
Frontiers in Microbiology 01 frontiersin.org

Microbial community and soil 
enzyme activities driving microbial 
metabolic efficiency patterns in 
riparian soils of the Three Gorges 
Reservoir
Yining Yang 1, Yao Chen 1, Zhe Li 2, Yuanyuan Zhang 2 and 
Lunhui Lu 2*
1 Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing 
Jiaotong University, Chongqing, China, 2 CAS Key Laboratory of Reservoir Water Environment, 
Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 
China

Riparian zones represent important transitional areas between aquatic and 
terrestrial ecosystems. Microbial metabolic efficiency and soil enzyme activities 
are important indicators of carbon cycling in the riparian zones. However, how 
soil properties and microbial communities regulate the microbial metabolic 
efficiency in these critical zones remains unclear. Thus, microbial taxa, enzyme 
activities, and metabolic efficiency were conducted in the riparian zones of the 
Three Gorges Reservoir (TGR). Microbial carbon use efficiency and microbial 
biomass carbon had a significant increasing trend along the TGR (from upstream 
to downstream); indicating higher carbon stock in the downstream, microbial 
metabolic quotient (qCO2) showed the opposite trend. Microbial community 
and co-occurrence network analysis revealed that although bacterial and fungal 
communities showed significant differences in composition, this phenomenon was 
not found in the number of major modules. Soil enzyme activities were significant 
predictors of microbial metabolic efficiency along the different riparian zones of 
the TGR and were significantly influenced by microbial α-diversity. The bacterial 
taxa Desulfobacterota, Nitrospirota and the fungal taxa Calcarisporiellomycota, 
Rozellomycota showed a significant positive correlation with qCO2. The shifts in 
key microbial taxa unclassified_k_Fungi in the fungi module #3 are highlighted 
as essential factors regulating the microbial metabolic efficiency. Structural 
equation modeling results also revealed that soil enzyme activities had a highly 
significant negative effect on microbial metabolism efficiency (bacteria, path 
coefficient = −0.63; fungi, path coefficient = −0.67).This work has an important 
impact on the prediction of carbon cycling in aquatic-terrestrial ecotones.
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1. Introduction

Riparian zones are areas formed along rivers, lakes, and open-
water wetlands in the transition area from aquatic to terrestrial 
ecosystems (Welsh et al., 2017; Hille et al., 2018), and they are water-
land interface areas that have both water and land characteristics. The 
rich biodiversity and unique edge effects make riparian zone habitats 
dynamic, complex and diverse (Gregory et al., 1991). Riparian soils 
represent a vital reservoir of biodiversity and underline a multitude of 
ecosystem processes and functions. Riparian zone soils are an 
important part of the environmental composition and their 
biodiversity influences the structural and ecosystem function of the 
riparian zone.

Microorganisms in riparian soils regulate the main carbon fluxes 
between the soil and the atmosphere, where they are the key drivers 
of the carbon cycle. Riparian zones are usually found in channels that 
are unmanaged and formed by natural water level fluctuations (Malik 
et  al., 2018). Dynamic riparian zone habitats result in the loss of 
organic carbon in riparian zone soils. Microbial metabolic efficiency, 
as an important indicator of microbial anabolism, represents the C 
distribution between microbial biomass and CO2 production, and can 
reflect the changes of microbial physiological characteristics (Frey 
et al., 2013; Mo et al., 2021). In this study, carbon use efficiency (CUE), 
microbial metabolic quotient (qCO2), microbial biomass turnover 
time (τ), and microbial biomass carbon (MBC) are defined to evaluate 
the microbial metabolic effenciency. Generally, lower qCO2 and higher 
CUE indicate higher metabolic efficiency in the soil ecosystems 
(Wardle and Ghani, 1995; Chen et al., 2018). The CUE is an important 
regulator of carbon stock, and it can also affect the C retention time 
and carbon turnover rate of an ecosystem (Wieder et al., 2013; Adingo 
et al., 2021). It has been shown that microbial communities’ microbial 

metabolic efficiency such as qCO2 and CUE, is the basis of ecosystem 
carbon storage rates (Xu et al., 2017; Chen et al., 2018; Malik et al., 
2018). Some studies have shown that the metabolic efficiency of 
microbial communities is influenced by abiotic factors and varies with 
environmental conditions (Sinsabaugh et al., 2013; Xu et al., 2017). 
Microbial growth and CUE were found to be influenced by microbial 
diversity and community structure (Soares and Rousk, 2019). 
Furthermore, soil enzymes are proteins produced by microbial cell 
secretions, which are involved in the whole process of decomposition 
and synthesis of organic matter and release of nutrients in the soil 
(Hill et  al., 2012). Riparian soil microbial communities are very 
sensitive to water-level disturbances and changes in the external 
environment, and the unique inverse seasonal variation in water level 
has a great impact on their composition and structural changes, 
affecting the secretion of soil microbial enzymes, respiratory 
metabolism and/or catabolism, thus affecting ecological processes 
closely related to the soil carbon cycle (Allison et  al., 2010; Feng 
et al., 2019).

Microbial community composition and key taxa may also activate 
soil carbon transformation in various processes. However, despite the 
recognition that microbial communities are critical for microbial 
metabolism efficiency, as far as we know, there are still relatively few 
studies on microbial diversity and microbial metabolic efficiency in 
riparian soil ecosystems. It is necessary to study the mechanisms by 
which soil microbial communities regulate their physiological 
properties (e.g., selective enzyme secretion for nutrient uptake under 
nutrient-limited conditions; regulation of interspecific community 
competition or collaboration, etc.) to adapt to external environmental 
dynamics. Moreover, research has indicated positive relations between 
biodiversity and soil functions, such as denitrification and 
methanogenesis (Delgado-Baquerizo et al., 2020). However, changes 
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in microbial communities of soils with rich diversity might 
be associated with an abundant presence of functionally redundant 
organisms that generally do not translate into changes in soil function, 
especially for carbon cycling function (Wertz et al., 2006).

The reservoir riparian zone has a water system that is independent 
of natural water systems such as streams and rivers. China’s Three 
Gorges Dam blocks a natural river, creating a large reservoir and a 
total riparian area of 349 km2 (Ye et al., 2019; Zhu et al., 2022). With 
the implementation of the Three Gorges Dam project in 2008, the 
reservoir level fluctuates from 145 m in summer (May to September) 
to 175 m in winter (October to April; Zhang and Lou, 2011). Previous 
studies have mainly focused on geomorphic delineations (Gurnell 
et  al., 2001; Verry et  al., 2004; Clerici et  al., 2013), the effects of 
hydrology (Brosofske et  al., 1997; Wantzen et  al., 2008), plant 
colonization (Hupp and Osterkamp, 1996; Li T. et  al., 2022), 
biogeochemical actions (Smith et  al., 2012; Zhang et  al., 2012), 
ecological services (Sparovek et al., 2002; Stutter et al., 2012), and 
interactions among the studied objects (Gregory et  al., 1991; 
Osterkamp and Hupp, 2010; Polvi et al., 2011; Gurnell et al., 2012; 
Ding et al., 2022). However, the impacts of dams on hydrologic and 
biogeochemical processes in the riparian zones of reservoirs could 
be more complex and diverse. The unique inverse seasonal variation 
in water level has a great impact on changes in soil conditions and 
vegetation types (Ye et  al., 2012; Garssen et  al., 2015), and these 
changes ultimately affect soil composition and soil enzyme activity as 
well as soil functions. Sensitive riparian habitats might establish 
complex interaction characteristics between microorganisms and 
microbial metabolism efficiency. It is undoubtedly important to study 
links between microbial communities and soil carbon functionality, 
which can provide valuable information on microbial predictions of 
ecosystem processes and functions in the riparian soils.

The overall object of this study is to explore the direct or indirect 
drivers on microbial metabolic efficiency along the riparian zones of 
the TGR. We hypothesize that: (1) The sensitive and complex riparian 
habitats results different microbial metabolic efficiency distribution in 
the riparian zones of the TGR; (2) More diverse in soil microbial 
communities will have higher microbial metabolic efficiency; and (3) 
High soil enzyme activities means higher microbial capacity to utilize 
substrates, thus soil enzyme activities might can be  indicators of 
microbial metabolic efficiency in the riparian ecosystems. To 
overcome these key issues, we select the riparian soils in the TGR to 
conduct relative researches. Our work shows that the impact of the 
microbial communities, diversity, and soil enzyme activities on 
microbial metabolic efficiency.

2. Materials and methods

2.1. Experimental design and sampling 
campaigns

Sampling campaigns were conducted at the Three Gorges 
Reservoir (TGR), China. This reservoir is approximately 662.9 km, 
spanning from Chongqing (west) to Yichang, Hubei (east; Chang 
et  al., 2010). The water level is impounded to 175 m for power 
generation in the winter and discharged to 145 m for flood control in 
the summer, forming a unique artificial riparian zone that totals 
approximately 349 km2 (Yang et al., 2012; Zhu et al., 2022).

The field sampling campaigns were carried out in December 2021. 
A total of 20 sampling sites were selected in the riparian zone along 
the TGR (Figure  1), including two sites upstream, eight sites 
midstream, and 10 sites downstream. Detailed geographic information 

FIGURE 1

Location of sampling sites in the riparian zone of Three Gorges Reservoir, China.
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of the sampling sites is given in Supplementary Table S1. Total 4–5 
different portions of riparian zone topsoil (0–20 cm) were collected 
within 1 m2 using a shovel, and the soil was thoroughly mixed and 
reduced to 1 kg by quadratic fractionation after removing obvious 
impurities such as plant roots and stones. Samples were then 
encapsulated in polyethylene self-sealing bags and placed in 
low-temperature, sterile containers (so that the internal temperature 
was maintained between 2 and 6°C) and sent immediately to the 
laboratory. On arrival at the laboratory, the samples were divided into 
three parts: those for microbial community characterization were 
immediately frozen at −80°C, those for soil water content (SWC), 
MBC, and soil extracellular enzyme activities were stored at 4°C, and 
those for physicochemical analyses were air-dried and then sieved 
before use.

2.2. Soil properties

The pH of riparian soil was determined by the 1:2.5 (w/v) 
electrode method. Samples were dried at 105°C for 24 h to determine 
SWC. Soil total carbon (TC) and total nitrogen (TN) were measured 
by an elemental analyzer (Vario PYRO Cube, Elementar, Germany). 
Soil total phosphorus (TP) was analyzed according to the Standards, 
Measurements, and Testing (SMT) methods (Ruban et al., 2001; Sun 
et al., 2021; Appendix S1). Three parallel samples were provided for 
quality control.

2.3. Microbial metabolic efficiency

In this study, microbial metabolic efficiency was defined as an 
important indicator of microbial anabolism, evaluated with CUE, 
MBC, τ, and qCO2. Since microorganisms have a preference for 
different carbon substrates, measuring CUE by labeling the substrate 
carbon would bias the results (Schwartz, 2007). Based on the results 
of previous studies, it was shown that more than 90% of the oxygen in 
the process of DNA synthesis by microbial growth comes from water-
oxygen, and the results are reliable (Schwartz, 2007; Li et al., 2016; 
Spohn et al., 2016a). Therefore, we measured CUE using a substrate 
carbon-independent 18O-H2O chamber culture method, and 
simultaneously measured microbial basal respiration and τ (Spohn 
et al., 2016a; Qu et al., 2020). The CUE was measured as follows: 
We weighed 6 g of fresh soil in a 150 mL plastic wide-mouth bottle and 
added a certain amount of ultrapure water to adjust the water content 
to 60% of the field Water Holding Capacity (WHC), and place it in a 
pre-culture at 20°C for 24 h. Afterward, six pre-cultured soil samples 
(0.5 g each) were taken into 50 mL culture flasks with screw caps, three 
of which were spiked with 100 μL of 18O-H2O (20.0 atom%18O, 
Campro Scientific, Germany) for labeling experiments and the other 
with an equal amount of ultrapure water as a natural abundance 
control. Seal an empty vial at three sample intervals to obtain a control 
sample of laboratory air at the start of the incubation. The vials were 
incubated in a constant temperature incubator at 20°C for 48 h. After 
incubation, 15 mL of gas was extracted from each vial using a syringe 
with a Luer lock and transferred to an evacuated vacuum bag (0.3 L, 
HEDE tech, Dalian, China), and timely measurement of CO2 
concentration by gas chromatograph (Agilent 8860 GC System, 
Spanish). Soil respiration rate was quantified as μgCO2-C g−1 dry soil 

h−1. After the gas samples were taken, the culture flasks were removed 
and placed in a freeze dryer for the freeze-drying process until DNA 
extraction. Total soil DNA was extracted using a DNA extraction kit 
according to the manufacturer’s procedures.1 DNA concentrations 
were then quantified by Picogreen fluorescence analysis (Quant-iT™ 
PicoGreen® dsDNA Reagent, Thermo Fisher, Germany) using a 
microplate spectrophotometer (Infinite® M200, Tecan, Austria). The 
remaining DNA extracts were then transferred to silver cups, and 
placed in an oven at 45°C until dry, then the packaged samples were 
sealed and the 18O isotope abundance and O content were determined 
using a stable isotope mass spectrometer (Thermo Fisher Scientific, 
MA, United States). Based on the steady-state assumption, the amount 
of carbon absorbed by microbial biomass (CUptake) is calculated 
as follows.

 
C C CUptake Growth Respiration= +

 
(1)

Where CGrowth is the carbon flux allocated to biomass production 
(growth) and CRespiration is the carbon flux allocated to CO2 production 
(respiration).

Microbial CUE is then calculated by the following equation 
(Manzoni et al., 2012; Sinsabaugh et al., 2013).

 
CUE =

C
C
Growth

Uptake  
(2)

Microbial biomass carbon was determined by the chloroform-
fumigation extraction method (Vance et al., 1987; Setia et al., 2012), 
details of the experimental procedure and the calculation of MBC are 
given in the Supplementary material (Appendix S2). qCO2 was 
expressed as μg CO2-C (μg MBC)−1 h−1 (Wardle and Ghani, 1995), and 
was calculated by the ratio of CRespiration to MBC, referring to the 
calculation in previous studies (Zheng et al., 2019). τ was calculated 
by the ratio of MBC to Cgrowth with reference to previous research 
methods (Spohn et al., 2016a).

2.4. Prediction of soil enzyme activities and 
nutrient limitation in riparian soil 
ecosystems

Soil enzyme activities related to carbon [β-1,4-glucosidase (BG), 
β-xylosidase (BX), cellobiose hydrolase (CBH), and polyphenol 
oxidase (PPO)], nitrogen [N-acetyl-β-D-glucosaminidase (NAG) and 
leucine aminopeptidase (LAP)], and phosphorus [acid phosphatase 
(ACP)] were determined according to the enzyme activity assay kit.2 
All enzyme activities were measured by a fluorometric method in 
96-well microplates using a multimode microplate reader (Infiniti 
M200PRO, Switzerland; Marx et  al., 2001; Wang et  al., 2021). 
Extracellular enzyme activities were expressed as nmol h−1 g−1 soil.

1 https://www.tiangen.com/

2 https://www.boxbio.cn/
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Furthermore, enzyme activities were normalized by MBC to avoid 
the variations induced by biomass change. In this study, the enzyme 
stoichiometric vector model was used to calculate microbial metabolic 
restriction characteristics (Moorhead et al., 2013, 2016).

Where Length and Angle are, respectively, calculated by equations 
(3) and (4).

 Length x y= +2 2

 (3)

 
Angle degrees atan2 x,y= ( )( )  

(4)

Where x = (BG + CBH)/(BG + CBH + ACP) and y = (BG + CBH)/
(BG + CBH + LAP+NAG). A higher Length value indicates relatively 
higher C vs. nutrient acquisition strategies, and a higher Angle value 
suggests higher P vs. N acquisition efforts.

Here, the soil enzyme activity index was calculated based on the 
average of all single enzyme activities measured (Luo et al., 2018), and 
was used as a general index that could reflect the change in the 
extracellular enzyme activity of the soil microorganism. Before 
quantifying this index, all single enzyme activity indices were 
normalized by Z-scores (Wagg et al., 2014).

2.5. Microbial communities and 
bioinformatics analysis

Following the manufacturer’s instructions, soil DNA was extracted 
by using the Powersoil® DNA Isolation Kit (MoBio, CA, United States). 
Subsequently, primer pairs 338F/806R (Huws et al., 2007) and ITS1F/
ITS2R (White, 1990) were used to amplify bacterial 16S rRNA and 
fungal ITS coding genes. Afterward, the purified amplicons were 
pooled in equimolar amounts and paired-end sequenced on an 
Illumina MiSeq platform at Majorbio Bio-Pharm Technology Co., 
Ltd., Shanghai, China.

All bioinformatics analyses were based on amplicon sequence 
variants (ASVs; Callahan et al., 2017), using DATA2 denoising to 
remove any low-quality reads, and then clustering the eligible merged 
sequences into ASVs (Callahan et  al., 2016). In this study, alpha 
diversity indices [Chao1, Shannon, and phylogenetic diversity (PD)] 
were calculated according to the 97% ASV similarity of the sequences. 
Modules are highly connected regions in a network that may reflect 
the aggregation of phylogenetically closely related species, 
overlapping niches and the co-evolution of species, and they are 
considered phylogenetically, evolutionarily, or functionally 
independent units (Olesen et al., 2007). ASVs with high Spearman 
correlation coefficients (|r| > 0.8) and statistically significant (p < 0.05) 
correlations were selected for bacterial and fungal contribution 
network analysis to identify the major eco-clusters (modules or 
assemblages) of strongly correlated ASVs (Li H. et al., 2022). The 
network core node discrimination methods of within-module 
connectivity (Zi) and among-module connectivity (Pi) have been 
widely applied, based on this, we used them for inference of network 
node properties and filtering of key species (Deng et  al., 2012). 
Further bioinformatics analysis is available in the 
Supplementary material (Appendix S3).

2.6. Other data analysis and statistical tests

The distribution of microbial metabolism-related indicators along 
the TGR was evaluated using OriginPro 2022 (OriginLab Corporation, 
MA, United States) in a violin plot. Statistical differences in microbial 
alpha diversity upstream and downstream were tested by one-way 
ANOVA. Spearman’s rank correlation analysis was used to assess the 
relationship between soil microbial carbon metabolism and soil 
physical–chemical properties and microbial extracellular enzyme 
activities. It was also used to evaluate the relationship between 
keystone taxa in the microbial network and key modules in the 
microbial community. A random forest analysis was performed to 
determine statistically significant predictors of microbial metabolism 
efficiency (CUE, MBC, qCO2, and τ) using the rePermute package 
(Breiman, 2004) in R (version 4.1.3).

The direct and indirect effects of soil physical–chemical 
properties, microbial alpha diversity, and soil enzyme activities on 
microbial metabolic efficiency were evaluated by a structural 
equation model (SEM). The hypothesized path structure was 
based on the proposition that abiotic drivers can drive microbial 
metabolic efficiency not only directly, but also indirectly drive it 
by influencing the biotic factors (Supplementary Figure S1). 
We  infer that: (1) Soil physical and chemical properties can 
directly affect microbial α diversity, soil enzyme activities, and 
microbial metabolic efficiency; (2) Microbial α diversity drives 
soil enzyme activities and microbial metabolic efficiency, and the 
influence of bacterial and fungal α diversity on them is different; 
and (3) Soil enzyme activities have direct effect on microbial 
metabolic efficiency. Due to the strong Spearman correlation 
between the factors in each group, before constructing the SEM, 
principal component (PC) analysis was first performed to 
establish multivariate functional relationships, thereby integrating 
multiple single variables into one composite variable (Chen et al., 
2019). The first component (PC1) explained 70.64–91.34% of the 
total variance of those four groups, and PC1 was then brought in 
as a composite variable to the subsequent analysis species to 
express the group properties of the combination 
(Supplementary Table S2). Finally, the goodness of fit of the SEM 
was checked by the χ2 test and the root mean square error of 
approximation (Chen et  al., 2019). Analysis of the structural 
equation model was performed using AMOS 26.0 (AMOS 
Development Corporation, Chicago, IL, United States).

3. Results

3.1. Microbial metabolism indicators and 
resource acquisition traits in riparian soils

The microbial metabolism indicators (including CUE, qCO2, 
MBC, and τ) along the TGR were showed in Figure 2. Microbial 
CUE and MBC had a significant increasing trend along the TGR 
(from the upstream to downstream), and the qCO2 showed an 
opposite trend, indicating there are higher metabolic efficiency in 
the downstream of the TGR. There was no significant change in τ 
(Figure  2). According to the enzyme metric vector model 
(Supplementary Figure S2), the soil microbial communities were 
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FIGURE 2

Soil carbon metabolism indicators along the different riparian zones (upstream, midstream and downstream) of TGR. CUE, carbon use efficiency; MBC, 
microbial biomass carbon; qCO2, metabolic quotient; τ, microbial biomass turnover time. *p < 0.05, **p < 0.01, ***p < 0.001.

mostly limited by soil phosphorus and partially limited by soil 
nitrogen along the TGR riparian zone.

3.2. Soil microbial diversity and 
communities in riparian zones

Overall, the bacterial and fungal alpha diversity (including 
Chao, Shannon, and PD indices) showed a decreasing trend from 
upstream to downstream. The fungal alpha diversity showed 
highly significant differences between upstream and downstream 
(Chao and PD indices; Figure 3). A total of 15,269 ASVs and 5,469 
ASVs were detected for the bacterial and fungal communities, 
respectively. In the TGR, the Shannon diversity of bacterial 
communities was higher than that of fungal communities 
(Supplementary Figure S3).

The abundant bacterial phyla at the community phylum level were 
Actinobacteriota (25.41%), Proteobacteria (21.65%), Chloroflexi 
(15.35%), and Acidobacteriota (14.07%; Supplementary Figure S6). 
The abundant fungal phyla at the community phylum level were 
Ascomycota (36.6%), unclassified_k_Fungi (23.8%), Basidiomycota 
(17.7%), and Mortierellomycota (14.8%; Supplementary Figure S6). 
The proportion of microbial community composition also differed 
significantly along the different areas of the riparian zone 
(Supplementary Table S3; Supplementary Figure S3).

3.3. Co-occurrence network analysis

Microbial co-occurrence networks can generally be divided 
into multiple modules. Soil bacterial and fungal co-occurrence 
networks were classified into 9 (B_Mod#0–8) and 10 (F_
Mod#0–9) major microbial modules, respectively (Figure 4A). 
Among them, the relative abundance of phylogenetic types 
belonging to F_Mod#3 was positively correlated with B_
Shannon, F_Shannon and B_pd, F_pd. B_Mod#5 consisted 
mainly of Proteobacteria, Actinobacteriota, and Desulfobacterota 
(Supplementary Table S8), and the relative abundance of 
phylogenetic types of this module was positively correlated with 
bacterial alpha diversity (B_Chao, B_Shannon, and B_pd). In 
addition, there were significant positive correlations between the 
relative abundance of B_Mod#8 and soil conductivity (Cond) as 
well as soil LAP enzyme activity (Figure  4B). By  
establishing correlation analysis of key assemblies in the 
microbial network modules with soil enzyme activities and 
microbial metabolic efficiency, it was found that most taxa in the 
network modules were positively correlated with qCO2 and 
nutrient acquisition length (Figure 5; Supplementary Table S8). 
Chloroflexi in B_Mod#8 showed a relatively strong positive 
correlation with soil enzyme activities (Supplementary Tables S8, 
S9). Most taxa in F_Mod#3 showed a significantly positive 
association with qCO2 and Length, but a negative association 
with CUE (Figure 5).
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Moreover, correlations between dominant phylum and microbial 
metabolism effiency were analyzed (Figure  4C; 
Supplementary Table S5). It was found that bacterial phylum 
Myxococcota and the fungal phylum unclassified_k_Fungi were 
positively correlated with MBC significantly, and the bacterial 
phylum Desulfobacterota, Nitrospirota and the fungal phylum 

Calcarisporiellomota, Rozellomota had a significantly positive 
correlation with qCO2 (Figure  4C; Supplementary Table S5). 
Interestingly, at the key genus level, none of the key genera were 
significantly correlated with microbial metabolic efficiency, except for 
the fungal genus unclassified_k_Fungi, which showed a significant 
positive correlation with MBC (Supplementary Table S4).

A

B C

FIGURE 3

The alpha diversity and microbial communities in riparian zones of the TGR. (A) Distribution of alpha diversity (bacteria and fungi) in the riparian zone 
(upstream, midstream, and downstream). (B) Relative abundance of bacterial communities at the phylum level (upstream, midstream, and 
downstream); B_Chao, Chao index of bacterial community; F_Chao, Chao index of fungal community. (C) Relative abundance of fungal communities 
at the phylum level (upstream, midstream, and downstream). *p < 0.05, **p < 0.01, ***p < 0.001.
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3.4. Linking biotic and abiotic factors to 
microbial metabolic efficiency

Biotic and abiotic factors were linked to indicators of microbial 
metabolic efficiency by using random forest and correlation analysis 

(Figure  6). The results showed that soil enzyme activities were 
significant predictors of CUE, MBC and qCO2 (Figure 6A). Spearman’s 
correlation (Figure  6B) and redundancy analysis 
(Supplementary Figure S7B) further indicated that both CUE and 
MBC showed negative correlations with soil enzyme activities, while 

A B

C

FIGURE 4

Division of main bacterial and fungal modules and correlation analysis with each index. (A) Diagram of network module division, where modules are 
divided by different colors, the left is bacterial community and the right is fungal community; (B) Spearman analysis between network modules and 
factors (physical–chemical properties, alpha diversity, and enzyme activities). (C) Linear fit of dominant species (including bacterial and fungal phylum 
levels) to microbial metabolism efficiency. *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 5

Relationships of the keystone genera with metabolic efficiency, microbial physiological traits and soil enzyme activities. F_Mod#3, key fungal 
assemblies in module#3; B_Mod#4, B_Mod#5, and B_Mod#8 were key bacterial assemblies in module#4, module#5, and module#8. Length, the 
relative C: nutrient-acquiring traits.
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qCO2 was highly significantly and positively correlated with them 
(except for PPO enzyme activity). Furthermore, among the soil abiotic 
factors, SOC was an important predictor of MBC (Figure  6A; 
Supplementary Figure S7A).

In addition, we use structural equation modeling (SEM) to test 
whether the relationship between them. Overall, the SEM results also 
revealed that soil enzyme activities had a highly significant negative 
effect on microbial metabolism efficiency (bacteria, path 
coefficient = −0.63; fungi, path coefficient = −0.67; Figure 7). Microbial 
alpha diversity had a weak effect on microbial metabolic efficiency 
(bacteria, path coefficient = −0.16; fungi, path coefficient = −0.09), 
mainly by through affecting enzyme activities and thus indirectly 
affecting microbial metabolic efficiency (Figure 7).

4. Discussion

This study selected 20 representative sampling sites along the TGR to 
elucidate the change patterns of microbial α-diversity and microbial 
metabolic efficiency in the riparian soils, and analyzed the driving factors 
(key taxa, micribial diversity, enzyme activities, and physico-chemcal 
factors) of the metabolic efficiency patterns using random forest and SEM.

4.1. Microbial metabolic efficiency patterns 
along the riparian zones of the TGR

With the regular impoundment and discharge of water, the TGR 
has formed a unique riparian zone with a large area. A riparian zone 

is an ecological area between aquatic and terrestrial regions, with 
multiple ecosystem functions, such as biodiversity conservation 
(Mander et al., 2005), riparian stabilization and non-point sources of 
pollution interception (Salemi et al., 2012). Current research in the 
riparian zone of the TGR has focused on the effects of hydrological 
status on the nutrient dynamics of riparian vegetation in the reservoir 
area (Chen et al., 2021, 2022), the effects of dry and wet cycles or water 
level fluctuations on soil aggregates and the response of soil microbial 
communities to external disturbances (e.g., elevated nitrogen levels, 
different land use types, hydrological stress, etc.; Nsabimana et al., 
2020; Ding et al., 2021; He et al., 2021; Li et al., 2021; Nsabimana 
et al., 2021).

This study provides the first preliminary exploration of microbial 
metabolic efficiency alongside the riparian zones of the TGR in the 
high water-level operation period. It was interesting that soils in the 
upstream showed the lowest CUE, the highest qCO2, and diversity of 
soil microorganisms (Figures 2, 3A). This result may be due to the 
higher nutrient availability in the upstream region, resulting in higher 
bacterial community alpha diversity (Yang et al., 2019). Theoretically, 
soil nutrient limitation controls microbial metabolic processes, 
including influencing microbial metabolic rates and resource use 
efficiency. In this work, the lowest CUE and highest qCO2 in the 
upstream is that microorganisms are mainly influenced by carbon 
limitation (Supplementary Figure S2). There are some publications 
also showing that the higher carbon limitation results lower CUE in 
soil ecosystems, additionally, their results showed that qCO2 depended 
not only on the soil carbon concentration but also on the soil C:N and 
C:P mol ratios (Spohn and Chodak, 2015; Cui et  al., 2021). Soils 
mainly showed phosphorus-limited characteristics in the midstream 

A B

FIGURE 6

Major predictors of microbial metabolic efficiency. (A) Based on the percentage increase in mean squared error (%IncMSE) from the random forest 
analysis. (B) Spearman correlation analysis of microbial carbon metabolism indicators with selected biotic and abiotic factors. Enzyme/MBC is 
calculated by normalizing the activity to units/mg MBC and represents the specific enzyme activity. *p < 0.05, **p < 0.01, ***p < 0.001.
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riparian zone (Supplementary Figure S2), and phosphorus limitation 
might probably suppress the soil priming effect (Spohn et al., 2016b), 
thus resulting a relatively higher CUE.

4.2. Key taxa in bacterial and fungal 
assemblies driving the microbial metabolic 
efficiency

Based on patterns of co-occurrence networks, microbial 
communities can be classified as assemblies with specific combinations 
of characteristics, providing new insights into the structure and 
function of complex microbial communities (Ma et al., 2016). Our 
study established a relationship between the key taxa in the microbial 
assemblies and metabolic efficiency. F_Mod#3 showed relatively 
significant positive and negative correlations with qCO2 and CUE, 
respectively (Figure 5). This is probably because the microbial taxa in 
F_Mod#3 have slow growth rates (Feng et al., 2021). Among them, the 
F_Mod#3 module is mainly composed of the dominant phylum 
Ascomycota (77.78%; Supplementary Table S8), which is mainly 
saprophytic and parasitic. Ascomycota plays a crucial role in the 
degradation of various organic substances such as cellulose, cellulose 
disaccharides and lignin, and the intensity of activity may depend on 
the expression of the cellobiose dehydrogenase gene (Harreither et al., 
2011). It is noteworthy that the genera Aspergillus showed a 
significantly negative correlation with CUE (Supplementary Table S8). 

The distribution of Ascomycetes in the topsoil of arid ecosystems has 
been confirmed (Porras-Alfaro et al., 2017;Challacombe et al., 2019; 
Zhao et al., 2019). They have an important function in soil stability, 
plant biomass decomposition and are the main functional group for 
carbon degradation (Challacombe et  al., 2019; Zhao et  al., 2019). 
Among them, Aspergillus has a strong potential function for lignin 
degradation (mainly phenol oxidase genes) during the succession of 
biological soil crusts (Zhao et al., 2019). However, the direct association 
between Ascomycota and CUE has not been determined to date, which 
may require further analysis (Fierer and Jackson, 2006).

Key species in microbial communities, community interactions, 
and community assembly processes are significant predictors of 
microbial metabolism efficiency (Cui et al., 2018; Zheng et al., 2018). 
Microorganisms of the K-strategy grow slower but are more efficient in 
resource utilization, usually have a higher CUE and tend to live in 
nutrient-deficient environments, and many studies consider fungi to 
be in this category (Soares and Rousk, 2019; Zhong et al., 2020). In 
contrast, microorganisms with r-strategies are more metabolically 
efficient, have higher nutrient requirements, and have lower CUE, such 
as bacteria (Soares and Rousk, 2019; Zhong et al., 2020). Myxococcota 
showed a significant positive correlation with MBC (Figure  4C). 
Desulfobacterota, Nitrospirota, Calcarisporiellomycota, and 
Rozellomycota were all observed to be  significantly and positively 
correlated with qCO2 in this study (Figure  4C). Members of 
Myxococcota are rare bacterial predators with a unique “wolf-pack 
hunting” strategy (Petters et al., 2021). It has been confirmed that their 

A

B

FIGURE 7

Effects of soil physicochemical properties, microbial alpha diversity, and soil enzyme activities on microbial metabolic efficiency directly and indirectly. 
The structural equation models (SEM) was constructed for bacteria and fungi respectively: (A) microbial alpha diversity_Bacteria; (B) microbial alpha 
diversity_Fungi. Blue solid and gray dotted arrows, respectively, represent positive and negative relationships. The wider the width of the arrow 
indicates the stronger the correlation. Numbers on arrows are standardized path coefficients. R2 indicates the proportion of variance explained by 
predictors. *p < 0.05, **p < 0.01, ***p < 0.001. The soil physical and chemical properties, microbial alpha diversity, and microbial metabolism efficiency 
were represented by the first component of the PCA performed in a multilayer rectangle.
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metabolism is active in situ in the soil microbial food web (Lueders et al., 
2006). Desulfobacterota (formerly Deltaproteobacteria) are mainly 
mesophilic anaerobes, and members of the class Desulfobacterota are 
best known for their respiration of sulfate (Waite et al., 2020). Members 
of Nitrospirota (formerly Nitrospirae or Nitrospira) can oxidize nitrite 
to nitrate and play an important role in denitrification (Ehrich et al., 
2007). They are mainly involved in N cycling processes in the soil, thus 
indirectly influencing the respiratory metabolic capacity of 
microorganisms, which partially explains the increase in qCO2 with the 
enhanced activity of Desulfobacterota and Nitrospirota, while they did 
not show a significant association with CUE, MBC (Figure 4C).

4.3. Multiple drivers on microbial 
metabolism efficiency

The relative importance of soil physical–chemical properties, 
microbial α-diversity, and soil enzyme activities on microbial 
metabolic efficiency was discerned by constructing an SEM. Here, 
bacterial α-diversity was found to show a significant positive effect on 
soil enzyme activities (Figure 7A), which is consistent with the results 
of the linear relationship of soil enzyme activities 
(Supplementary Figure S8), and the effect of bacterial α-diversity on 
soil enzyme activity and microbial metabolic efficiency was stronger 
than that of fungi (path coefficients of 0.45 > 0.32, |−0.16| > |−0.09|, 
respectively).

Enzyme activity has a crucial role in the study carbon cycle. 
Although our study showed a weak and non-significant negative 
correlation between microbial alpha diversity and microbial 
metabolism efficiency (bacteria, path coefficient = −0.16; fungi, 
path coefficient = −0.09. Figure 7), the ratio of bacterial/fungal 
alpha diversity (e.g., B/F_Chao, B/F_ Shannon, and B/F_pd) was 
significantly influenced by soil enzyme activity 
(Supplementary Figure S10). Based on the SEM and RDA, 
we speculate that microbial alpha diversity can indirectly have a 
major impact on the metabolic efficiency of microorganisms by 
significantly influencing enzyme activities (Figure  7; 
Supplementary Figure S9). In this study, the SEM results were 
consistent with the random forest results. Microbial enzyme 
activity was stressed as an important predictor of microbial 
metabolic efficiency based on the results of random forest results 
(Figure  6A). The potential extracellular enzyme activity was 
significantly negatively with CUE and MBC (Figure  6B), 
supporting the idea of previous studies that the enzyme pool 
represents a cost hindering growth efficiency (Manzoni et  al., 
2012; Sinsabaugh et al., 2013; Malik et al., 2019). Prior studies also 
confirmed that β-glucosidases and ligninases play an essential role 
in the microbial involvement of soil carbon cycling (Lladó 
et al., 2017).

5. Conclusion

In summary, as far as we  know, this study is the first 
preliminary exploration of the links among microbial metabolic 
efficiency, microbial alpha diversity and soil enzyme activities in 
the riparian zone ecosystem. Microbial alpha diversity showed a 

strong positive correlation with soil enzyme activities, while soil 
enzyme activities showed a highly significant negative correlation 
with microbial metabolic efficiency. Our results demonstrate the 
crucial role of soil enzyme activities in predicting microbial 
metabolism efficiency. There may be important implications of 
this work for changes in the carbon cycling of riparian zone 
ecosystems in the TGR.
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