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As the second leading cause of cancer worldwide, colorectal cancer (CRC) 
is associated with a poor prognosis. Although recent studies have explored 
prognostic markers in patients with CRC, whether tissue microbes carry prognostic 
information remains unknown. Here, by assessing the colorectal tissue microbes 
of 533 CRC patients, we  found that Proteobacteria (43.5%), Firmicutes (25.3%), 
and Actinobacteria (23.0%) dominated the colorectal tissue microbiota, which 
was different from the gut microbiota. Moreover, two clear clusters were obtained 
by clustering based on the tissue microbes across all samples. By comparison, 
the relative abundances of Proteobacteria and Bacteroidetes in cluster 1 were 
significantly higher than those in cluster 2; while compared with cluster 1, 
Firmicutes and Actinobacteria were more abundant in cluster 2. In addition, the 
Firmicutes/Bacteroidetes ratios in cluster 1 were significantly lower than those in 
cluster 2. Further, compared with cluster 2, patients in cluster 1 had relatively poor 
survival (Log-rank test, p = 0.0067). By correlating tissue microbes with patient 
survival, we  found that the relative abundance of dominant phyla, including 
Proteobacteria, Firmicutes, and Bacteroidetes, was significantly associated with 
survival in CRC patients. Besides, the co-occurrence network of tissue microbes 
at the phylum level of cluster 2 was more complicated than that of cluster 1. 
Lastly, we detected some pathogenic bacteria enriched in cluster 1 that promote 
the development of CRC, thus leading to poor survival. In contrast, cluster 2 
showed significant increases in the abundance of some probiotics and genera 
that resist cancer development. Altogether, this study provides the first evidence 
that the tissue microbiome of CRC patients carries prognostic information and 
can help design approaches for clinically evaluating the survival of CRC patients.
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1. Introduction

The incidence and mortality of colorectal cancer (CRC) have increased significantly in 
recent years, ranking the 3rd and 5th among all malignant tumors, respectively (Siegel et al., 
2020; Zhao et al., 2020; Lu et al., 2021). Most patients are in the middle and late stages when 
diagnosed, which seriously threatens the survival and quality of life of patients (Dekker et al., 
2019; Cienfuegos-Jimenez et al., 2021; Peng et al., 2022). The 5-year relative survival ranges from 
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more than 90% in stage I patients to slightly more than 10% in stage 
IV patients (Brenner et al., 2014; Biswas et  al., 2021). Due to the 
frequent recurrence and metastasis, the prognosis of CRC is yet to 
be improved, especially for those with unknown tissue origin (He 
et al., 2020a,b; Liu et al., 2021). Accurate prediction of the prognosis 
of CRC patients is of great significance for targeted treatment and 
avoidance of overtreatment. However, at present, most studies are 
focused on identifying biomarkers for early screening of CRC 
(Ahlquist et al., 2000; Tanaka et al., 2020; Wu et al., 2021), and the 
exploration of biomarkers for patient prognosis is still limited, except 
for a few initial tries (Yang et al., 2022; Yuan et al., 2022).

Microbial communities are thought to influence the initiation, 
progression, metastasis, and response to the treatment of a variety of 
cancers (Cullin et al., 2021; Qi et al., 2022; Wang et al., 2022). In 
addition to gut microbes, microbes in other niches may influence host 
physiology. Many members of the microbial community can induce 
cell proliferation by activating certain signaling pathways. Microbial 
communities can act as a source of activating signals for aberrant 
epithelial cell proliferation, initiating cancer (Fulbright et al., 2017). 
This includes microbes on the outer surface and mucosal sites, as well 
as tissue-resident microbes (Heymann et al., 2021). Castellarin et al. 
(2012) found that Fusobacterium nucleatum transcripts were 400 
times more abundant in CRC tumor tissues than in normal tissues. In 
addition, F. nucleatum has been associated with liver metastases 
(Bullman et  al., 2017), amplifying its potential impact on cancer. 
Bacteroides fragilis is a commensal bacteria active in the whole colon, 
among which enterotoxigenic B. fragilis (ETBF) is believed to 
be associated with the induction of colitis and colon tumorigenesis 
due to its enrichment in stool and mucosal samples of cancer patients 
(Boleij et al., 2015; Haghi et al., 2019). Besides, healthy gut microbes 
are typically made up of dominant populations of Lactobacilli, 
Bacteroides, and Bifidobacterium (Nakatsu et  al., 2015). In CRC, 
Fusobacterium, Porphyromonas, Parvimonas, Peptostreptococcus, and 
Gemella showed excessive dominance, indicating the occurrence of 
bacterial flora imbalance (Nakatsu et al., 2015; Wirbel et al., 2019; 
Cheng et al., 2022). However, there is no consensus that one or more 
microbes can be  associated with the prognosis of CRC patients, 
whether it is intestinal flora or intratumoral microbes of tumor tissue. 
Consequently, there is an urgent need to study the association between 
microbial communities and the prognosis of patients with 
malignant tumors.

Enterotype is a new concept proposed by Arumugam et al. (2011) 
in the study of intestinal microbiota in 2011. Arumugam et al. (2011) 
found that the gut microbiota can be  divided into three groups 
according to the dominant genera, with Bacteroides, Prevotella, and 
Bifidobacteria as the dominant types. Different enterotypes have 
different microbiota structures and functional genes, and people with 
different enterotypes have different ways of energy metabolism and 
storage. In recent years, more and more studies have shown that a 
large number of microbes are enriched in tumor tissues (Hu et al., 
2017; Nejman et  al., 2020; Wong-Rolle et  al., 2021). Therefore, 
we wonder whether the colorectal tumor tissue microbiota of CRC 
patients can be classified similarly to the gut microbiota and whether 
this classification carries prognostic information of CRC patients, 
such as the propensity for recurrence and metastasis as well as 
survival time.

To this end, we collected colorectal microbiological samples from 
533 CRC patients at The Cancer Genome Atlas (TCGA). By 

characterizing the microbial diversity of all samples, we found that the 
Shannon index of 533 samples showed bimodal distribution. 
Therefore, based on the clustering of tissue microbiota from all CRC 
patients, we obtained colorectal tissue microbiota typing. Further, 
we correlated tissue microbiota typing with prognosis in CRC patients 
and found that increased relative abundance of certain microbes was 
significantly associated with worse or better prognosis. This study 
provides new insights into inferences about the prognosis of CRC 
patients based on the composition of the dominant bacteria in the 
tissue microbiota.

2. Materials and methods

2.1. Data collection and preparation

A total of 533 tissue microbiome samples of CRC patients and 
the corresponding metadata were obtained in this study. Cancer 
microbiome data and the clinical metadata data used in this study 
were available at ftp://ftp.microbio.me/pub/cancer_microbiome_
analysis/ (Poore et al., 2020). The microbial abundance matrix in 
the data set was annotated by two methods, Kraken and Shotgun. 
Given Kraken’s high usage rate in metagenomic analysis, only the 
microbial abundance obtained from Kraken’s annotation was used 
in this study. Microbiome data included six levels of microbial 
count including kingdom, phylum, class, order, family, and genus. 
We calculated the relative abundance of microbes at each level for 
subsequent analysis.

2.2. Clustering analysis

Based on the tissue microbiome abundance matrix, all samples 
were clustered using the “partitioning around medoids” (PAM) 
clustering method. Clustering was conducted with package “cluster” 
in R. Different from K-means clustering based on means, PAM is 
based on more robust partitioning around central points. In this 
study, we obtained five groups based on the microbial community 
at the phylum level by PAM clustering. To reduce the complexity 
and improve the rationality of the analysis, we further combined 
these five groups into two groups with significant differences in 
tissue microbes.

2.3. Survival analysis and dimension 
reduction

The overall survival between different groups was compared by 
Kaplan–Meier (KM) analysis, and the p value was generated with the 
log-rank test. In this study, we divided all samples equally into two 
groups (High vs. Low) based on the relative abundances of 
Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes, 
respectively. Then, survival analysis was conducted on these two 
groups. Principal component analysis (PCA) was performed with 
packages “FactoMineR” and “factoextra” in R. The R2 and p value 
were calculated by an ANOSIM test. Univariate cox regression was 
performed by the R package “survminer.”
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2.4. Linear discriminant analysis effect size 
analysis

Linear discriminant analysis effect size (LEfSe) (Segata et  al., 
2011), an analytical tool for discovering and interpreting high-
dimensional data biometrics (genes, pathways, taxons, etc.) was used 
to determine the significantly different genera in relative abundance 
between the two clusters. LEfSe used linear discriminant analysis 
(LDA) to estimate the magnitude of the effect of the abundance of 
each component (species) on the differential effect. In this study, 
we identified 11 potential biomarkers at the genus level with an LDA 
score > 4 and p < 0.05.

2.5. Network analysis

We mapped the co-occurrence network of tissue microbiota in 
two groups of colorectal cancer patients. Correlation coefficients and 
p value between the microbes at the phylum level were generated by 
the R function “rcorr” in the “Hmisc” package. Further, the network 
was visualized by Gephi (Bastian et  al., 2009), a software tool for 
building and visualizing bibliometric networks. Only the correlation 
p-values less than 0.01 were shown in the network. The network graph 
showed only edges with correlation coefficients greater than 0.2 and 
less than −0.2. Nodes in the network diagram represent microbes, and 
edges represent correlations between microbes. Node size indicates 
the relative abundance of microbes. The microbes whose names are 
shown in the network diagram are the important ones in the network, 
namely the nodes with a high degree.

3. Results and discussion

3.1. Tissue microbe profiles of colorectal 
cancer patients

Colorectal tissue has a different microbiota profile than the gut. 
Proteobacteria was the phylum with the highest relative abundance in 
CRC patient tissues with an average relative abundance of 43.5%, 
followed by Firmicutes, Actinobacteria, and Bacteroidetes, with the 
relative abundance of 25.3, 23.0, and 5.1%, respectively (Figure 1A). 
Similarly, the dominant flora in the gut is mainly composed of 
Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria, 
accounting for more than 97% of the intestinal flora (Eckburg et al., 
2005). However, different from tissue microorganisms, the dominant 
phyla of gut microbiota are Firmicutes and Bacteroidetes, with only a 
small proportion of other phyla (Stopinska et al., 2021). An increase 
in Proteobacteria in the gut is considered a microbial marker of 
dysregulation of the gut microbiota and a potential diagnostic feature 
of disease risk (Shin et al., 2015). We detected a high abundance of 
Proteobacteria in the tissues of CRC patients, which also represents 
the deterioration of colorectal tumors in patients.

Next, to explore the microbial diversity of CRC patients’ tissues, 
we  calculated the Shannon index of all samples. Notably, the 
distribution of microbial diversity was bimodal (Figure 1B), with a 
smaller peak at 2.3 and a larger peak at 3.7. Further, we created a 
clustering heatmap based on the abundance matrix of phylum-level 
microbes for all samples (Figure  1C). Similarly, all samples could 

be clustered into two main groups based on phylum-level microbes 
across the samples. Preliminarily, we found that the abundances of the 
four dominant phyla (Proteobacteria, Firmicutes, Actinobacteria, and 
Bacteroidetes) in the tissues showed differences between the two 
groups. The large differences in the abundance of dominant phyla led 
us to wonder whether the tissue microbiota of CRC patients is 
classified as similar to the enterotype of gut microbiota.

3.2. CRC patients can be divided into two 
clusters based on tissue microbiome, and 
the prognosis of the two clusters is 
significantly different

We next investigated whether the tissue microbiome abundance 
reflected the same bimodal distribution as observed for the 
Shannon index. For this, we  used a clustering method called 
“partitioning around medoids” (PAM) for the abundance of the four 
dominant phyla with the highest relative abundance. The clustering 
results showed that all samples were divided into five groups with 
silhouette widths of 0.58, 0.46, 0.50, 0.53, and 0.44, respectively 
(Figures  2A,B). We  further verified the clustering quality with 
silhouette width, and the result showed that the silhouette width 
was the highest (0.53) with k = 5, suggesting that was the optimal 
number of clusters (Figure  2C). These two components explain 
79.26% of the point variability. Besides, considering the bimodal 
distribution presented by the Shannon index of all samples 
(Figure  1B) and the clear two groups presented by clustering 
heatmap (Figure 1C), we further combined these five groups into 
two clusters according to the patient survival. Finally, we obtained 
two clusters of the five groups, with significant differences 
(p  = 0.0067) in survival between the two clusters 
(Supplementary Table S1). PCA showed that the relative abundance 
of the four dominant phyla of the two clusters was significantly 
different (Figure  2D; ANOSIM, p = 0.001, R2 = 0.63). Besides, 
consistent with the bimodal distribution (Figure 1B), the Shannon 
index of cluster 1 was significantly higher than that of cluster 2 
(Supplementary Figure S1). In-depth, we compared the differences 
of single species between the two clusters separately. Results showed 
that the relative abundance of Proteobacteria, Actinobacteria, 
Firmicutes, and Bacteroidetes were significantly differences between 
cluster 1 and cluster 2 (Figures 2E–H, Wilcoxon test, p < 4.2e-12). 
Specifically, the relative abundance of Proteobacteria and 
Bacteroidetes in cluster 1 was significantly higher than that in 
cluster 2, while Actinobacteria and firmicutes were significantly 
enriched in cluster 2 compared with cluster 1. Besides, the 
Firmicutes/Bacteroidetes (F/B) ratios of cluster 2 were significantly 
higher than that of cluster 1 (Figure 2I). The low F/B ratio in the gut 
is usually considered a biomarker of obesity in humans and animals 
(Magne et al., 2020). Studies have found reduced F/B ratios in the 
gut in patients with a variety of diseases, including Alzheimer’s 
disease, cholelithiasis, and rheumatoid arthritis (Grigor'eva, 2020; 
Artacho et  al., 2021; Sheng et  al., 2021). Consequently, 
we hypothesized that the reduced F/B ratio in colorectal tissues of 
CRC patients in cluster 1 may affect the tumorigenesis process and 
thus change the prognosis.

Next, we  investigated whether there were differences in 
prognosis, such as survival, among CRC patients in the two 
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clusters. Since these two clusters were obtained based on the four 
dominant phyla with the highest relative abundance, we further 
compared the overall microbial communities of these two clusters. 
The results showed that the overall tissue microbial communities 
of cluster 1 and cluster 2 were also significantly different 
(Figure  2J; ANOSIM, R2 = 0.65, p = 0.001). Then, the survival 
analysis of patients in these two clusters showed that compared 
with cluster 2, patients in cluster 1 had significantly worse survival 
(Figure  2K, p = 0.0067). Besides, to verify the computational 
stability of our results, we randomly selected 50% of the samples 
and repeated PAM clustering and survival analysis 
(Supplementary Figure S2). Repeated analysis based on a 50% 
sample size confirmed the consistency of the results. A significant 
difference in survival between the two groups could still be found 
even when the sample size was reduced.

Our results demonstrate that tissue microbiota in CRC patients 
potentially influences tumor development and that tissue microbiota 
characteristics carry patient prognostic information.

3.3. Microbes with significantly different 
abundance are responsible for the 
differentiation of prognosis between the 
two groups

Previously, we found that colorectal microbiota may affect the 
prognosis of CRC patients. Next, we focused on which microbiota 
plays a role in tumor progression. For this, all samples were equally 
divided into two groups (High and low) according to the relative 
abundance of the four dominant phyla (Proteobacteria, Actinobacteria, 
Firmicutes, and Bacteroidetes). Then, we performed survival curves 
for the two groups, respectively, and compared them (Figures 3A–D). 
Survival analysis showed that patients with a high abundance of 
Proteobacteria in colorectal tissue had significantly worse survival 
(Figure 3A, p = 0.0025). In contrast, patients with a high abundance 
of Firmicutes had significantly improved survival compared with 
patients with fewer Firmicutes in colorectal tissue (Figure 3C, p = 
0.035). Similar to Proteobacteria, patients with more abundant 

A B

C

FIGURE 1

Tissue microbe profiles of CRC patients. (A) Tissue microbial community composition at phylum level across all samples. Different color represents 
different phyla. The four phyla with the highest relative abundance are shown in the figure. Each column represents a sample. (B) Density plot of 
Shannon index of all samples. (C) Clustering heatmap based on the relative abundance of 33 species at the phylum level in all samples. Rows represent 
species and columns represent samples. The names of the four phyla with the highest relative abundance are shown in red. Samples separated by red 
dashed lines differed in relative abundance at the phylum level species.
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Bacteroidetes had significantly better survival (Figure 3D, p = 0.048). 
Among the four dominant phyla, only Actinobacteria do not affect the 
survival of CRC patients through their actions (Figure 3B, p = 0.83). 
In conclusion, the significantly lower survival rate of patients in cluster 
1 compared with patients in cluster 2 is most likely due to the high 
abundance of Proteobacteria and Bacteroidetes, as well as the low 
abundance of Firmicutes in tissue microbes of patients in cluster 1.

A study showed that with the development of health-polyp-
adenomas-CRC, the relative abundance of Proteobacteria increased 
gradually, while the relative abundance of Firmicutes decreased 
gradually (Liu et al., 2020). A comparative analysis of bacterial phyla 
levels between groups in 40 samples showed a significant increase in 
Proteobacteria abundance and a significant decrease in Firmicutes in 
colorectal cancer tissue compared with normal intestinal mucosa 
(Yang et al., 2019). Liu et al. (2022) found that Proteobacteria had a 
positive promoting effect on the risk of colorectal cancer and other 

diseases. Besides, one study confirmed that compared with healthy 
individuals, inflammatory bowel disease (IBD) and CRC patients had 
reduced bacterial diversity and abundance, and significantly enriched 
Bacteroidetes (Quaglio et al., 2022). While our results are consistent 
with previous studies, more depth, our data suggest that increased 
Proteobacteria and Bacteroidetes, and decreased Firmicutes in 
colorectal tissue may be accompanied by poorer patient survival.

3.4. Genera belonging to these dominant 
phyla showed significant differences in 
abundance between the two clusters of 
patients

Having found significant differences in tissue microbial 
composition between the two clusters at the phylum level, we next 

A

D

I J K

E F G H

B C

FIGURE 2

Two clusters obtained by clustering the tissue microbiome abundance. (A) All samples were clustered into five groups by PAM clustering method. 
These two components explain 79.26% of the point variability. (B) The silhouette width and sample size of the five groups. (C) The corresponding 
silhouette width when the clustering number is 1–10. (D) PCA plot of relative abundance of four dominant phyla for CRC samples reveals considerable 
variation between cluster 1 and cluster 2. The R2 and p value was calculated by an ANOSIM test. Boxplot of differences in (E) Proteobacteria, 
(F) Actinobacteria, (G) Firmicutes, (H) Bacteroidetes, and (I) Firmicutes/Bacteroidetes (F/B) between cluster 1 and cluster 2. The p value was calculated 
by a Wilcoxon rank-sum test. (J) PCA plot of relative abundance of tissue microbe data at the phylum level for CRC samples reveals considerable 
variation between cluster 1 and cluster 2. (K) Kaplan–Meier survival curve for overall survival of cluster 1 and cluster 2. The p value was calculated by 
log-rank test.
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aimed to explore the similarities and differences between the two 
groups at other levels. For this, LEfSe analysis with a linear 
discriminant analysis (LDA) threshold of 4 was used to identify 
significantly different species in the two clusters (Figures 3E–H). First, 
at the class level, 6 significantly different species were identified. 
Specifically, Alphaproteobacteria, Betaproteobacteria, and 
Gammaproteobacteria were significantly enriched in cluster 2, while 
Deltaproteobacteria and Bacilli were more abundant in cluster 1 
(Figure 3E). At the order level, we identified 7 species enriched in 
cluster 1 and 4 species enriched in cluster 2. Lactobacillales was more 
abundant in cluster 2 and Burkholderiales and Enterobacteriales were 
enriched in cluster 1 (Figure 3F). At the family level, Staphylococcaceae, 
Propionibacteriaceae, and Elusimicrobiaceae were enriched in cluster 
1, while Mycobacteriaceae and Streptococcaceae were enriched in 
cluster 2 (Figure 3G). At the genus level, a total of 11 significantly 
different genera were identified, of which 5 were significantly enriched 
in cluster 2 and 6 were significantly more abundant in cluster 1 
(Figure 3H). It has been proposed that Mycobacteria as non-specific 
immune enhancers may have the potential to be effective agents for 
the prevention or treatment of gastrointestinal diseases, including 
CRC (Kim et al., 2022). The researchers indicated that heat-killed 
Mycobacteria tuberculosis had a protective effect in a model of 
inflammation-associated CRC. Meanwhile, we  found that 
Mycobacteria were significantly enriched in the tissues of cluster 2 
patients, and the better survival of cluster 2 patients confirmed this 
conclusion. Li et  al. (2021) demonstrated that co-culture with 

Streptococcus thermophilus or its conditioned medium reduced the 
proliferation of CRC cells in culture, and oral gavage of S. thermophilus 
significantly reduced tumorigenesis. Streptococcus, a genus belonging 
to the phylum Firmicutes, similarly showed a significant increase in 
abundance in cluster 2 patients compared with cluster 1. Lactobacillus, 
a genus belonging to Firmicutes, was found to be significantly more 
abundant in cluster 2 patient tissues. Lactobacillus has long been 
considered an important probiotic for gut health. Studies have 
suggested that Lactobacillus gallinarum prevented intestinal tumors by 
producing protective metabolites that promoted CRC cell apoptosis 
(Sugimura et  al., 2021). Besides, the F/B ratio in obese mice was 
reduced by the treatment of Lactobacillus sakei NR28 and Lactobacillus 
rhamnosus GG (Stojanov et al., 2020). In a human clinical trial, the 
beneficial influence of Lactobacillus salivarius was demonstrated 
(Larsen et al., 2013). Besides, univariate cox regression analysis was 
performed for the genera with the top  30 relative abundance 
(Supplementary Figure S3). Among them, four genera (Escherichia, 
Streptococcus, Pseudomonas, and Bacteroides) were significantly 
correlated with patient survival, which was consistent with KM 
survival analysis (Figure 3H). What’s more, the four genera belong to 
Proteobacteria, Firmicutes, and Bacteroidetes, which was also 
consistent with our PAM clustering.

Most of the genera significantly enriched in the tissues of cluster 
1 patients were pathogenic bacteria of CRC or harmful to intestinal 
health. For instance, recent studies have identified Escherichia coli, a 
species belonging to Escherichia, as one of the candidate pathogens for 

A

E

G H

F

B C D

FIGURE 3

Tissue microbes are responsible for the significant difference in survival between cluster 1 and cluster 2. All samples were divided into two groups 
based on the relative abundance of (A) Proteobacteria, (B) Actinobacteria, (C) Firmicutes, and (D) Bacteroidetes, respectively, and survival curves were 
performed based on these two groups. The p value was calculated by log-rank test. LEfSe identified the significantly different species in relative 
abundance between the two clusters at the (E) class, (F) order, (G) family, and (H) genus level, respectively. The LDA threshold is set to 4.
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CRC (Cheng et  al., 2020). A metabolomic and 16S microbiome 
analysis of 224 stool samples showed a significant increase in 
Staphylococcus in CRC patients (Clos-Garcia et al., 2020). Besides, the 
relative abundance of Enterococcus and Neisseria was significantly 
higher in the fecal microbiota of patients with invasive cancer 
compared with early cancer. The genus Pseudomonas contains a series 
of pathogens, among which Pseudomonas aeruginosa is a common 
opportunistic pathogen, which is a common nosocomial infection 
pathogen in patients with immune deficiency (Mielko et al., 2019). 
The abnormal proportion of Pseudomonas nucleomonas produced a 
proinflammatory microenvironment, promoted the proliferation of 
CRC cells, and promotes the chemotherapy resistance of CRC (Chen 
et  al., 2022). Neisseria meningitides, an aerobic gram-negative 
diplococcus, contribute to high morbidity in young adults through an 
epidemic or sporadic meningitis (Rouphael and Stephens, 2012). 
Taken together, our data demonstrate that the tissue microbes of CRC 
patients in cluster 1 tend to enrich some pathogenic bacteria that 
promote the development of CRC, thus leading to poor survival, while 
patients in cluster 2 have significantly more bacteria that resist the 
development of tumors.

3.5. The two clusters of patients had 
different tissue microbiome co-occurrence 
network properties

The role of a single or single class of microbes in affecting the 
occurrence and development of tumors is limited, and the synergistic 
or antagonistic effects of sufficient species in the microbial community 
cannot be ignored. Therefore, we constructed co-occurrence networks 
for the two clusters based on the correlation between species at the 
phylum level (Figures 4A,B). Network analysis revealed that the nodes 
and edges of cluster 1 were 29 and 147, respectively, while for cluster 
2, they were 33 and 192. For cluster 1, the positive and negative 
correlations between phylum species were 11.6 and 88.4%, 
respectively, while for cluster 2, they were 13.0 and 87.0%, respectively. 
The proportion of positive and negative correlations between tissue 
microbes in the two clusters was similar. Further, we compared other 
important network properties between the two clusters, including 
average degree, diameter, and clustering coefficient (Figure 4C). The 
results showed that the diameter and clustering coefficient of cluster 
1 (6 and 0.755, respectively) were higher than those of cluster 2 (3 and 
0.687, respectively), while the average degree of cluster 2 (11.636) was 
higher than that of cluster 1 (10.138). The important species in the two 
networks, namely keystone, were significantly different (Table 1). In 
cluster 1, Chloroflexi, Proteobacteria, and Actinobacteria occupied an 
important position in the network. However, the keystone species in 
the network were Acidobacteria, Verrucomicrobia, and 
Gemmatimonadetes. Besides, compared with cluster 1, the keystone 
in cluster 2 had a higher degree and weight.

Our study demonstrated that compared with cluster 1, the 
network of cluster 2 was more complicated. Microbial communities 
in tumor tissues are not merely collections of independent individuals, 
but interconnected complexes that communicate, recombine, and 
coevolve with each other (Layeghifard et al., 2017). Yuan et al. (2022) 
compared the tissue microbiological co-occurrence networks in 134 
lung cancer patients without recurrence or metastasis (non-RM) and 
174 patients with recurrence or metastasis (RM) and found that the 

co-occurrence network of non-RM was more complicated than 
RM. Recurrence and metastasis as well as survival in our study are 
both important prognostic indicators of cancer patients (Usuda et al., 
2014). Our study shows that the poorer survival of CRC patients is 
accompanied by a microbiome co-occurrence network of reduced 
complexity in tissues.

There are several limitations in this study. First, this cohort of 
533 CRC patients included confounding factors such as race, 
country, sex, and age. A recent study looked at the intratumoral 
microbiota of different cancer types to better understand the 
influence of age, sex, body mass index (BMI), and ethnicity on the 
composition of the intratumoral microbiota (Luo et al., 2022). The 
authors found that race was strongly associated with microbiota 
abundance, while age, sex, and BMI had little to do with it. 
Consequently, further analyses should be conducted to distinguish 
patients of different races and to more accurately identify 
biologically meaningful microbial markers. A study divided patients 
with CRC into proximal and distal (Jin et al., 2021), which are not 
considered the same disease. They found differences in the 
association of microbes with these two subtypes in CRC patients. 
For instance, in patients with proximal colon cancers, a high 
abundance of Fusobacteria was associated with poor prognosis, but 
not in patients with distal CRC. However, in our study, we did not 
detect a significant association between Fusobacteria and patient 
survival. The possible reason is that there are many subtypes of 
colorectal cancer, and different subtypes may have different 
associations with tissue microbes. Second, though we show that 
clusters based on tissue microbiome are associated with survival, 
we did not provide any prediction model using related microbes. In 
the future, it will be interesting to develop microbe-based prognosis 
models. Third, recent studies suggested that tissue histopathological 
image is correlated with the prognosis of cancers (Liu et al., 2022; 
Yang et al., 2022; Yao et al., 2022). It would be interesting to study 
the relationship between tissue microbes and histopathology. 
Finally, the lack of a healthy control cohort in this study adds a 
barrier to further understanding changes in tissue microbiota 
abundance between CRC patients and the normal population. 
However, tissue from perfectly healthy populations is extremely 
difficult to obtain, so for colorectal cancer, future studies could 
consider a control cohort of patients with other intestinal diseases 
that do not significantly alter the microbial composition of 
colorectal tissue.

4. Conclusion

The present study advances the understanding of the 
colorectal microbiota in CRC patients, providing evidence for the 
critical role of tissue microbes influencing the prognosis of 
patients via the variation of the proportion of probiotics, 
pathogens, or bacteria that can alter the progression of 
CRC. Moreover, it provides one possible explanation for the 
heterogeneity of postoperative survival in CRC patients, such that 
differences in microbial community composition in colorectal 
tumor tissues of different patients. Thus, we  recommend that 
before the treatment of CRC patients, it is considered to obtain the 
microbial content of the tumor tissue of the patients to determine 
the survival time and other prognosis index of the patients, and 
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FIGURE 4

Comparison of co-occurrence network structure and properties between cluster 1 and cluster 2. Co-occurrence networks based on correlation 
between species at the phylum level of (A) cluster 1 and (B) cluster 2. The red and green edges represent positive and negative correlations, 
respectively. Node size is proportional to the relative abundance of species. (C) Comparison of co-occurrence network properties between cluster 1 
and cluster 2. Avg. Degree, Average degree. Clust. Coeff., Clustering coefficient.

TABLE 1 Comparison of co-occurrence network properties between cluster 1 and cluster 2.

Phylum Degree Eccentricity Closeness 
centrality

Betweenness 
centrality

Clustering

Cluster 1 Chloroflexi 18 5 0.518519 31.274242 0.69281

Proteobacteria 17 5 0.509091 15.065909 0.772059

Actinobacteria 17 5 0.509091 17.482576 0.772059

Bacteroidetes 16 5 0.5 10.774242 0.833333

Chlamydiae 16 5 0.5 6.274242 0.858333

Cyanobacteria 16 5 0.5 6.274242 0.858333

Planctomycetes 16 5 0.5 6.274242 0.858333

Synergistetes 16 5 0.5 19.848485 0.758333

Cluster 2 Acidobacteria 25 2 0.820513 121.520854 0.326667

Verrucomicrobia 20 2 0.727273 36.331713 0.542105

Gemmatimonadetes 18 2 0.695652 45.134963 0.424837

Chloroflexi 17 2 0.680851 16.273766 0.661765

Cyanobacteria 17 2 0.680851 20.251597 0.654412

Deinococcus_Thermus 16 2 0.666667 9.267849 0.741667

Synergistetes 16 2 0.666667 12.196489 0.691667

The degree represents the number of all edges connected by each node. Closeness centrality represents the sum of the number of nodes that a node can reach divided by the shortest path that 
can reach the node. Betweenness centrality indicates the ratio between the number of betweenness paths passed by a node by other nodes and the total number of shortest paths in the figure. 
The eccentricity represents the largest shortest path that a node can reach.
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to assist clinicians in making accurate decisions to avoid 
overtreatment. Extrapolating from this concept, we suggest that 
for CRC therapy to be beneficial it needs to be coupled to the 
tissue microbiome profile of patients.
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