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Filamentous fungi belonging to the genus Aspergillus are known to possess 
galactomannan in their cell walls. Galactomannan is highly antigenic to humans and 
has been reported to be  involved in the pathogenicity of pathogenic filamentous 
fungi, such as A. fumigatus, and in immune responses. In this study, we aimed to 
confirm the presence of D-galactofuranose-containing glycans and to clarify the 
biosynthesis of D-galactofuranose-containing glycans in Aspergillus oryzae, a yellow 
koji fungus. We found that the galactofuranose antigen is also present in A. oryzae. 
Deletion of ugmA, which encodes UDP-galactopyranose mutase in A. oryzae, 
suppressed mycelial elongation, suggesting that D-galactofuranose-containing 
glycans play an important role in cell wall integrity in A. oryzae. Proton nuclear 
magnetic resonance spectrometry revealed that the galactofuranose-containing 
sugar chain was deficient and that core mannan backbone structures were present 
in ΔugmA A. oryzae, indicating the presence of fungal-type galactomannan in the 
cell wall fraction of A. oryzae. The findings of this study provide new insights into the 
cell wall structure of A. oryzae, which is essential for the production of fermented 
foods in Japan.

KEYWORDS

UDP-galactopyranose mutase (UGM), fungal-type galactomannan, galactofuranose, cell 
wall, Aspergillus oryzae

1. Introduction

Galactomannan (GM) is a polysaccharide composed of D-mannose (Man) and D-galactofuranose 
(Galf). GM functions as a component of the cell wall in filamentous fungi (Tefsen et al., 2012; Gow et al., 
2017; Oka, 2018). The detailed structure of GM has been elucidated in Aspergillus fumigatus, a major 
pathogenic fungus that causes invasive pulmonary aspergillosis (Latgé et al., 1994; Kudoh et al., 2015). 
A. fumigatus possesses two types of GM: O-mannose–type GM (OMGM) and fungal-type GM 
(FTGM) (Kudoh et al., 2015; Katafuchi et al., 2017; Oka, 2018). OMGM is a galactomannoprotein 
consisting of an α-(1,2)-mannosyl chain attached to the hydroxyl group of a serine and/or threonine 
residue in the protein and a galactofuran side chain comprising a β-(1,5)−/β-(1,6)-galactofuranosyl 
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chain attached to a Man residue (Oka et al., 2004; Goto et al., 2009; Kudoh 
et al., 2015). FTGM has a linear α-mannan backbone consisting of 9–10 
α-(1,2)-mannotetraose units linked by α-(1,6) bonds (Latgé et al., 1994; 
Kudoh et al., 2015; Kadooka et al., 2022a), and its galactofuran side chains 
are β-(1,2)-, β-(1,3)-, and/or β-(1,6)-linked to this α-core-mannan (Latgé 
et al., 1994; Kudoh et al., 2015). FTGM is biosynthesized in the Golgi 
apparatus and is presumed to be transported to the cell surface via the 
glycosylphosphatidylinositol (GPI) anchor as a carrier molecule (Costachel 
et al., 2005; Fontaine and Latgé, 2020). By consolidating the findings from 
recent studies, it can be speculated that FTGMs that are transported to the 
cell surface can covalently bind to β-glucan, further solidifying the cell wall 
structure, and some may be released into extracellular compartments, such 
as the culture supernatant (Muszkieta et al., 2019; Fontaine and Latgé, 
2020; Vogt et al., 2020).

Galf is highly antigenic to humans and is commonly detected in 
the blood of patients with invasive aspergillosis (Stynen et al., 1992). 
Therefore, Galf is considered a virulence factor for the pathogenicity 
of A. fumigatus. Single-gene disruption of glfA, which encodes 
UDP-galactopyranose mutase, the primary enzyme involved in the 
biosynthesis of Galf-containing polysaccharides, was reported to 
induce temperature sensitivity and to significantly reduce the 
pathogenicity of A. fumigatus to mice (Bakker et  al., 2005; 
Schmalhorst et al., 2008). Subsequently, glfA (renamed Afugm1) was 
analyzed in different strains of A. fumigatus, and the loss of Galf 
antigens was found to have little effect on pathogenicity (Lamarre 
et al., 2009). Although the relevance of Galf antigens to pathogenicity 
is unclear, their antigenic properties suggest that they are involved in 
certain immune responses in host cells.

The yellow koji fungus, Aspergillus oryzae, has been listed as 
“generally recognized as safe” by the US Food and Drug Administration 
(Machida, 2002). A. oryzae is a filamentous fungus used in the production 
of sake, miso, and soy sauce in Japan and in many fermentation industries 
owing to its safety (Kitamoto, 2015; Ichishima, 2016; Gomi, 2019; 
Kitagaki, 2021). Because A. oryzae, like A. fumigatus, is a filamentous 
fungus belonging to the subphylum Pezizomycotina, it may contain Galf-
containing polysaccharides as cell wall components. In a previous study, 
Galf-containing glycan structures were detected in the cell wall alkali-
soluble fraction of A. oryzae from which O-linked glycans were removed 
and β-(1,2)-Galf was added to the N-glycan outer chain structures 
(Nakajima and Ichishima, 1994). Furthermore, the genome of A. oryzae 
has been reported to contain the genes AougmA and AougmB, which are 
presumed to encode UDP-galactopyranose mutase (Damveld et  al., 
2008). Because A. oryzae is used in food production, it is important to 
analyze the Galf-containing glycan structure in detail to ensure its safety.

Thus, this study aimed to clarify the structure of Galf-containing 
polysaccharides in A. oryzae. Our immunoblot analysis using an anti-Galf 
antibody revealed the presence of a small amount of galactomannoprotein, 
a Galf antigen, in A. oryzae. We also found that A. oryzae ugmA encodes 
UDP-galactopyranose mutase and that Galf-containing polysaccharides 
are important for normal mycelial elongation in A. oryzae. In addition, 
proton nuclear magnetic resonance (1H-NMR) spectrometry revealed the 
presence of an FTGM-like structure in A. oryzae.

2. Materials and methods

2.1. Strains and growth conditions

The Aspergillus strains used in this study are listed in 
Supplementary Table S1. The strains were grown on minimal medium 

(MM) containing 1% w/v glucose, 10 mM sodium glutamate, 0.052% 
w/v KCl, 0.052% w/v MgSO4·7H2O, and 0.152% w/v KH2PO4, plus 
Hunter’s trace elements (pH 6.5). To cultivate A. oryzae NSPlD1 
(Maruyama and Kitamoto, 2008), 1.5 g/l methionine, 1.22 g/l uracil, and 
1.21 g/l uridine were added to MM. To cultivate the Aspergillus nidulans 
strains, 1 mg/l biotin was added to MM.

2.2. Construction of the ugmA-disrupted 
strain

ugmA was disrupted in A. oryzae NSPlD1 by inserting AnpyrG. A 
gene replacement cassette encompassing the homology arms at the 5′ 
and 3′ ends of ugmA was amplified by recombinant polymerase chain 
reaction (PCR) using A. oryzae RIB40 genomic DNA as the template 
and the primer pairs ugmA-1/ugmA-2 and ugmA-3/ugmA-4, 
respectively (Supplementary Table S2). The A. nidulans pyrG (AnpyrG) 
marker was amplified by recombinant PCR using pHSG396-AnpyrG 
(Kadooka et al., 2022b) as the template and the primer pair pHSG396-F/
pHSG396-R. The resultant DNA fragment, amplified using the primers 
ugmA-1 and ugmA-4, was used to transform A. oryzae NSPlD1, yielding 
the ΔugmA strain. MM agar plates without uracil and uridine were used 
to select the transformants. The introduction of AnpyrG into each gene 
locus was confirmed by PCR using the primer pair ugmA-F/ugmA-R 
(Supplementary Figure S1).

2.3. Construction of pPTR-II-ugmA

ugmA that included 1.5 kbp upstream of ugmA was amplified by 
PCR using A. oryzae RIB40 genomic DNA as the template and the 
primer pair pPTR-II-ugmA-IF-F/pPTR-II-ugmA-IF-R. The amplified 
fragment was inserted into the SmaI site of pPTR-II using the In-Fusion 
HD Cloning Kit (Takara, Kusatsu, Shiga, Japan) to yield pPTR-II-ugmA.

2.4. Preparation of the GM fraction

Total GM (FTGM and galactomannoproteins) from A. oryzae was 
prepared as previously described (Katafuchi et al., 2017). Briefly, the 
hot-water-soluble extract from cells was fractionated using cetyl 
trimethyl ammonium bromide. The resultant fraction was precipitated 
at pH 9.0 with NaOH in the presence of borate and resolved in 
distilled water as the total GM fraction. A β-elimination reaction was 
performed to remove O-glycans from the galactomannoproteins 
under reducing alkali conditions (500 mM NaBH4 /100 mM NaOH, 
10 ml, at 25°C for 24 h). After neutralization with 50% acetic acid, the 
samples were dialyzed overnight against distilled water. The purified 
samples were then lyophilized, resuspended in distilled water, and 
clarified using 0.45-μm-pore filters. The resultant samples were 
prepared as GM fractions.

2.5. 1H-NMR spectroscopy

Samples for 1H-NMR were exchanged twice in D2O with intervening 
lyophilization and then dissolved in D2O (99.97% atom 2H). The 
1H-NMR spectra were recorded using a JNM-LA600 spectrometer 
(JEOL, Akishima, Tokyo, Japan) at 45°C. The proton chemical shifts 
were referenced relative to internal acetone at δ 2.225.
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2.6. Immunoblotting

Immunoblotting was performed as previously described (Komachi 
et al., 2013). The EB-A2 antibody of the Platelia Aspergillus enzyme 
immunoassay (Bio-Rad Laboratories, Hercules, CA, United States) was 
used at a dilution of 1:10 to detect β-Galf.

2.7. Analysis of surface adhesion

Hyphal surface adhesion assay was performed as previously 
described with slight modifications (Lamarre et al., 2009; Alam et al., 
2014). Briefly, 0.5-μm-diameter polystyrene beads (Sigma) were diluted 
to 1:100 in sterile phosphate-buffered saline (PBS). Mycelia were grown 
for 18 h at 30°C with shaking at 127 rpm in liquid potato dextrose 
medium, harvested into PBS-containing polystyrene beads for 1 h, and 
then washed five times with PBS. Mycelium images were acquired using 
a microscope equipped with a digital camera.

3. Results

3.1. Detection of Galf-containing 
glycoprotein in koji fungi

To investigate the presence of Galf-containing sugar chains in 
A. oryzae, Aspergillus luchuensis (Aspergillus awamori var. kawachi) and 
A. luchuensis mut. Kawachii (A. kawachii), galactomannoproteins were 

extracted from mycelia and subjected to immunoblotting to detect Galf-
containing glycoproteins using the anti-Galf antibody EB-A2 (Oka et al., 
2005). Smeared bands indicated the presence of Galf-containing 
glycoproteins (Figure 1), which were thought to be mainly attributable to 
the O-glycans among the glycoproteins (Komachi et  al., 2013). 
Densitometric quantification of the immunoblot bands was performed 
using ImageJ software (Schneider et al., 2012). The signal intensity ratios 
for EB-A2 were then calculated, and the ratio for A. fumigatus was 
normalized to 1.0. The ratio of EB-A2 intensity to Galf-containing 
glycoprotein in A. oryzae was 0.6-fold less than that in A. fumigatus 
(Figure 1), suggesting the presence of few Galf-containing glycoproteins 
in A. oryzae (Figure 1). Interestingly, the intensities of A. luchuensis and 
A. kawachii were more than four times higher than that of A. fumigatus 
(Figure  1). These data indicate that the quantities of Galf-containing 
glycoproteins differ among different species of koji fungi.

3.2. Putative UDP-galactopyranose mutase 
in koji fungi

To investigate whether the genes encoding UDP-galactopyranose 
mutase are present in the genome of koji fungi, we performed an NCBI 
protein BLAST1 search using the amino acid sequence of A. nidulans 
UgmA (AN3112) as a query sequence. AO090012000855 of A. oryzae 
RIB40, RIB2604_01707610 of A. luchuensis RIB2604, and 
AKAW2_10730A of A. kawachii IFO4308 exhibited strong homology to 
A. nidulans UgmA (91.75, 91.18, and 91.35% identities, respectively).

To clarify the diversity of GlfA/UgmA in detail, we  performed a 
phylogenetic analysis of UDP-galactopyranose mutase conserved in fungi 
(Figure 2). The dataset for analysis was obtained by an NCBI protein 
BLAST search using the amino acid sequence of A. nidulans UgmA as a 
query sequence. The BLAST search identified the UDP-galactopyranose 
mutase of A. oryzae, which was named AoUgmA by Damveld et al. (2008). 
In the present study, AoUgmA is referred to as UgmA. Damveld et al. 
(2008) also revealed the presence of a putative UDP-galactopyranose 
mutase named AoUgmB in A. oryzae. However, as AoUgmB encodes only 
168 amino acids, it probably does not function as a UDP-galactopyranose 
mutase because its protein size is too small. Therefore, AoUgmB was 
excluded from the present analysis. Phylogenetic analysis revealed that 
UgmA is widely distributed in the subphylum Pezizomycotina and the 
phylum Basidiomycota. In the phylum Ascomycota, Saccharomycotina and 
Taphrinomycotina do not carry UgmA. These results are consistent with 
previously reported findings and with the fact that galactofuranosyl chains 
are not present in Saccharomycotina and Taphrinomycotina (Tefsen et al., 
2012). UgmA is present in Agaricomycotina, Ustilaginomycotina, and 
Pucciniomycotina in the phylum Basidiomycota, whereas it is absent in 
most Agaricomycotina in the phylum Basidiomycota. Functional analysis 
of UgmA in basidiomycetes is currently limited, and further functional 
analysis is warranted in future studies.

3.3. Phenotypic analysis of the Aspergillus 
oryzae ugmA disruptant

To investigate the physiological roles of ugmA in A. oryzae, 
we  constructed a ugmA gene disruptant and observed the colonial 

1 https://www.ncbi.nlm.nih.gov/

FIGURE 1

Immunoblot analysis of galactomannoproteins from Aspergillus spp. The 
presence of Galf-containing glycoproteins was detected using EB-A2. 
Lanes 1–5: 20 μg of galactomannoproteins from Aspergillus fumigatus 
A1151 (Lane 1), Aspergillus nidulans A26 (Lane 2), Aspergillus oryzae 
RIB40 (Lane 3), Aspergillus luchuensis (Lane 4), and Aspergillus kawachii 
IFO4308 (Lane 5) were loaded. Densitometric quantification of 
immunoblotting bands was performed using ImageJ software (Schneider 
et al., 2012). The intensity ratios of EB-A2 for galactomannoproteins 
were calculated, and the ratio for A. fumigatus A1151 was normalized to 
1.0.
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morphology following culture at 30°C, 37°C, and 42°C for 5 days 
(Figure 3A). ΔugmA had a smaller colony size than the parental strain, 
indicating the important role of UgmA in normal mycelial formation in 
A. oryzae. The growth of the parental and ∆ugmA strains was delayed 
at 42°C compared with that at 30°C on MM. The colony diameters of 
the parental strain were 34% smaller after culture for 4 days at 42°C 
compared with that at 30°C, while those of the ∆ugmA strain were 23% 
smaller after culture for 4 days at 42°C compared with that at 30°C. These 
results indicate that the ∆ugmA strain exhibits a temperature-sensitive 
phenotype (Figure 3A; Supplementary Figure S2). This temperature-
sensitive phenotype tended to improve under high osmotic support 
conditions (Figure  3A), suggesting that the ΔugmA strain exhibits 
temperature sensitivity attributable to the absence of some cell wall 
components. To confirm that the ΔugmA phenotype was caused by the 
disruption of ugmA (Figure  3B), we  constructed a ugmA 
complementation strain (ΔugmA + A. oryzae ugmA) and observed the 
colonies (Figure 3B). The ΔugmA + A. oryzae ugmA strain had a similar 
colony size and morphology as the parental strain on MM (Figure 3B). 
This result indicated that the abnormal phenotypes of ΔugmA were truly 
attributable to ugmA disruption.

In addition, we  investigated the drug sensitivity of ΔugmA. In 
A. nidulans and A. niger, ugmA-disrupted strains were shown to 

be  sensitive to higher concentrations of calcofluor white (CFW), a 
chitin-binding reagent (Damveld et al., 2008; El-Ganiny et al., 2008). 
Therefore, we investigated whether ugmA disruption also affected CFW 
resistance in A. oryzae. The growth of ΔugmA was delayed on MM 
supplemented with 30 μg/ml CFW compared with that of the parental 
strain (Figure 3C), suggesting that ugmA disruption changes the balance 
of cell wall components, such as chitin and glucan, in A. oryzae.

It was previously reported that ΔglfA and ∆gfsABC strains of 
A. fumigatus exhibited increased hyphae branching (Lamarre et  al., 
2009; Chihara et al., 2020). Therefore, we examined whether abnormal 
mycelial branching also occurred in the ΔugmA strain of A. oryzae. 
Branching structures at the hyphal tips were observed at a high 
frequency in the ΔugmA strain (Figure 4A), indicating that the loss of 
Galf-containing oligosaccharides increases abnormal mycelial 
branching. It has also been reported that the deletion of Galf-containing 
oligosaccharides from cells increases cell surface hydrophobicity 
(Lamarre et al., 2009; Chihara et al., 2020). To confirm the increase in 
cell surface hydrophobicity of the ΔugmA strain, we examined the level 
of attachment of latex beads to the mycelium in the ΔugmA strain and 
found that the level of attachment was clearly increased (Figure 4B), 
suggesting that Galf-containing oligosaccharides are involved in the cell 
surface hydrophobicity of A. oryzae.

FIGURE 2

Phylogenetic analysis of UDP-galactopyranose mutase family proteins from bacteria, Basidiomycota, and Pezizomycotina species. Protein sequences were 
downloaded from NCBI. The phylogenetic tree was drawn using iTOL, and the alignment and phylogenetic tree inference were performed using MAFFT 
and RAxML, included in ETE v3. The UgmA homologous protein from the bacteria Fibrella rubiginis, presumably with a common ancestor, was used as the 
outgroup.
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3.4. Complementation test of ugmA 
expression in Aspergillus nidulans ΔAnugmA

To determine whether A. oryzae ugmA can complement the growth 
defect and Galf antigen-lacking phenotype in A. nidulans ΔAnugmA, 
ugmA was expressed in A. nidulans ΔAnugmA. First, we  evaluated 
whether the expression of A. oryzae ugmA could reverse the growth 
defects and aberrant conidial formation of A. nidulans ΔugmA. Each 
conidium was inoculated on MM agar and cultivated at 37°C for 3 days. 
Expression of A. oryzae ugmA recovered the phenotype of A. nidulans 
ΔAnugmA, suggesting that A. oryzae ugmA complements the function 
of A. nidulans ΔAnugmA (Figure 5A). Next, we analyzed the presence 
of the Galf antigen on the glycoprotein using EB-A2 antibody. 
Disruption of AnugmA results in the loss of Galf antigens in 
glycoproteins in A. nidulans (Komachi et al., 2013), but expression of 
A. oryzae ugmA restored the Galf antigen (Figure 5B). These results 
indicated that A. oryzae ugmA encodes a UDP-galactopyranose mutase.

3.5. Deficiency of galactofuranose residues 
on FTGM in ΔugmA in the A. oryzae cell wall

To determine whether the galactofuranose-containing sugar chain 
is deficient in the ∆ugmA strain of A. oryzae, the galactofuranosyl 
residues were detected by 1H-NMR (Figure 6). The chemical shift signals 
at 5.195 and 5.05 ppm of the 1H-NMR spectra represented the H-1 signal 
of the underlined Galf residue in the β-Galf-(1,5)-β-Galf-(1,5)-β-Gal 
and β-Galf-(1,5)-β-Galf-(1,6)-β-Galf structures, respectively, according 
to previous studies on A. fumigatus (Shibata et al., 2009; Kudoh et al., 
2015). Chemical shift signals at 5.195 and 5.05 ppm were detected in the 
GM fraction of the parental strain, consistent with the chemical shift 
signals of the β-(1,5)−/β-(1,6)-galactofuran side chain of FTGM in 
A. fumigatus (Figure  6). This result indicated the presence of the 

A

B

C

FIGURE 3

Phenotypic analysis of the ΔugmA strain. (A) Colonial morphology of 
parental (NSPlD1) and ΔugmA strains on minimal medium (MM) agar and 
MM agar supplemented with 0.6 M KCl after culture at 30°C, 37°C, or 42°C 
for 4 days. Agar medium was inoculated with 1.0 × 104 conidiospores. 
(B) Colonial morphology of the parental, ΔugmA, and ΔugmA + A. oryzae 
ugmA strains after culture on MM agar for 4 days. Agar medium was 
inoculated with 1.0 × 104 conidiospores. (C) Sensitivity to the cell wall stress 
inducer calcofluor white (CFW). Parental and ΔugmA strains were grown 
on MM agar supplemented with 10 or 30 μg/ml CFW at 30°C for 3 days.

A

B

FIGURE 4

Morphology of the parental and ΔugmA strains. (A) Morphology of the hyphae of the parental and ΔugmA strains. (B) Hydrophobicity of the hyphae of the 
parental and ΔugmA strains. Hydrophobicity was indicated by the adherence of latex beads to the hyphae.
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A

B

FIGURE 5

Expression of Aspergillus oryzae ugmA complements the A. nidulans 
ΔAnugmA phenotype. (A) Colonial morphology of AKU89A (control), 
ΔAnugmA, and ΔAnugmA + A. oryzae ugmA strains after culture on MM 
agar at 30°C for 4 days. Agar medium was inoculated with 1.0 × 104 
conidiospores. (B) Immunoblot analysis of galactomannoproteins using 
EB-A2. Lanes 1–3: 20 μg of galactomannoproteins extracted from 
AKU89A (Lane 1), ΔAnugmA (Lane 2), and ΔAnugmA + A. oryzae ugmA 
(Lane 3) were loaded.

β-(1,5)−/β-(1,6)-galactofuran side chain structure in A. oryzae. In 
contrast, these signals were absent in the GM fraction of the ∆ugmA 
strain, indicating that the galactofuranose-containing sugar chain is 
deficient in the ∆ugmA strain of A. oryzae (Figure 6). In addition, four 
unique chemical shifts at 5.0–5.2 ppm (signals A–D), indicating the 
presence of core mannan backbone structures, emerged in the GM 
fraction of ΔugmA, indicating the presence of a core mannan chain in 
FTGM (Kudoh et al., 2015; Onoue et al., 2018; Kadooka et al., 2022b). 
In the ΔugmA + ugmA strain, the chemical shift indicating the presence 
of the α-core-mannan backbone was masked, and the chemical shifts 
indicating the galactofuran chain reappeared (Figure 6). These results 
clearly indicate that a structure consistent with the FTGM of 
A. fumigatus is also present in A. oryzae.

4. Discussion

It is important to analyze the substances produced by the 
microorganisms used in the production of fermented foods to ensure 
the foods’ safety. In this study, we focused on glycan structures and 
found that A. oryzae produces Galf-containing glycans, such as 
galactomannoprotein and FTGM. Galf-containing glycans are found 
in animal and plant pathogenic fungi such as A. fumigatus and 

Fusarium spp. (Takegawa et al., 1997; Tefsen et al., 2012; Oka, 2018; de 
Oliveira et  al., 2019; Lee et  al., 2019), and their relevance to the 
demonstration of virulence has attracted attention. Therefore, the Galf-
containing glycan of A. oryzae is likely a remnant of its phytopathogenic 
ancestor before its domestication. A. oryzae is commonly used in the 
production of Japanese fermented foods, such as miso, soy sauce, and 
sake, and Japanese people are likely to habitually consume large 
quantities of Galf antigen. Although the positive and/or negative effects 
of ingesting Galf antigens on the human body are unknown, these 
Japanese foods are considered healthy and may have 
immunostimulatory effects and/or improve intestinal flora (Kitagaki, 
2021). Indeed, Nomura et al. (2021) reported that heat-killed A. oryzae 
spores and cell wall extracts from A. oryzae spores had a soothing effect 
on dextran sodium sulfate-induced colitis. It is hoped that the health 
benefits of habitual Galf antigen ingestion will be  reported in 
future studies.

Immunoblot analysis using EB-A2 revealed the presence of Galf-
containing glycoproteins in koji fungi. A. oryzae contained lower 
amounts of Galf-containing glycoproteins than A. nidulans and 
A. fumigatus, whereas A. luchuensis and A. kawachii produced large 
amounts of Galf-containing glycoproteins. Because it is known that 
ugmA deletion results in severe growth defects in A. niger, it is likely that 
Galf-containing glycans, including glycoproteins, function as important 

FIGURE 6

Proton nuclear magnetic resonance (1H-NMR) spectrometry of fungal-
type galactomannan (FTGM) fraction from Aspergillus oryzae. The 
signal at 5.195 and 5.05 ppm of the 1H-NMR spectra is the H-1 signal of 
the C-1 position of the underlined Galf residue in the β-Galf-(1,5)-β-
Galf-(1,5)-β-Galf and β-Galf-(1,5)-β-Galf-(1,6)-β-Galf structures (Kudoh 
et al., 2015). Signals A (5.104 ppm), B (5.233 ppm), C (5.216 ppm), and D 
(5.054 ppm) from the 1 H-NMR spectra were derived from H-1 at the 
C-1 position of the underlined D-Mannose (Man) residues in the 
structures -(1,6)-α-Man-(1,2)-α-Man-(1,2)-α-Man-(1,2)-α-Man-(1,6)- 
(A), −(1,6)-α-Man-(1,2)- α-Man-(1,2)- α-Man-(1,2)-α-Man-(1,6)- (B), 
−(1,6)-α-Man-(1,2)-α-Man-(1,2)-α-Man-(1,2)-α-Man-(1,6)- (C), and 
-(1,6)-α-Man-(1,2)-α-Man-(1,2)-α-Man-(1,2)-α-Man-(1,6)- (D). The 
proton chemical shifts were referenced relative to internal acetone at δ 
2.225 ppm.
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cell wall components in Aspergillus section Nigri (Damveld et al., 2008; 
Park et al., 2016). Conversely, Galf-containing glycoproteins tend to 
be less abundant in A. oryzae than in other filamentous fungi. Such 
differences of phenotype among Aspergillus species could indicate that 
the contributions of Galf-containing glycoproteins to cell wall 
composition and normal mycelial formation differ among different 
Aspergillus species.

This study demonstrated that disruption of ugmA causes growth 
defects in A. oryzae. This inhibition of growth in ∆ugmA strains has 
been observed in other Aspergillus species and appears to be a common 
phenomenon (Damveld et al., 2008; El-Ganiny et al., 2008; Schmalhorst 
et al., 2008), thus indicating that Galf-containing glycan structures play 
an important role in cell wall integrity in A. oryzae. In fact, ΔugmA 
exhibited greater sensitivity to CFW, suggesting that the abundance of 
cell wall components, such as chitin and glucan, was altered in this 
strain. In A. niger, it has been reported that ugmA disruption increases 
the expression of various genes involved in the biosynthesis of α-glucan, 
β-glucan, and chitin (Park et  al., 2016; Arentshorst et  al., 2020). 
Although Galf-containing glycans are not major components of the cell 
wall, they might be  important in maintaining the balance between 
glucans and chitin in filamentous fungi.

1H-NMR spectrometry suggested that a structure similar to the 
FTGM of A. fumigatus is present in the cell wall of A. oryzae (Figure 6). 
The signal indicating the presence of Galf residues was completely lost 

in the A. oryzae ∆ugmA strain, indicating that UgmA is the only 
UDP-galactopyranose mutase in A. oryzae and that AoUgmB does not 
have the same enzymatic function as UDP-galactopyranose mutase 
(Figure  6). The level of Galf-containing glycoproteins is lower in 
A. oryzae than in other filamentous fungi, suggesting that the growth 
defect of ΔugmA is largely attributable to the loss of the galactofuran 
side chain of FTGM. The predicted biosynthesis map of FTGM in 
A. oryzae was illustrated based on previous studies (Figure 7). UDP-Galf 
is synthesized from UDP-glucose via UDP-galactose by UgeA 
(AO090010000463) and UgmA in the cytosol (Damveld et al., 2008; 
El-Ganiny et al., 2008; Schmalhorst et al., 2008; El-Ganiny et al., 2010; 
Lee et  al., 2014; Park et  al., 2014). The glfB/ugtA homolog gene 
(AO090012000853), encoding a Golgi-localized UDP-Galf transporter, 
is conserved adjacent to ugmA in the A. oryzae genome, as reported for 
A. fumigatus (Engel et al., 2009; Afroz et al., 2011; Park et al., 2015). 
Unlike other Aspergillus spp., in A. oryzae, only gfsA (AO090120000096) 
is present in the genome as a gfsA/B/C homolog encoding β-(1,5)-
galactofuranosyltransferase (Komachi et al., 2013; Katafuchi et al., 2017; 
Chihara et al., 2020). Therefore, it is likely that only gfsA is involved in 
the biosynthesis of the β-(1,5)-galactofuran side chain of FTGM in 
A. oryzae. AO090009000688 is conserved as a homolog of the Golgi-
localized GDP-Man transporter gene, gmtA (Jackson-Hayes et al., 2008; 
Engel et al., 2012). In addition, cmsA (AO090010000463) and cmsB 
(AO090120000333), encoding α-(1,2)-mannosyltransferase, and anpA 
(AO090023000901), encoding α-(1,6)-mannosyltransferase, which are 
involved in the biosynthesis of the FTGM core mannan backbone, are 
conserved in the A. oryzae genome (Onoue et al., 2018; Kadooka et al., 
2022b). Although the enzymes that add Galf to the core mannan 
backbone (α-mannoside β-galactofuranosyltransferase: Mgf) have not 
yet been identified in filamentous fungi, it can be  inferred that the 
aforementioned genes are essential for the biosynthesis of FTGM in 
A. oryzae. Recent studies have postulated that FTGM is transported to 
the cell surface via the GPI-anchor and then cross-linked to β-glucan by 
Dfg proteins, which are mannosidases belonging to the GH76 family 
(Muszkieta et al., 2019; Fontaine and Latgé, 2020; Vogt et al., 2020). 
These FTGM-conjugated β-glucan structures are thought to play an 
important role in normal mycelial elongation in A. oryzae.

Previous studies have shown that the polysaccharides that compose 
the A. oryzae cell wall include β-(1,3)-glucan, α-(1,3)-glucan, chitin, and 
galactosaminogalactan (Müller et al., 2003; Zhang et al., 2017; Miyazawa 
et al., 2019, Figure 7). Through an analysis of ugmA, we revealed that 
A. oryzae cell walls also contain FTGM structures and 
galactomannoproteins. Our findings provide novel insights into the 
structure of the A. oryzae cell wall and the health-promoting effects of 
fermented foods made from the yellow koji fungus in Japan.
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