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In this study, we  investigated the soil physicochemical parameters and responses 
of rhizospheric fungal communities of Hippophae rhamnoides to Mn stress 
under different sexual competition patterns. The results showed that competition 
significantly affects soil physicochemical properties, enzyme activity, and 
rhizosphere-associated fungal community structures. Under Mn stress, soils with 
intersexual competition had higher levels of N supply than those with the intrasexual 
competition. Moreover, fungal communities under intersexual interaction were more 
positive to Mn stress than intrasexual interaction. Under intrasexual competition, 
female plants had higher total phosphorus content, neutral phosphatase activity, 
and relative abundance of symbiotic fungi in soils to obtain phosphorus nutrients to 
alleviate Mn stress. In contrast, male plants had relatively stable fungal communities 
in soils. In the intersexual competition, rhizosphere fungal diversity and relative 
abundance of saprophytic fungi in male plants were significantly higher than in 
female plants under Mn stress. In addition, female plants showed greater plasticity 
in the response of rhizosphere microorganisms to their neighbors of different 
sexes. The microbial composition in soils of female plants varied more than male 
plants between intrasexual and intersexual competition. These results indicated that 
sex-specific competition and neighbor effects regulate the microbial community 
structure and function of dioecious plants under heavy metal stress, which might 
affect nutrient cycling and phytoremediation potential in heavy metal-contaminated 
soils.

KEYWORDS

dioecious plants, sexual competition, Mn stress, fungal community, rhizosphere

1. Introduction

Industrialization and urbanization have led to ecological degradation and dramatic increases in 
heavy metals at regional and global scales due to anthropogenic and environmental factors (Zhong 
et al., 2016). Manganese (Mn) is a kind of heavy metal most widely used in industry and is also an 
essential trace element for plant growth and reproduction (Yao et al., 2012). Adequate amounts of 
Mn play an essential role in plant photosynthesis, activation of enzyme-catalyzed reactions, and 
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maintenance of healthy cell organelle structure (Rayen et  al., 2010; 
Bashir et al., 2013). The concentration of Mn required for normal plant 
growth and development is 20–40 mg/kg dry weight (Rayen et al., 2010). 
Mn toxicity symptoms usually appear when plants accumulate Mn 
above 150 mg/kg dry weight such as reduced photosynthetic efficiency, 
oxidative stress, damage to cellular ultrastructure, interference with the 
uptake of other nutrients, reduced biomass, and even death (Miyata 
et al., 2007; Rayen et al., 2010, 2012; Xie et al., 2015; Santos et al., 2017). 
Mn not only affects plant growth and development but also leads to 
further deterioration of environmental quality and even endangers 
human health by the food chain (Li C. et al., 2019).

Dioecious plant is an essential component of terrestrial ecosystems 
and plays an important role in maintaining species diversity and 
ecological stability (Hultine et al., 2016). The latest statistics show about 
15,600 species of dioecious plants worldwide, belonging to about 175 
families and 987 genera (Renner, 2014). Many morphological, 
physiological, and ecological differences have been observed in 
dioecious plants under environmental stresses, including drought, 
temperature, light, salinity, nutrient deficiencies, and heavy metal 
stresses (Chen M. et al., 2016, 2021; Liu et al., 2020, 2022a,c). Sexual 
differences in reproductive investment in plants may lead to sexual 
dimorphism in dioecious plants. Female plants in dioecious plants 
usually invest more in reproduction and less in growth than male plants 
(Juvany and Munné-Bosch, 2015; Li L. et al., 2019). Some literature 
reported that male plants of dioecious plants may grow better and 
exhibit higher tolerance in stressful environments than female plants 
due to differences in reproductive investment and ecophysiological 
responses (Lei et al., 2017; Melnikova et al., 2017; Liu et al., 2021a). The 
female plants of Populus yunnanensis displayed higher levels of ROS and 
weaker effective protection against excess zinc (Zn) conditions as 
compared to that of male plants (Jiang et al., 2013). Under Mn stress, 
male Populus cathayana plants were more resistant and tolerant than 
female plants (Chen et al., 2013). Liu et al. (2020) showed that female 
P. cathayana plants exhibited higher Cd uptake and root crown 
translocation capacity, while male plants showed more robust 
antioxidant capacity. Xia et al. (2020) showed that male P. cathayana had 
higher tolerance than female plants under low phosphorus nutrient 
stress by enhancing symbiosis with mycorrhizal fungi. Under the salt 
stress, the addition of ammonium and nitrate nitrogen promoted male 
P. cathayana efflux Na+ ions through the roots, and fewer Na+ ions were 
transferred to the shoot, which makes male plants have a higher salt 
tolerance than female plants (Liu et al., 2022b).

Competition and facilitation profoundly affect plant growth and 
environmental adaptation (Liancourt et  al., 2005). Similarly, sexual 
competition patterns also significantly affected the stress tolerance of 
male and female plants under adversity. Populus deltoides females in 
intersexual competition grew faster than male plants, while males showed 
higher osmoregulatory capacity and antioxidant activity under salt stress 
(Li et al., 2016). Under herbivore stress, female P. cathayana in intersexual 
competition have better herbivore resistance than male plants, 
accumulating more secondary metabolites through the leaves (He et al., 
2021). Under the intersexual competition between male and female 
plants, the high N growth stimulating effect was more significant for 
female P. cathayana; in contrast, male plants adapted more to intrasexual 
competition under low N (Chen et  al., 2015). Compared with the 
intersexual competition, female plants in intrasexual competition 
accumulated more Cd and exhibited more injury under Cd stress (Chen 
J. et  al., 2016). Pb stress and intrasexual competition had a more 
significant negative impact on growth and physiological parameters in 

female plants than in male plants (Chen et al., 2017). Most of the previous 
studies of dioecious plants have focused on the aboveground physiological 
response under stress, whether single-sex or sexual competition studies, 
while the response of rhizosphere microbial communities has been 
greatly neglected, especially under heavy metal stress.

Hippophae rhamnoides L. is a fast-growing dioecious woody plant 
widely distributed in northwestern China, characterized by drought 
tolerance and resistance to wind and sand, which plays a vital role in 
maintaining ecological stability. Studies have shown that H. rhamnoides 
can be used as an anti-pollution tree species for revegetation in heavy 
metal-contaminated mining areas (Yakun et al., 2016). However, the 
sex-specific response of H. rhamnoides to heavy metal stress in sexual 
competition patterns has mainly been neglected, especially regarding 
rhizospheric microbial community structure. Our study aims to address 
the following two questions: 1. Do sexual competition patterns and Mn 
stress affect rhizospheric soil physicochemical properties and enzymatic 
activities of H. rhamnoides? 2. How do sexual competition patterns and 
Mn stress affect rhizospheric fungal community composition 
and diversity?

2. Materials and methods

2.1. Plant materials and experimental design

Male and female seedlings of H. rhamnoides were collected from the 
Seedling cultivation base in Fuxin, Liaoning Province. The experiment 
was completely randomized with three factorial sex, Mn, and 
competition combinations. Two sexes (females and males), two Mn 
regimes (0, 4,000 mg Mn2+ kg−1 dry soil), and three competition 
treatments (female × female, FF; female × male, FM; male × male, MM) 
were used in the experiment. Corresponding intrasexual competition 
treatments are denoted as F/FF for females and M/MM for males, and 
intersexual competition treatments as F/FM for females and M/FM for 
males. The experiment was conducted in the Taiyi Xianshan Botanical 
Garden at Mianyang, Sichuan Province, China (31°27′ N, 104°49′E). On 
April 3, 2021, 160 healthy annual seedlings (80 females and 80 males) 
with relatively consistent growth were selected for planting. For 
interactions, two plants (two females, two males, or a female and a male) 
were cultivated 20 cm apart from each other in a plastic pot (external 
diameter 52 cm and height 35 cm) filled with 6.6 kg of homogenized soil 
of the same origin. Soil samples were air-dried and sieved through a 
2 mm sieve. All pots were arranged randomly, and each treatment was 
replicated 10 times. After 8 weeks of growth, the plants were subjected 
to an Mn treatment for 12 weeks. The Mn treatments started on June 8, 
2021, and the plants were harvested on September 11, 2021. In the Mn 
treatment, 100 mL of 486 mmol L−1 MnCl2·4H2O was evenly added to 
the pots every day during the first 10 days. The final Mn level reached 
4,000 mg Mn2+ kg−1 dry soil, while the control plants were irrigated with 
equal quantities of deionized water (Chen J. et al., 2016). Throughout 
the experiment, the temperature range was 24–30°C during the daytime, 
14–19°C during the nighttime, and 70–80% relative air humidity.

2.2. Soil sample collection and 
determination

The roots of H. rhamnoides were completely excavated, and the 
bulk soil of the roots was gently shaken off. Then the rhizosphere soil 
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(soil closely attached to the surface of the root system about 2 mm) 
was collected in sterile bags with a sterile brush, frozen in liquid 
nitrogen and stored in an ultra-low temperature refrigerator at 
−80°C for rhizosphere soil microbial DNA extraction. The shaken 
off soil around the roots was also collected and divided into two 
parts, one stored at room temperature (25°C) for air-drying and the 
other stored at −20°C in the refrigerator for the determination of soil 
enzymatic activity.

Soil organic matter (SOM) content was determined by potassium 
dichromate oxidation - ferrous sulfate titration (Nelson and Sommers, 
1996). Total nitrogen (TN) was determined by the Kjeldahl nitrogen 
method (Bremner, 1960). Ammonium (NH4

+-N) and (NO3
−-N) nitrate 

nitrogen contents were determined by 2 mol L−1 potassium chloride 
extraction-colorimetric method (Bao, 2000). Total phosphorus (TP) 
and available phosphorus (AP) content were determined by 
molybdenum blue colorimetric method (Olsen and Sommers, 1982). 
Determination of soil pH (the ratio of soil to water is 1:2.5) by an 
Acidimeter (PHS-3C; LEICI, Shanghai). Soil Mn content was 
determined by flame atomic absorption method. Soil enzyme activity 
was measured using the method described by Guan (1986). In brief, 
sucrase (SC) was determined by the 3,5  - dinitrosalicylic acid 
colorimetry method, and the sucrase activity was expressed as the 
mass (mg) of glucose released from 1 g of soil after 1 day; urease (UE) 
was determined by the phenol-sodium hypochlorite colorimetric 
method, and the urease activity was expressed as the mass (mg) of 
NH3

−-N released from 1 g of soil after 1 day; neutral phosphatase (NP) 
was determined by disodium benzene phosphate colorimetric method, 
and the phosphatase activity was expressed as the mass (mg) of phenol 
released from 1 g of soil after 1 day; protease (PT) was determined by 
the ninhydrin colorimetric method, and the phosphatase activity was 
expressed as the mass (mg) of glycine released from 1 g of soil after 1 
day. Soil enzymes were measured in fresh soil and converted to enzyme 
activity units per gram of dry soil by water content.

2.3. Fungal microbiome analysis

Soil microbial DNA was extracted from 0.5 g frozen soil samples 
using the Powerful Soil DNA Isolation Kit (MO BIO Laboratories, 
Carlsbad, CA, United States), following the kit instructions. The purity 
and integrity of DNA were detected by 1% agarose gel electrophoresis 
and Nanodrop (Nanodrop 2000, Thermo Fisher Scientific). The primers 
used for fungal ITS rRNA gene amplifications were ITS4 (5′- 
TCCTCCGCTTATTGATATGC-3′) and gITS7F (5’-GTGARTCAT 
CGARTCTTTG-3′; Ihrmark et  al., 2012). The PCR amplification 
reaction system and conditions were based on the previous study (Li 
et  al., 2014). After PCR reactions, quality control, and purification 
processes, a library was constructed. All PCR products were sequenced 
on the Illumina NovaSeq platform (Illumina Inc., CA, United States) by 
Chengdu Institute of Biology, CAS. The raw data obtained by sequencing 
were spliced, quality filtered, and chimeras were removed to obtain 
effective data (Caporaso et al., 2010; Edgar et al., 2011). Based on the 
97% sequence similarity level, all effective data were assigned to 
Operational Taxonomic Units (OTUs) using UPARSE pipeline (Edgar, 
2013). Classification of fungal taxa was done using UNITE version 8.0 
as a reference database (Kõljalg et  al., 2005). FUNGuild functional 
annotation was used for predicting the ecological functions of fungal 
communities (Nguyen et al., 2016). The sequencing data were submitted 
to NCBI (BioProject accession number: PRJNA903369).

2.4. Statistical analyses

Statistical analysis was performed using the SPSS software 
package (version 25.0). Before ANOVAs, all data were checked for 
normality and the homogeneity of variances. Tukey’s test of one-way 
ANOVA analysis was used to determine the individual differences 
between the mean values. Independent-sample t-test was used to 
determine the significant differences between the control group and 
the Mn treatment group, and the significant differences were 
P < 0.05.

Based on the OTUs information, alpha diversity indices, including 
Observed species Chao1, richness, Shannon index, and Simpson index, 
were calculated with Qiime v1.9.0. Beta diversity was calculated based 
on Bray-Curtis distance metrics. Principal coordinates analysis (PCoA) 
was used to visualize the distribution of rhizosphere fungal communities 
in different treatment groups based on Bray-Curtis distance using the 
“Vegan” package in R. The PERMANOVA test was used to assess the 
percentage of variation explained by the Heavy metal, competition, sex, 
and their interactions on the rhizospheric fungal communities along 
with its statistical significance using the “Vegan” package. The linear 
discriminant analysis (LDA) effect size was performed to identify the 
significantly abundant taxa (phylum to genera) of fungi in different 
treatments, irrespective of sexual competition patterns (Class: Mn 
treatment; Subclass: sexual competition pattern), as well as in different 
sexual competition patterns irrespective of Mn treatment (Class: sexual 
competition patterns; Subclass: Mn treatment). Based on the FunGuild 
database, fungal functional groups were classified into symbiotroph, 
pathotroph, and saprotroph. Then, the relative abundance of the three 
functional groups was calculated, and their differences among the 
different treatment groups were analyzed by Tukey’s test and 
independent sample t-test. Pearson correlation analyses were performed 
to show relationships between soil environmental factors, fungal 
diversity, and fungal guilds. Prior to redundancy analysis (RDA), 
we used the ggvegan package to conduct a variance inflation factor 
(VIF) analysis for 12 soil environmental factors and then 10 soil 
environmental factors were used in RDA, TN, and Mn were omitted. 
The vegan and ggplot2 packages were used for RDA results to examine 
the correlation between soil environmental factors and fungal 
community changes.

3. Results

3.1. Soil physicochemical properties and 
enzyme activity

Under excess Mn conditions, the TP content of FF soil treatment 
was significantly 21 and 16% higher than MM and FM treatment, 
respectively, but there was no significant difference in the control group 
(Table 1). In addition, the TN content of FM soil treatment under excess 
Mn conditions was significantly 17% higher than FF, while in the control 
group, there was no significant difference between FM and FF, and the 
soil TN content of MM was the lowest. In control treatments, the soil in 
FF treatment showed 32 and 2% higher SOM content and pH than MM, 
respectively, while 20% lower the NH4

+-N content than MM. Excess Mn 
treatment decreased the SOM content in soils from FF interactive 
pattern and NH4

+-N content in the MM interactive pattern by 31 and 
29%, respectively. In addition, the TN, AP, and Mn contents of all 
interaction patterns were significantly higher in the excess Mn treatment 
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group than in the control group, and Mn content increased by 180, 213, 
164%, in FF, MM, and FM, respectively (Table 1).

In Mn treatment group, the SC activity of FF was 62% higher than 
that of MM, while in the control group, it was 10% lower than that of 
MM (Table 1). In addition, the UE activity of FM was 21 and 28% higher 
than that of FF and MM under Mn treatment, respectively, and the NP 
activity of MM competition patterns was lowest under excess Mn 
conditions. However, both above enzymes in different interactive 
patterns were not significantly different in the control group. Moreover, 
UE activity increased by 27% under FM interactive pattern when excess 
Mn was used. In contrast, UE activity decreased by 12% in FF but 
remained stable in MM treatment. On the other hand, the PT activity of 
FM was significantly 18% higher than MM treatment in the control 
group; however, there was no significant difference in the Mn 
treatment group.

3.2. Composition of rhizosphere fungal 
community

No significant difference in the α-diversity of rhizospheric soil was 
observed in the control treatment (Table 2). The α-diversity of fungal 
communities was compared in rhizospheric soil from females and males 
under different competition patterns and excess Mn treatments (Table 2). 
There were no significant differences in Chao1 and Observed species in 
intra- and intersexual competition, except that in M/FM + Mn was 
significantly higher than M/MM + Mn treatment. In addition, the 
Shannon index and Simpson index were higher in M/FM + Mn than F/
FM + Mn treatment, while there was no significant difference in 
intrasexual competition patterns. Compared with the control group, 
excessive Mn treatment significantly increased the Chao1 index of M/FM.

As shown in Figure 1A, sexual competition patterns affected fungal 
community structure, and the composition of fungal communities was 
generally separated according to heavy metal and competition. 

Permutational multivariate analysis of variance (PERMANOVA) 
demonstrated that heavy metal was the largest source of variation 
(20.23%, p < 0.001; Figure 1B). The competitions were the second largest 
source of variation (11.95%, p < 0.001; Figure 1B).

The taxonomic composition of fungal communities at the phylum 
level (relative abundance >1%) and genus level (top  10 relative 
abundance) is shown in Figures 2A,B. Ascomycota (68–90%) was an 
absolute dominant phylum in all treatments. Excess Mn reduced the 
Ascomycota phylum’s relative abundance in female plants’ rhizosphere 
in both inter- and intrasexual competition (Figure 2C). Basidiomycota, 
Rozellomycota, and Mortierellomycota were the dominant phyla with 
relative abundance greater than 1%. Excess Mn reduced the relative 
abundance of Mortierellomycota under intersexual competition. At the 
same time, the contrary was true for the Rozellomycota phylum, and 
females were significantly higher than males (Figure 2C). In addition, 
the relative abundance of Rozellomycota phylum was higher under 
excess Mn treatment than under control conditions in male form 
intrasexual competition. The abundances of the top 10 genera were in 
the following order: Zopfiella, Cercophora, Podospora, Pseudeurotium, 
Mycothermus, Clonostachys, Humicola, Psathyrella, Mortierella, 
Chaetomium (Figure  2B). Almost all fungal genera in intersexual 
competition differed between excess Mn treatment and control 
conditions, except Zopfiella, Psathyrella, and Chaetomium, while excess 
Mn treatment had no significant effect on all fungal genera in intrasexual 
competition (Figure 2D).

The linear discriminant analysis (LDA) effect size analysis (LEfSe) 
was performed to compare the fungal composition from phyla to genera 
between Mn treatments, as well as between sexual competition patterns 
(Figure  3). We  found that fungal compositions showed significant 
differences among sexual competition patterns and Mn treatments. The 
family Rhytismataceae was enriched in plants without excess Mn, while 
the phylum Basidiomycota, the class Agaricomycetes, the order GS11, 
the family Cucurbitariaceae, the genus Chrysosporium were predominant 
under excess Mn (Figure 3A). Irrespective of the Mn treatment, the 

TABLE 1 Soil physical and chemical properties and enzyme activities under different competition and Mn treatments.

Soil properties
Control Mn treatment

FF MM FM FF + Mn MM + Mn FM + Mn

SOM (g kg−1) 32.59 ± 2.46a 24.71 ± 1.01b 24.78 ± 1.83b 22.43 ± 1.89A* 25.62 ± 1.64A 23.89 ± 0.78A

TN (g kg−1) 0.23 ± 0.01a 0.18 ± 0.01b 0.21 ± 0a 0.36 ± 0.02B** 0.34 ± 0.01B*** 0.42 ± 0A***

TP (g kg−1) 0.54 ± 0.04a 0.51 ± 0.03a 0.49 ± 0.01a 0.57 ± 0.01A 0.47 ± 0.01B 0.49 ± 0.01B

NH4
+-N (mg kg−1) 10.42 ± 0.33b 12.96 ± 0.44a 10.05 ± 0.24b 9.56 ± 0.43A 9.2 ± 0.61A** 10.71 ± 0.32A

NO3
−-N (mg kg−1) 2.04 ± 0.1a 2.22 ± 0.24a 1.97 ± 0.17a 3.25 ± 0.42A* 2.09 ± 0.15A 2.54 ± 0.28A

AP (mg kg−1) 12.67 ± 0.95a 13.21 ± 0.32a 12.72 ± 0.49a 20.44 ± 1.18A** 17.23 ± 1.1A* 17.73 ± 0.38A***

pH 7.25 ± 0.04a 7.08 ± 0.02b 7.11 ± 0.02b 7.3 ± 0.03A 6.97 ± 0.04B* 7.01 ± 0.02B*

Mn (mg g−1) 0.45 ± 0.01a 0.46 ± 0.02a 0.45 ± 0a 1.26 ± 0.02AB*** 1.44 ± 0.1A*** 1.19 ± 0.03B***

SC (mg g−1 d−1) 24.67 ± 2.39b 35.81 ± 1.42a 24.04 ± 3.21b 46.54 ± 4.48A** 28.78 ± 2.06B* 38.55 ± 1.02AB**

UE (mg g−1 d−1) 1.45 ± 0.05a 1.25 ± 0.07a 1.21 ± 0.06a 1.27 ± 0.03B* 1.2 ± 0.03B 1.54 ± 0.05A**

NP (mg g−1 d−1) 0.37 ± 0.03a 0.45 ± 0.02a 0.47 ± 0.01a 0.42 ± 0.03A 0.24 ± 0.04B** 0.39 ± 0.01A**

PT (mg g−1 d−1) 0.59 ± 0.01ab 0.56 ± 0.01b 0.66 ± 0.03a 0.62 ± 0.02A 0.58 ± 0.02A 0.6 ± 0.01A

SOM, soil organic matter content; TN, total nitrogen content; TP, total phosphorus content; NH4
+-N, ammonium nitrogen content; NO3

−-N, nitrate nitrogen content; AP, available phosphorus 
content; Mn, manganese content; SC, sucrase activity; UE, urease activity; NP, neutral phosphatase activity; PT, proteinase activity. In the same row, different lowercase letters mean significant 
differences under control conditions, and different uppercase letters mean significant differences under Mn treatments according to Tukey’s test (p < 0.05). The asterisks indicate significant 
differences between control and Mn treatments within each competition treatment according to an independent-samples t-test (*p < 0.05, **p ≤ 0.01, ***p ≤ 0.001). Values are means ± SE (n = 4). FF 
soil from the female–female intrasexual competition; MM soil from the male–male intrasexual competition; FM soil from the female–male intersexual competition; FF + Mn soil from FF with Mn 
addition; MM + Mn soil from MM with Mn addition; FM + Mn soil from FM with Mn addition.
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phylum Mortierellomycota, the classes Mortierellomycetes, 
Agaricomycetes, Pezizomycetes and Eurotiomycetes, the order 
Mortierellales, the families Cucurbitariaceae and Mortierellaceae, the 
genera Humicola, Zopfiella, Staphylotrichum and Microdochium were 
abundant in the rhizosphere soil of F/FF, whereas the orders Pleosporales 
and Microascales, the families Trichocomaceae and Orbiliaceae, the 
genera Talaromyces and Mycothermus were more abundant in the 
rhizosphere soil of M/MM under intrasexual interaction (Figure 3B). In 
addition, the order Chaetothyriales, the genera Pezicula and 
Oidiodendron were dominant in F/FM under intersexual interactions, 
while the family Dermateaceae, the genus Natantispora were more 
abundant in M/FM (Figure 3B).

3.3. Fungal function guilds

In the excess Mn treatment group, the relative abundance of 
symbiotroph in F/FF was significantly higher than M/MM, while there 
was no significant difference in intersexual competition (Figure 4A). The 
relative abundance of pathotroph in F/FF and M/FM was significantly 

higher in the excess Mn treatments group than in the control group 
(Figure 4B). In addition, excessive Mn treatment significantly reduced 
the relative abundance of saprotrophs in F/FM compared to the control 
and was significantly lower than M/MM and M/FM in the excess Mn 
treatment group (Figure 4C).

3.4. Associations between soil environmental 
factors and rhizosphere fungal communities

The Pearson correlation heatmap showed that soil neutral 
phosphatase activities were significantly positively correlated with 
Observed species, Shannon index, Simpson index, and the relative 
abundance of symbiotrophs. The soil pH and TP content were 
significantly positively correlated with the Simpson index and 
symbiotrophs, respectively. In addition, the relative abundance of 
saprotroph was negatively correlated with many soil factors, including 
AP, Mn, NO3

−-N, TN, and soil sucrase activities (Figure 5).
Collectively, the abiotic factors in Redundancy analysis (RDA) 

explained 70.18% of the variation in the relative abundances of fungal 

A B

FIGURE 1

Principal coordinates analysis (PCoA) (A) and PERMANOVA results (B) based on Bray-Curtis distance metrics. Different colors or shapes represent different 
sample groups under different sexual competition patterns and Mn treatment; treatment codes are the same as in Table 2. Heavy metal: control, Mn 
treatment; Competition: intrasexual competition, intersexual competition; Sex: F, M. *0.01 < p ≤ 0.05; **0.001 < p ≤ 0.01; ***p ≤ 0.001.

TABLE 2 Alpha diversity of fungi from the rhizospheric soil of Hippophae rhamnoides under different sexual competition patterns and Mn treatments.

Competition pattern Chao1 Observed species Shannon index Simpson index

Control F/FF 1324.07 ± 82.3a 815 ± 36.69a 6.64 ± 0.06a 0.97 ± 0a

M/MM 1338.52 ± 79.92a 820.75 ± 67.57a 6.61 ± 0.26a 0.97 ± 0.01a

F/FM 1318.7 ± 56.82a 875.5 ± 26.01a 6.77 ± 0.19a 0.97 ± 0.01a

M/FM 1311.85 ± 56.81a 895 ± 22.26a 6.92 ± 0.12a 0.97 ± 0.01a

Mn treatment F/FF + Mn 1284.86 ± 60.44AB 827.75 ± 23.31AB 6.79 ± 0.09AB 0.97 ± 0A

M/MM + Mn 1174.07 ± 123.89B 738 ± 69.12B 6.23 ± 0.32B 0.95 ± 0.01AB

F/FM + Mn 1217.13 ± 48.06AB 773 ± 39.53AB 6.29 ± 0.14B 0.94 ± 0.01B

M/FM + Mn 1506.78 ± 55.58A* 958.5 ± 30.88A 7.16 ± 0.11A 0.98 ± 0A

In the same column, different lowercase letters mean significant differences under control conditions, and different uppercase letters mean significant differences under Mn treatments according to 
Tukey’s test (P < 0.05). The asterisks indicate significant differences between control and Mn treatments within each competition treatment according to an independent-samples t-test (*p < 0.05, 
**P ≤ 0.01, ***P ≤ 0.001). Values are means ± SE (n = 4). F/FF indicates the rhizospheric soil from female plants in intrasexual competition; M/MM indicates rhizospheric soil from male plants in 
intrasexual competition; F/FM indicates the rhizospheric soil from female plants in intersexual competition; M/FM indicates the rhizospheric soil from male plants in intersexual competition. F/
FF + Mn indicates the rhizospheric soil from F/FF under Mn treatment; M/MM + Mn indicates the rhizospheric soil from M/MM under Mn treatment; F/FM + Mn indicates the rhizospheric soil 
from F/FM under Mn treatment; M/FM + Mn indicates the rhizospheric soil from M/FM under Mn treatment.
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families. The first ordination axis RDA1 explained 52.77% and the 
second axis RDA2 explained 17.41% of the changes in the fungal 
communities (Figure  6). The results showed that SOM affected 
Psathyrellaceae, Microascaceaea, and Chaetomiaceae fungal 
communities. AP and sucrase affected Nectriaceae and Bionectriaceae 
fungal communities. Moreover, soil neutral phosphatase and Protease 
activities affected Pseudeurotiaceae, Mortierellaceae, and Bolbitiaceae 
fungal communities.

4. Discussion

4.1. Effects of sexual competition patterns 
and Mn stress on soil physicochemical 
properties and enzyme activities

Positive interspecific interactions among plants can improve soil 
conditions and promote plant nutrient uptake to enhance 

A

C

D

B

FIGURE 2

Relative abundances of dominant fungal phyla (A,C) and genera (B,D) under different sexual competition patterns and Mn treatment. Different lowercase 
letters mean significant differences under control conditions, and different uppercase letters mean significant differences under Mn treatments, according 
to Tukey’s test (p < 0.05). The asterisks indicate significant differences between control and Mn treatments within each competition treatment according to 
an independent-samples t-test (*p < 0.05, **p ≤ 0.01, ***p ≤ 0.001). Values are means ± SE (n = 4). Treatment codes are the same as in Table 2.
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environmental tolerance (Shi et  al., 2021). Previous studies have 
reported sex differences in nutrient element composition of male and 
female plant organs under different environments and competition 
patterns (Chen et al., 2014, 2017; Song et al., 2019). In this study, sexual 
competition patterns and Mn stress affected soil nutrients and enzyme 

activities. Under conditions of Mn stress and intrasexual competition, 
females had higher TP content, sucrase, and neutral phosphatase 
activity than males. It was also found that soil neutral phosphatase and 
TP content were significantly and positively correlated with Symbiotic 
fungi (Figure 5). When the supply of phosphorus in soil is insufficient, 

A

B

FIGURE 3

Fungal taxa with different abundance changes between control and Mn treatment, irrespective of sexual competition patterns (A), and between sexual 
competition patterns, irrespective of Mn treatment as detected by the linear discriminant analysis effect size (LEfSe) analysis (B). Only taxa with LDA over 5.5 
are shown. The node color indicates taxa enriched under different treatment and interaction patterns.
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the symbiotic fungi dominated by mycorrhizal fungi accelerate the 
mineralization of organic phosphorus by secreting soil phosphatase to 
produce inorganic phosphorus for plants to absorb (Oehl et al., 2010). 
In addition, the AP content of the FF group was significantly higher by 
61.3% after Mn addition compared to the control. The above results 
indicate that intra-female sexual competition effectively promotes the 
mineralization process of soil phosphorus, which can provide more 
phosphorus nutrients to plants. Interestingly, under Mn stress, the 
combined male and female treatments possessed the highest TN 
content and urease activity, indicating a higher level of nitrogen 
availability. It is possible that male and female plants in intersexual 
competition require more nitrogen nutrients to sustain plant growth. 
Plant competition can alter the availability and transformation of 
essential nutrients, which may affect plant responses to abiotic stresses 
and nutrient cycling in local ecosystems (Chen et al., 2017).

Previous studies have shown that soil enzymes play a vital role 
in soil ecological processes and can be used as effective indicators 
of the ecological impact of heavy metal contamination in soil 
(Šmejkalová et al., 2003; Paz-Ferreiro and Fu, 2013; Tang et al., 
2019). In our study, females showed lower sucrase activity than 
males in intrasexual interaction under control treatments, while 
the opposite was true under Mn stress (Table 1). On the one hand, 
this may be  related to the differences in resource utilization 
patterns between males and females (Juvany and Munné-Bosch, 
2015). On the other hand, heavy metal stress may change the 
intensity of sex-specific competition (Chen et al., 2017).

4.2. Effects of sexual competition patterns 
and Mn stress on the structure and function 
of fungal communities

Soil microbes can spread horizontally through their surroundings, 
such as neighboring plants (Meyer et  al., 2022). Rhizosphere and 
rhizoplane are important interfaces for microbial diffusion (Xiong et al., 
2021). Heavy metals can also affect rhizosphere-driven microbial 
community structure (Hou et  al., 2017). In addition, sex-specific 
interactions of dioecious plants have been shown to affect the 
composition of soil microorganisms (Xia et al., 2022). Our study further 
confirms this finding. We  found that sexual competition patterns 
regulated the response of α-diversity of male and female H. rhamnoides 
rhizosphere fungi to Mn stress. In the control group, there were no 
significant differences in rhizosphere fungal diversity and richness in 
different sexual competition patterns, but significant differences were 
shown in Mn stress group. The fungal community richness of M/FM 
was significantly higher than that of M/MM under Mn stress. In 
addition, the diversity of the M/FM fungal community was significantly 
higher than that of F/FM under Mn stress. The root metabolites of M/
FM under Mn stress may provide a broader niche for specific microbes 
adapted to particular substrates, and this puts its rhizosphere fungal 
community diversity and richness at a high level in the sexual 
competition (Xia et al., 2022). Soil physicochemical properties can affect 
fungal α- diversity (Berg and Smalla, 2009; Constancias et al., 2015). In 
this study, soil pH was significantly and positively correlated with the 
fungal Simpson index, which was similar to the studies of Yang et al. 
(2019) as well as Wang et al. (2020), and there were also studies showing 
that soil fungal community composition was highly significantly and 
positively correlated with soil pH (Shi et al., 2020). Elevated pH can 
reduce the availability of heavy metals and then mitigate damage to 
heavy metal-intolerant fungi, which may increase soil fungal diversity 
and change community structure. Compared to the control, Mn stress 
did not cause significant changes in rhizosphere fungal diversity and 
richness in male and female H. rhamnoides, except for Chao1 of M/
FM. However, the fungal community structure was strongly affected by 
Mn treatment and competition and their interaction (Table 2), which 
probably involved root nutrients and Mn bioavailability (Liu 
et al., 2021b).

Vellend (2016) ecological community theory suggests that microbial 
community assembly is influenced by four evolutionary processes: 
dispersal, selection, diversification, and ecological drift. Selection effects 
due to the influence of biotic or abiotic factors can lead to changes in the 
abundance of microorganisms within the community (Cordovez et al., 
2019; Fitzpatrick et al., 2020). In our study, Ascomycota was the absolute 
dominant phylum in all treatment groups. Ascomycota includes many 
saprophytic and parasitic fungi, mainly saprophytic fungi in soil, and 
can secrete a variety of cellulose and hemicellulolytic enzymes (Schoch 
et al., 2009; Baldrian et al., 2011). Mn stress significantly reduced the 
relative abundance of Ascomycota in female H. rhamnoides under 
intersexual and intrasexual competition (Figure 2C). At the same time, 
the relative abundance of saprophytic fungi was significantly lower in F/
FM than in M/FM under Mn stress (Figure 4C). Therefore, we speculated 
that Mn stress inhibited carbon source metabolism of fungi in the 
rhizosphere soil of female H. rhamnoides. This inhibitory effect on 
females under intersexual competition was stronger than under 
intrasexual competition. In addition, the relative abundance of 
saprophytic fungi was higher in M/FM than in F/FM under Mn stress, 
which made M/FM more capable of organic matter decomposition and 

A

B

C

FIGURE 4

Relative abundances of symbiotrophs (A), pathotrophs (B), and 
saprotrophs (C) under different sexual competition patterns and Mn 
treatments. The asterisks indicate significant differences between 
control and Mn treatments within each competition treatment 
according to an independent-samples t-test (*P < 0.05, 
**0.001 < P  ≤ 0.01). Values are means ± SE (n = 4). Treatment codes and 
statistical significance codes are the same as in Table 2.
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promoted above-ground plant growth. We  also found that 
Agaricomycetes were enriched in the excess Mn treatments and F/FF 
groups (Figure  3). In contrast, most Agaricomycetes belonged to 
arbuscular mycorrhizal fungi and could provide essential nutrients and 
promote plant growth (Hibbett, 2006) Female H. rhamnoides from the 
intrasexual competition will strengthen the association with symbiotic 
fungi such as Agaricomycetes to resist Mn stress by forming mycorrhizal 
structures in the roots, which can enhance P acquisition capacity to 
promote growth. Meanwhile, the relative abundance of F/FF rhizosphere 
Symbiotrops was significantly higher than M/MM under Mn stress 
(Figure 4A), which may make females from intrasexual competition 
more tolerant to Mn than males from the intrasexual competition by 
absorbing more phosphorus nutrition.

Previous studies have shown that neighboring plants have a greater 
impact on the performance of female plants, and the effect may 
be positive or negative (Graff et al., 2018). In our study, we found that F/
FF and F/FM showed differential changes in the relative abundance of 
Zopfiella, Cercophora, Podospora, Pseudeurotium, and Mortierella under 
control conditions (Figure 2D). Zopfiella can control plant diseases by 
secreting antifungal compounds that inhibit the growth of plant 
pathogens (Huang et al., 2015), Cercophora can produce indole acetic 
acid and has the ability to dissolve and mineralize elemental phosphorus 
(Miranda et al., 2020), Pseudeurotium was a saprophytic fungus (Schadt 
and Rosling, 2015), the relative abundance of these three fungi in F/FF 

FIGURE 5

Pearson correlations between soil environmental factors, fungal diversity, and fungal functional guilds. Significances are marked as ***p ≤ 0.001; **p ≤ 0.01; 
*p ≤ 0.05.

FIGURE 6

Redundancy analysis (RDA) of fungal families constrained by  
soil environmental factors across all experimental units. The 
arrows refer to soil environmental factors. The red circle 
represents fungal families, and the circle size represents relative 
abundance.
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was higher than that in F/FM. However, the relative abundance of 
Podospora and Mortierella was significantly higher in F/FM than in F/
FF. These two fungal taxa have important ecological functions in 
lignocellulose degradation and litter decomposition (Ellegaard-Jensen 
et al., 2013; Xie et al., 2014). Our results suggest that the rhizosphere 
microbes of H. rhamnoides females showed more plasticity in response 
to different sex neighbors. In contrast, the rhizosphere microbes of 
males are less sensitive to the sexual identity of neighbors. In addition, 
studies have shown that female plants from intra- and intersexual 
competition can distinguish the sexual identity of neighbors and change 
the investment models between growth and chemical defense (He et al., 
2021; Zhang et al., 2021). We also found specific fungal colonization in 
the rhizosphere of H. rhamnoides under different sex competition 
patterns (Figure 3), which may result from the regulation of rhizosphere 
microorganisms by sexual competition patterns.

Furthermore, we found that male and female H. rhamnoides in the 
intersexual competition pattern were more positive to Mn stress than 
the intrasexual competition pattern in the rhizosphere microbial 
response (Figure  2D). Mn stress significantly increased the relative 
abundance of Cercophora, Podospora, Mycothermus and Clonostachys in 
the rhizosphere of intersexual competition of H. rhamnoides, which 
would enhance the cellulose degradation ability and disease resistance 
of H. rhamnoides (Che et al., 2002; Aquino et al., 2003; Cota et al., 2009). 
In addition, the relative abundance of Pseudeurotium, Humicola and 
Mortierella decreased, which may affect the accumulation of organic 
carbon and phosphorus mineralization (Ferrari et al., 2011; Clemmensen 
et al., 2015). However, H. rhamnoides in intrasexual competition was not 
affected by Mn stress. In the intersexual competition patterns, the mixed 
growth of male and female H. rhamnoides with different functions 
creates different rhizosphere microenvironments. Mixed sex planting 
increases microbial diversity in female and male rhizosphere (Xia et al., 
2022). Previous studies have shown that resource complementarity and 
niche differentiation are fundamental mechanisms for improving 
ecosystem functioning (Loreau and Hector, 2001; Yu et  al., 2022). 
We hypothesize that females and males in the intersexual competition 
patterns can create a more heterogeneous soil environment through 
resource complementarity or ecological niche differentiation to recruit 
more microbes at the rhizosphere than in intrasexual competition 
patterns. In addition, soil microbes are key drivers of changes in plant 
community structure and plant–plant interactions (Hodge and Fitter, 
2013). This sex-specific adaptation and biochemical plasticity in 
dioecious plants are expected to lead to local adaptation and potential 
sex segregation (Charlesworth, 2002; Xia et al., 2022).

In summary, we  believe that in the future production practice 
process, for male H. rhamnoides, intersexual competition is better than 
intrasexual competition; for female H. rhamnoides, intrasexual 
competition is better than intersexual competition.

5. Conclusion

The present study showed that Mn stress and sex competition 
strongly affected soil physicochemical properties, enzyme activity, and 
rhizosphere fungal abundance and diversity. Under Mn stress, there were 
significant differences in soil physicochemical properties and enzyme 
activities between male and female H. rhamnoides under different sex 
competition patterns, resulting in different nutrient availability. For 
example, F/FF in intrasexual competition patterns had a stronger soil 
phosphorus mineralization capacity and phosphorus supply level than 

M/MM. In contrast, intersexual competition FM soils had a higher 
nitrogen supply level under Mn stress. In addition, competition patterns 
and Mn treatment altered the structure of rhizosphere fungal 
communities of H. rhamnoides. In intersexual interaction, M/FM 
rhizosphere fungal diversity was significantly higher than F/FM under 
Mn stress. Females in intrasexual competition patterns can alleviate Mn 
stress by recruiting symbiotic fungi such as Agaricomycetes to obtain 
more P in symbiosis; in contrast, males in intrasexual competition 
patterns have a more stable microbial community to face Mn stress. In 
addition, females showed greater plasticity in the response of rhizosphere 
microorganisms to their neighbors of different sexes, and the rhizosphere 
microorganism of male and female H. rhamnoides to Mn Stress under 
intersexual interaction is more positive than intrasexual interaction. This 
study provides a new perspective for the remediation of heavy metal 
contaminated soil by H. rhamnoides, while more attention should be paid 
to the effect of sex interactions on dioecious plants in phytoremediation.
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