein

Cluster_117 0.81 DUF2891 domain-containing protein

Cluster_151 0.81 Aldolase/citrate lyase family protein

Cluster_155 0.81 Methyltransferase domain-containing protein

Cluster_166 0.81 Hypothetical protein

Cluster_208 0.81 Trigger factor

Cluster_294 0.81 Enoyl-CoA hydratase-related protein

Cluster_336 0.81 Aspartyl/asparaginyl beta-hydroxylase domain-containing protein

Cluster_395 0.81 Hypothetical protein

Cluster_551 0.81 Hypothetical protein

Cluster_595 0.81 DUF4167 domain-containing protein

Cluster_687 0.81 Amidohydrolase family protein

Cluster_712 0.81 TonB-dependent receptor

Cluster_729 0.81 OmpH family outer membrane protein

Cluster_752 0.81 PilZ domain-containing protein

(Continued)
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TABLE 2 (Continued)

Cluster Co-occurrence Annotation

Cluster_875 0.81 BCCT family transporter

Cluster_879 0.81 Cell division protein ZapA

Cluster_895 0.81 Hypothetical protein

Cluster_983 0.81 GNAT family N-acetyltransferase

Cluster_1081 0.81 DUF805 domain-containing protein

Cluster_1089 0.81 Aminotransferase class IV

Cluster_1090 0.81 Sulfotransferase

Cluster_1132 0.81 Pilus assembly protein TadG-related protein

Cluster_1282 0.81 Hypothetical protein

Cluster_1289 0.81 SDR family oxidoreductase

Cluster_1315 0.81 CinA family protein

Cluster_1328 0.81 Amidohydrolase

Cluster_1340 0.81 Glutathione S-transferase family protein

Cluster_1364 0.81 M2 family metallopeptidase

Cluster_1465 0.81 Hypothetical protein

Cluster_1491 0.81 Hypothetical protein

Cluster_1495 0.81 Serine hydrolase

Cluster_1499 0.81 MarR family transcriptional regulator

Cluster_1565 0.81 Thioesterase family protein

Cluster_1575 0.81 LysR family transcriptional regulator

Cluster_1578 0.81 NAD(P)H-dependent oxidoreductase

Cluster_1663 0.81 Prolyl oligopeptidase family serine peptidase

Cluster_1738 0.81 Lasso peptide biosynthesis B2 protein

Cluster_1739 0.81 Nucleotidyltransferase family protein

Cluster_1741 0.81 Sulfotransferase

Cluster_1742 0.81 Aspartyl beta-hydroxylase

Cluster_1743 0.81 Hypothetical protein

Cluster_1744 0.81 Sulfotransferase domain-containing protein

Cluster_1746 0.81 PqqD family protein

Cluster_1747 0.81 Asparagine synthase-related protein

Cluster_1748 0.81 Glycosyltransferase

Cluster_1838 0.81 DUF3142 domain-containing protein

Cluster_1839 0.81 Hypothetical protein

Cluster_1862 0.81 Hypothetical protein

Cluster_1883 0.81 Isopropylmalate isomerase

Cluster_1896 0.81 Conjugal transfer protein TrbI

Cluster_1901 0.81 VirB3 family type IV secretion system protein

Cluster_1954 0.81 TrbG/VirB9 family P-type conjugative transfer protein

Cluster_1955 0.81 VirB8/TrbF family protein

Cluster_1956 0.81 Type IV secretion system protein

Cluster_2019 0.81 Dipeptidase

Cluster_2022 0.81 Glycerophosphodiester phosphodiesterase family protein

Cluster_2052 0.81 Hypothetical protein

Cluster_2059 0.81 O-antigen ligase family protein

(Continued)
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encode proteins of the GtrA family, whose members are often involved 
in the synthesis of cell surface polysaccharides (Kolly et al., 2015).

DNA repair

Open reading frames of Cluster_2677 are annotated encoding 
SOS response-associated peptidase family protein. The bacterial SOS 
response induced under stress conditions is recruited to DNA repair 
and adaptive mutagenesis (Shinagawa, 1996; Aravind et al., 2013). 
Hence, ORFs of Cluster_2677 could be further investigated for its 
importance to halotolerance.

Discussion

Salinity is one of the most important environmental factors for 
aquatic microorganisms and varies among habitats. Therefore, 
halotolerant microorganisms have developed versatile strategies to 
cope with saline stress. Based on the findings of co-occurrence 
analysis, possible explanations for mechanisms resulting in different 
salt tolerances among six strains are discussed above, which provided 
hypotheses for further investigations. Moreover, among the highly 
co-occurred clusters, there are several uncharacterized or hypothetical 

proteins (Table 2), which may contribute to halotolerance. It should 
be noted that the genes related to resistance to salts other than sodium 
chloride could also be discovered by co-occurrence analysis, since 
various salts co-exist in high ionic environments. For instance, ORFs 
of Cluster_2171 (co-occurrence as 0.81, Table 2) were annotated as 
divalent-cation tolerance protein CutA, which is required for copper 
tolerance in E. coli and affects tolerance levels to zinc, nickel, cobalt, 
and cadmium salts (Fong et al., 1995). This study sheds light on the 
mechanisms through which microorganisms cope with environmental 
stress. With the increasing number of isolated halotolerant strains 
and their genomes being sequenced, analyzing genome-wide 
co-occurrence between genetic diversity and physiological 
characteristics would expand the knowledge of the salinity adaptation 
strategies and provide comprehensive information on how 
microorganisms adapt to the environment, together with findings at 
the transcriptomic and proteomic levels.

Data availability statement

Publicly available datasets were analyzed in this study.  
This data can be found here: https://www.ncbi.nlm.nih.gov. Accession 
Numbers are as follows: GCF_009827455.1_ASM982745v1, 
GCF_009827545.1_ASM982754v1, GCF_009828095.1_ASM982809v1, 

TABLE 2 (Continued)

Cluster Co-occurrence Annotation

Cluster_2105 0.81 GNAT family N-acetyltransferase

Cluster_2171 0.81 Divalent-cation tolerance protein CutA

Cluster_2209 0.81 DUF2183 domain-containing protein

Cluster_2241 0.81 FKBP-type peptidyl-prolyl cis-trans isomerase

Cluster_2302 0.81 Carbohydrate porin

Cluster_2329 0.81 N-acetyltransferase

Cluster_2345 0.81 NADH:flavin oxidoreductase/NADH oxidase family protein

Cluster_2374 0.81 AI-2E family transporter

Cluster_2384 0.81 Endonuclease III

Cluster_2402 0.81 RNA polymerase sigma factor

Cluster_2408 0.81 GntP family permease

Cluster_2420 0.81 Hypothetical protein

Cluster_2425 0.81 Hypothetical protein

Cluster_2473 0.81 GtrA family protein

Cluster_2474 0.81 Ferritin-like domain-containing protein

Cluster_2475 0.81 Peroxide stress protein YaaA

Cluster_2520 0.81 DsrE family protein

Cluster_2544 0.81 Hypothetical protein

Cluster_2545 0.81 DNA-binding domain-containing protein

Cluster_2546 0.81 Alpha/beta hydrolase

Cluster_2562 0.81 LytTR family DNA-binding domain-containing protein

Cluster_2573 0.81 DUF2306 domain-containing protein

Cluster_2644 0.81 DUF6356 family protein

Cluster_2671 0.81 DUF1295 domain-containing protein
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GCF_009827395.1_ASM982739v1, GCF_009828115.1_ASM982811v1, 
and GCF_009827615.1_ASM982761v1.
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