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Tryptophan derivatives are various aromatic compounds produced in the tryptophan 
metabolic pathway, such as 5-hydroxytryptophan, 5-hydroxytryptamine, 
melatonin, 7-chloro-tryptophan, 7-bromo-tryptophan, indigo, indirubin, indole-
3-acetic acid, violamycin, and dexoyviolacein. They have high added value, 
widely used in chemical, food, polymer and pharmaceutical industry and play an 
important role in treating diseases and improving life. At present, most tryptophan 
derivatives are synthesized by biosynthesis. The biosynthesis method is to 
combine metabolic engineering with synthetic biology and system biology, and 
use the tryptophan biosynthesis pathway of Escherichia coli, Corynebacterium 
glutamicum and other related microorganisms to reconstruct the artificial 
biosynthesis pathway, and then produce various tryptophan derivatives. In this 
paper, the characteristics, applications and specific biosynthetic pathways and 
methods of these derivatives were reviewed, and some strategies to increase the 
yield of derivatives and reduce the production cost on the basis of biosynthesis 
were introduced in order to make some contributions to the development of 
tryptophan derivatives biosynthesis industry.
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Introduction

The basic metabolic pathways of aromatic compound biosynthesis involve glycolytic 
pathway (EMP), pentose phosphate pathway (PPP), and shikimate pathway. In shikimate 
pathway, phosphoenolpyruvate (PEP) produced by glycolytic pathway, and D-erythrose 
4-phosphate (E4P) produced by pentose phosphate pathway are used as precursors to condense 
to form 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP). DAHP then undergoes a six 
step catalytic reaction via shikimate pathway to generate chorismate (Wu et al., 2021). With 
chorismate as precursor, chorismate is transformed into three aromatic amino acids through 
two ways. One way is first transformed into prephenylalanine, and then L-phenylalanine or 
L-tyrosine were synthesized, respectively. The other way is to generate L-tryptophan (L-Trp) 
from o-aminobenzoic acid (Barik, 2020; Wu et al., 2021).
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Tryptophan belongs to one of the three aromatic amino acids and 
is the only amino acid containing an indole ring. Tryptophan not only 
participates in the biosynthesis and turnover of proteins and peptides, 
but also is absorbed into the body and transformed into a series of 
bioactive small multi effect compounds (Barik, 2020). It is mainly 
degraded through two parallel pathways, which are 
5-hydroxytryptamine (5-HT) pathway and kynurenine pathway. 
These two pathways will produce a series of secondary metabolites. 
The metabolites of serotonin pathway include 5-hydroxytryptophan 
(5-HTP), serotonin and melatonin. The metabolites of kynurenine 
pathway include kynurenine and niacin. Melatonin and niacin are the 
final products of the above two parallel pathways, while 5-HTP, 5-HT, 
and inulin are intermediate metabolites (Barik, 2020; Cas et al., 2021). 
In addition, in plants and microorganisms, tryptophan derivatives also 
include chlorotryptophan, bromotryptophan (Lee and Lee, 2020), and 
indole alkaloids such as indole-3-acetic acid (IAA), indirubin, indigo 
(Xu et al., 2014).

Tryptophan derivatives are widely needed because of their various 
functions, such as serotonin and melatonin, which can treat insomnia 
(Arnao and Hernandez-Ruiz, 2018). Halogenated tryptophan is an 
important intermediate or component of active substances related to 
the pharmaceutical, chemical and pesticide industries (Lee and Lee, 
2020). Auxin (IAA) affects the root growth of plants and plays an 
important role in the interaction between plants and microorganisms 
(Leontovycova et al., 2020; Figure 1). However, due to the problems of 
cost, pollution and complex steps in the chemical synthesis of 
tryptophan derivatives, the development of modern biotechnology 
and synthetic biology has opened up another way for us to synthesize 
tryptophan derivatives (Choi et al., 2003; Lee and Lee, 2020). This 
paper mainly reviews the biosynthesis of common tryptophan 
derivatives, such as 5-HTP, serotonin, melatonin, IAA, halotryptophan, 
violacein, indirubin, indigo, etc. (Figure 2; Table 1).

5-HTP, serotonin, melatonin 
biosynthesis

5-HTP, serotonin and melatonin are products of the same 
tryptophan metabolic pathway (Cas et  al., 2021). Tryptophan is 
converted to 5-HTP through tryptophan hydroxylase (TPH), and 
5-HTP is converted to serotonin through aromatic acid decarboxylase. 
The serotonin is converted to N-acetylserotonin through 
arylalkylamine N-acetyltransferase, which is converted to melatonin 
through hydroxyindole-O-methyltransferase (Zheng et  al., 2021; 
Figure 3).

5-HTP

5-HTP is a natural amino acid (AA) that does not participate in 
protein synthesis. It is derived from tryptophan, and the hydrogen 
atoms at the 5′-position on the benzene ring of tryptophan are 
replaced by hydroxyl groups (Liu et al., 2021). 5-HTP is the precursor 
of serotonin and melatonin, which can be used to treat depression, 
insomnia, migraine and other diseases (Wang et al., 2018). 5-HTP was 
originally extracted from Griffonia simplicifolia and other plants, but 
this method is expensive and raw materials are rare. Besides, the use 
of chemical synthesis method is cumbersome and harsh. With the 

progress of biotechnology, the use of microorganisms, especially 
E. coli, to synthesize 5-HTP has become the mainstream (Liu 
et al., 2021).

In human and mammalian cells, 5-HTP is synthesized by L-Trp 
hydroxylation with Fe2+ and BH4 as cofactors and O2 as cosubstrate 
catalyzed by TPH. BH4 is oxidized to pterin-4α-carbinolamine 
(BH3OH) during L-Trp hydroxylation and regenerated through the 
function of pterin-4α-carbinolamine dehydratase and 
dihydropteridine reductase (DHPR; Wang et al., 2018). Knight et al. 
found that the co-expression of the animal BH4 biosynthesis pathway 
and the truncated tryptamine 5-hydroxylase (T5H) from Oryctolagus 
cuniculus in E. coli produced 198 mg/L 5-HTP (Knight et al., 2013). 
However, most bacteria such as E. coli cannot naturally produce BH4, 
and they can only synthesize BH4 analogue tetrahydromonapterin 
(MH4; Lin et al., 2014). It is generally necessary to add exogenous BH4, 
or realize the biosynthesis and regeneration of bacterial BH4 through 
gene recombination (Germann et al., 2016).

An artificial MH4 recycling system was established by the 
expression of phhB from P. aeruginosa and folM [encoding 
dihydromonasin reductase (DHMR)] from E. coli. With this 
circulating system, E. coli cells could use tryptophan to produce 
1114.8 mg/L 5-HTP in shake flasks (Lin et al., 2014; Figure 3). The 
tryptophan synthesis pathway was successfully introduced into E. coli 
to realize the de novo production of 5-HTP. After a series of 
optimization such as improving the hydroxylation activity of TPH 
through enzyme modification, the titer of 5-HTP was significantly 
increased to 1.29 g/L (Wang et al., 2018; Liu et al., 2021). Furthermore, 
by designing the strength of the 3-deoxy-7-phosphate synthase 
promoter and adjusting the copy number of the L-Trp hydroxylation 
plasmid, the output of 5-HTP in shake flask was increased to 1.61 g/L 
(Xu et al., 2020).

Serotonin

Serotonin, also known as 5-HT, is an amino acid derivative with 
high added value. It can participate in emotional regulation, behavior 
management, and sleep cycle maintenance. It also can promote plant 
seed germination and growth and other physiological processes (Shen 
et al., 2020). Serotonin is synthesized in different ways in animals and 
plants. In animals, tryptophan is hydroxylated to 5-HTP through 
tryptophan 5-hydroxylase, and then tryptophan decarboxylase (TDC) 
converts 5-HTP to 5-HT, namely serotonin (Gaddum and Giarman, 
1956; Cao et al., 2020). In plants, tryptophan is first converted to 
tryptamine by TDC, and then serotonin is produced by T5H 
(Goncalves et al., 2022; Figure 3).

TDC from rice was overexpressed in transgenic rice, recombinant 
E. coli (pET28b TDC), and recombinant yeast (pYES-TDC), and 
serotonin accumulation was detected, which confirmed that serotonin 
was produced under the condition of 5-HTP as substrate (Park et al., 
2008). A functional T5H enzyme (GSTΔ37T5H) was constructed by 
a series of n-terminal deletion or labeling proteins, and then, 24 mg/L 
serotonin was produced by GSTΔ37T5H and TDC (Park et al., 2011). 
The semi rational engineering recombinant strain of aromatic amino 
acid hydroxylase was used to produce 5-HTP, and then the 
recombinant strain containing tryptophan decarboxylase was used for 
biotransformation of 5-HTP to produce about 154 mg/L serotonin, 
which was the first time to realize the production of serotonin from a 
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simple carbon source (Mora-Villalobos and Zeng, 2018). In the first 
step, about 962 mg/L 5-HTP was produced by using a recombinant 
strain with a semi-rationally engineered aromatic amino acid 
hydroxylase. In the second step, biotransformation of 5HTP using 
recombinant strains containing TDC, about 154 mg/L of serotonin 
was produced. A method of producing 5-HT from tryptophan 
through two enzyme cascades in one pot has also been proposed 
(Wang et al., 2022). The tryptophan hydroxylase from Schistosoma 
mansoni, the artificial endogenous BH4 module and the dopa 
decarboxylase from Harminia axyridis, are heterologously expressed 
in E. coli. The recombinant E. coli can produce about 414 mg/L of 
5-HT from 2 g/L of tryptophan.

Melatonin

Melatonin, a natural product derived from tryptophan, is a 
major biomolecule synthesized in almost all biological organisms, 
including animals and plants (Back et al., 2016). Melatonin can 
affect circadian rhythm, mood, sleep, etc. it can also be used as a 

plant biological stimulant to resist biological and abiotic stress and 
regulate the ability of plant growth (Arnao and Hernandez-
Ruiz, 2018).

Its synthesis goes through four steps. In plants, tryptophan is 
converted to tryptamine by TDC, and then tryptamine is converted 
to serotonin by T5H. Serotonin is catalyzed by serotonin 
N-acetyltransferase (SNAT) to complete N-acetylation, and then 
N-acetylserotonin is methylated by acetylserotonin methyl transferase 
(ASMT, a hydroxyindole-O-methyltransferase) to produce melatonin 
(Arnao and Hernandez-Ruiz, 2018). In animals, tryptophan produces 
5-HTP under the combined action of TPH, cofactor BH4 and oxygen. 
Next, 5-HTP is converted to serotonin by tryptophan carboxylase. 
Subsequently, aralkylamine N-acetyltransferase produces N-acetyl 
5-hydroxytryptamine at the expense of acetyl-CoA. Finally, N-acetyl 
5-hydroxytryptamine methyltransferase is accompanied by the 
conversion of cofactor SAM to SAH to produce the final product 
melatonin (Xie et al., 2022).

In addition to animals and plants, many microorganisms can also 
synthesize melatonin. As seen in Figure 3, a strain of Saccharomyces 
cerevisiae has been cultivated, which used glucose as the only carbon 

FIGURE 1

The application of tryptophan derivatives in various fields.
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source to ferment in the culture medium and produce 14.5 mg/L 
melatonin (Germann et  al., 2016). E. coli can also be  used for 
melatonin production. In several double expression box combinations, 
the recombinant E. coli expressing sheep SNAT with rice 
O-methyltransferase (COMT) produced a large amount of melatonin, 
which is the first report using E. coli to heterologously produce 
melatonin (Byeon and Back, 2016). Moreover, the biosynthetic 
pathway of melatonin was introduced into E. coli, and then the 
engineered strain produced about 2.0 g/L of melatonin through 
protein engineering of rate-limiting tryptophan hydroxylase, 

chromosomal integration of aromatic amino acid decarboxylase, and 
deletion of tryptophan export protein YddG (Luo et al., 2020).

Biosynthesis of indole and its 
derivatives

Indole and indole alkaloids belong to the same pathway. 
Tryptophan is degraded into indole by tryptophanase. Indole can 
be converted into a variety of indole alkaloids by different enzymes 

FIGURE 2

Biosynthesis pathway of tryptophan derivatives. PEP, Phosphoenolpyruvate; E4P, D-erythrose 4-phosphate; DAHP, 3-deoxy-D-arabino-heptulosonate-
7-phosphate. The straight line and dotted line represent one-step and multi-step, respectively.
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through different pathways, among which IAA, indigo and indirubin 
are common (Chen et al., 2016).

Indole

Indole, also known as 2,3-benzopyrrole, is widely used in 
chemical, pharmaceutical, dye and other industries. It is an important 
precursor in industry, but it is also a typical nitrogen heterocyclic 
pollutant released into the environment (Li et al., 2020). It is a signal 
molecule that regulates a variety of physiological processes, including 
movement, biofilm formation, antibiotic resistance, plasmid stability, 
sustained cell formation (Han T. H. et  al., 2011), indole and its 
derivatives strongly affect the physiological functions of bacteria and 
animals (Ferrer et  al., 2022b). Tryptophan has been proved to 
be  completely degraded by tryptophanase to produce indole 
(Watanabe and Snell, 1972; Figure 4). Li and Young (2013) reported 
that the final yield of indole in E. coli depends on the amount of 
exogenous tryptophan, and the transformation process was mainly 
dependent on the tryptophanase TnaA. On the other hand, excessive 
indole may also inhibit the activity of TnaA and the transport process 
of tryptophan.

In addition to E. coli, some heterologous strains can also be used 
to produce indole, for example, indole synthesis-related gene was 
introduced into C. glutamicum. With the expression of endogenous 

TSA gene or IGL gene of wheat, about 0.7 g/L indole were produced 
(Ferrer et  al., 2022b). 5.7 g/L of indole can be  produced by 
co-expressing the natural aromatic amino acid permease gene aroP 
and the tryptophanase from Providencia rettgeri in C. glutamicum 
(Mindt et al., 2022).

Indole alkaloids

Indirubin and indigo belong to Indole alkaloids, which are 
secondary metabolites derived from plants. Many of them have 
important medicinal properties and have been used as drugs and dyes 
since ancient times (Cao et al., 2020). In addition, IAA, as plant auxin, 
belongs to indole alkaloids too, and IAA, indigo and indirubin belong 
to simple indole alkaloids (Chen et al., 2016).

Indole acetic acid
IAA is the most abundant auxin-active natural hormone in plants, 

which controls many physiological processes, such as cell proliferation 
and division, tissue differentiation, phototropism and geotropism 
reactions (Leontovycova et al., 2020). Some plant-related bacteria, 
fungi and yeasts, including Agrobacterium tumefaciens, Azospirillum 
brasilense, Bradyrhizobium spp. and Enterobacter cloacae, are known 
to synthesize IAA in the presence of tryptophan (Romasi and 
Lee, 2013).

TABLE 1 Biosynthesis of tryptophan derivatives.

Product Host Titer 
(g/L)

Time Fermentation 
mode

Engineered strategy Reference

5-HTP E. coli 1.11 16 h Batch
Expression of phhB, folM, phhA in BWΔtnaA 

and QH4ΔtnaA
Lin et al. (2014)

Serotonin E. coli 0.15 52 h
Two-step 

fermentation

The TrpR gene was eliminated, and Expression 

of PCD and DHPR genes in strain 

BL21(DE3)ΔTnaa expresses

Mora-Villalobos and 

Zeng (2018)

Melatonin E. coli 2.0 67 h Fed-batch

Tnaa and trpR genes were deleted and TrpH, 

Ddc, Aanat, Asmt genes were expressed in 

strain HM626

Luo et al. (2020)

Indole C. glutamicum 5.7 24 h Batch
Expression of ectnaA, tnaB, aroP in C. 

glutamicum
Mindt et al. (2022)

IAA E. coli 3.0 24 h Batch Expression of ipdC, aspC, iad1 in DH5α Romasi and Lee (2013)

Indigo E. coli 3.8 25 h Batch Expression of CYP102A_scat in E. coli Kim et al. (2017)

Indirubin E. coli 0.25 48 h Batch
Expression of fre, tnaA, tnaB, tnaAB, katE and 

xiaI in BL21(DE3)
Yin et al. (2021)

Violacein C. glutamicum 5.43 100 h Fed-batch
Expression of vioABCDE in C. glutamicum 

13,032
Sun et al. (2016)

Deoxyviolacein C. freundii 1.9 44 h Fed-batch
Expression of vioABCE in C. freundii 

(pComvio)
Jiang et al. (2012)

7-Chloro-L-

tryptophan
C. glutamicum 0.11 24 h Batch

Expression of rebH and rebF in C. glutamicum 

HalT2

Veldmann et al. 

(2019b)

7-Bromo-L-tryptophan C. glutamicum 1.2 72 h Fed-batch
Overexpression of rebH and rebF in C. 

glutamicum HalT2

Veldmann et al. 

(2019a)

Pyrrolnitrin E. coli / 5 days Batch Expression of prnABCD in DH5α Liu et al. (2018)

Rebeccamycin
Lechevalieria 

aerocolonigenes
0.12 8 days Batch

Addition of talc microparticles or glass beads 

to the medium to induce mechanical stress
Waliskoa et al. (2017)
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According to the main intermediates in the IAA synthesis process, 
the Trp-dependent biosynthesis process in plants is usually divided 
into four branches: indole-3-acetaldoxime (IAOx) pathway, 
tryptamine pathway, indole-3-acetamide (IAM) pathway and indole-
3-pyruvic acid (IPA) pathway (Jiali et al., 2012). IPA pathway is the 
main and generally conserved biosynthetic pathway in plants, while 

other redundant pathways run in parallel (Casanova-Saez et al., 2021). 
① IAOx pathway (also known as CYP79B pathway): Firstly, tryptophan 
is catalyzed by Cytochrome P450 Mono-oxygenase CYP79B2 and 
CYP79B3 to generate indole 3-acetaldoxime, which is then converted 
into indole-3-acetonitrile and indole-3-acetaldehyde (IAAld), and 
then IAA is generated under the catalysis of nitrilase and aldehyde 

FIGURE 3

Biosynthetic pathway of 5-HTP, serotonin, and melatonin. Linear and dashed lines mean a single-step and multi-steps, respectively. TPH, Tryptophan 
5-hydroxylase; TDC, Tryptophan decarboxylase; AAAD, Aromatic amino acid decarboxylase; T5H, Tryptamine 5-hydroxylase; SNAT, Serotonin 
N-acetyltransferase; ASMT, N-acetylserotonin O-methyltransferase; COMT, Caffeic acid O-methyltransferase; BH4, Tetrahydrobiopterin; MH4, 
Mtetrahydromonapterin.
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oxidase, respectively. ② IPA pathway: Indole-3-pyruvate, an 
intermediate product, is decarboxylated to form IAAld under the 
action of indolepyruvate decarboxylase (IpdC), and then oxidized to 
IAA. ③ Tryptamine pathway: the tryptamine pathway starts with 
tryptophan passing through TDC catalyzes the formation of 
tryptamine, and then generates IAA through the intermediate product 
IAAld. ④ IAM pathway: The pathway consists of two distinct steps. In 
the first step tryptophan monooxygenase (encoded by iaaM gene, the 
gene has not been found in plants) converts tryptophan to IAM; in the 
second step IAM is hydrolyzed to IAA and ammonia by an IAM 
hydrolase (encoded by iaaH gene; Spaepen and Vanderleyden, 2011; 
Jiali et al., 2012; Romasi and Lee, 2013). The synthetic pathway of IAA 
in bacteria is highly similar to that in plants, except for the addition of 
a tryptophan side-chain oxidase pathway and it has only been 
demonstrated in Pseudomonas fluorescens CHA0 (Spaepen and 
Vanderleyden, 2011). In this pathway tryptophan is directly converted 
to IAAld bypassing IPyA, which can be oxidized to IAA (Spaepen 
et  al., 2007). In addition, the tryptamine pathway in bacteria is 
opposite to that in plants. Tryptophan is first decarboxylated to 
tryptamine by a TDC, which is directly converted to IAAld by amine 
oxidase (Spaepen and Vanderleyden, 2011; Figure 5).

E. coli also can be used for IAA production. The ipdC (encoding 
indole-3-pyruvic acid decarboxylase) from Enterobacter cloacae 
ATCC 13047, aspC (encoding aminotransferase) from E. coli and iad1 
(encoding indole-3-acetic acid dehydrogenase) from Ustilago maydis 
were cloned and expressed in E. coli using tac and sod promoters, and 
deleted a tnaA gene that mediates indole formation from tryptophan, 
recombinant E. coli produced 3.0 g/L IAA (Romasi and Lee, 2013). 
Similarly, The above method could also be used for C. glutamicum, 
and the recombinant strain produced 2.3 and 7.3 g/L IAA from 10 g/L 
L-Trp in flask culture and 5-L bioreactor, respectively (Kim 
et al., 2019).

Indigo
Indigo is a kind of blue dye which has been used for thousands of 

years, it is mainly used for the production of blue jeans denim (Lolita 
Ameria et al., 2015). It also has medicinal value, as well as hemostatic, 
antipyretic, anti-inflammatory and sedative properties, and can 
be used for anti-tumor or anti-leukemia activity (Heine et al., 2019). 
Indigo undergoes three stages of biosynthesis in L-Trp. First, L-Trp is 
decomposed into indole by tryptophanse, and then indole is oxidized 
to indoxyl by various oxygenase catalytic reactions, finally, indoxyl 

FIGURE 4

Biosynthetic pathway of indole, indigo and indirubin. TnaA, tryptophanase; FMO, flavin-containing monooxygenase.
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spontaneous reaction of 2 molecules generates indigo (Zhang et al., 
2014; Lee and Lee, 2020; Figure  4). The representative enzymes 
involved in this indole oxidation reaction were naphthalene 
dioxygenase (NDO) and toluene dioxygenase from Pseudomonas 
putida, phenol hydroxylase from Acinetobacter sp. and cytochrome 
P450 monooxygenase from Bacillus megaterium，toluene 
monooxygenase from Burkholderia cepacia, flavin-containing 
monooxygenase (cFMO) from C. glutamicum and flavin-containing 
monooxygenase (mFMO) from Methylophaga aminisulfidivorans et al. 
(Kang and Lee, 2009; Lee and Lee, 2020).

Recombinant E. coli DH5α containing flavone monooxygenase 
(FMO) gene has been successfully cultivated, the indigo titer was 
911 mg/L by batch fermentation in a 3,000 L fermenter, and the 
continuous fermentation in a 5 L fermenter for 110 h accumulated 23 g 
indigo (Han G. H. et  al., 2011). In addition, a self-sufficient 
cytochrome P450 monooxygenase CYP102A (CYP102A_scat) cloned 
from Streptomyces cattleya was also successfully recombined in E. coli 
strain BL21(DE3), and the strain could synthesize about 1.0 g/L indigo 
in LB medium. This is the first self-sufficient CYP exhibiting indole 

hydroxylation activity to produce indigo without mutating the wild-
type enzyme (Kim et al., 2017). The indole oxygenase indAB genes in 
Cupriavidus sp. SHE were also successfully cloned and heterologously 
expressed in E. coli BL21(DE3)，and the recombinant bacteria could 
produce 307 mg/L indigo in 1.0 g/L tryptophan medium (Dai 
et al., 2019).

Indirubin
Indirubin, a 3,2-bisindole isomer of indigo, is one of the main 

active ingredients of Danggui longhui Wan, which is traditionally used 
in China to treat chronic myeloid leukemia (Cao et  al., 2020). 
Furthermore, indirubin and its derivatives have considerable 
therapeutic effects on a variety of cancers, Alzheimer ‘s disease and 
delayed hypersensitivity (Lee and Lee, 2020). The production of 
indirubin in tryptophan is the same as that in indigo. Firstly, 
tryptophan is oxidized to indole by tryptophanase, and then indole 
can be converted to 3-hydroxyindoxyl, isatin and/or 2-oxindole by 
heterologous oxygenases, such as NDO. Two molecules of indoxyl are 
spontaneously dimerized in the presence of oxygen to form indigo, 

FIGURE 5

Biosynthetic pathway of in-dole-3-acetic acid. CYP79B2 and CYP79B3, cytochrome P450 monooxygenase; AapC, aminotransferase; Ipdc, indole-3-
pyruvic acid decarboxylase; Iad1, indole-3-acetic acid dehydrogenase; IaaM, tryptophan 2-monooxygenase; IAAH, IAM hydrolase.
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whereas indoxyl and 2-oxindole/isatin are condensed to generate 
indirubin (Hu et  al., 2010; Han et  al., 2012; Zhang et  al., 2014; 
Figure 4).

In 5 l fermentation broth containing tryptophan medium, 
recombinant E. coli DH5α cells containing FMO gene were fermented 
in batches to produce 5.0 mg/L indirubin. Moreover, it was found that 
adding 0.36 g/L cysteine to tryptophan medium could significantly 
increase the yield of indirubin (Han et al., 2012). There is a possible 
way to increase the output of indirubin. Recombinant E. coli 
expressing naphthalene dioxygenase (NDO) gene from Comamonas 
sp. MQ, induced by 2-oxindole, produced about 58 mg/L indirubin 
(Zhang et al., 2014). There are also some methods, such as introducing 
cFMO gene into E. coli, 103 mg/L indirubin was produced after 48 h 
fermentation in LB medium containing 2.5 g/L tryptophan (Lolita 
Ameria et  al., 2015). Or introducing flavin-reducing enzyme Fre, 
tryptophan-lysing and -importing enzymes TnaA, TnaB and H2O2-
degrading enzyme KatE, after adding 5 mmol/L tryptophan and 
10 mmol/L 2-hydroxyindole, 250.7 mg/L indirubin was obtained after 
48 h fermentation (Yin et al., 2021).

However, all the above methods involve the addition of tryptophan 
to produce indirubin, which has a high cost. Producing indirubin 
directly from glucose can be considered as a way to reduce production 
costs (Cao et al., 2020). For instance, the introduction of Methylophaga 
aminothioxanthans FMO and E.coli tryptophanase TnaA into E. coli 
could directly produce indirubin 0.056 g/L from glucose through fed 
batch fermentation (Dua et al., 2018).

Violacein, deoxyviolacein biosynthesis

Violacein and deoxyviolacein are biindole pigments with 
application value of anti-bacterial, anti-virus, anti-oxidation and anti-
cancer (Zhou et al., 2018). They are secondary metabolites of bacteria 
such as Alteromonas luteoviolacea, Chromobacterium violaceum, 
Janthinobacterium lividum, and Pseudoalteromonas luteoviolacea 
(Yang et al., 2011; Lee and Lee, 2020).

Violacein

Violacein is a purple natural indole derivative, was first isolated 
from C. violaceum. It is synthesized by condensation of two tryptophan 
molecules in several bacterial genera to respond to quorum sensing 
signals (Ahmed et al., 2021). At first, through gene cluster separation, 
sequencing and heterologous expression, the production of violacein 
was considered to rely mainly on four adjacent genes VioA-D. Then, 
the fifth gene VioE was supplemented, which played an important role 
in the formation of violacein (Balibar and Walsh, 2006). The complete 
synthesis pathway of violacein was formed: VioA (flavin-dependent 
tryptophan-2 monooxygenase enzyme) catalyzes the oxidation of 
tryptophan to indole 3-pyruvic acid (IPA) imine, and reduces FAD 
cofactors. VioB further converts IPA into short-lived imine dimer 
through dimerization reaction. The imine dimer is either 
spontaneously converted to chromopyrrolic acid (CPA), or VioE 
converts the imine dimer into protodeoxyviolaceinic acid (PDVA) 
through the 1,2-displacement of the indole ring. PDVA is converted 
to protoviolaceinic acid (PVA) by adding a hydroxyl at the C5 position 
of an indole ring through nadp-dependent oxygenase VioD. PVA is 

converted into violaceinic acid (VA) by adding a hydroxyl group to the 
C2 position of another indole ring via another nadp-dependent 
oxygenase VioC, and then the final product violacein is generated by 
spontaneous oxidative decarboxylation. In addition, VioC can also use 
PDVA as the substrate to produce the main by-product deoxyviolacein 
(Ahmed et  al., 2021; Park et  al., 2021; Figure  6). The above five 
enzymes involve five coding genes vio ABCDE, and the successful 
expression of the operon composed of these genes requires CviI 
synthetase to catalyze the conversion of fatty acids or S-adenosyl 
methionine into AHL, which is triggered by the complex formed by 
AHL and CviR (a receptor; Kothari et al., 2017).

Violacein can be produced by natural production bacteria such as 
Chromobacterium violaceum (Rodrigues et  al., 2012) and 
Janthinobacterium lividum (Sun et al., 2016). But the relatively low 
productivity of natural wild strains greatly limits the functional 
analysis and industrial application of violacein (Yang et al., 2011), and 
the violacein producing strains of Chromo-bacterium violaceum and 
Janthinobacterium lividum can cause rare but highly lethal infections 
in humans (Rodrigues et  al., 2013). Therefore, the technology for 
heterologous expression of violacein gene cluster and production of 
violacein by genetic engineering has been developed and gradually 
matured. Pemberton et al. (1991) reported that the violacein gene 
cluster from C. violaceum was cloned and successfully expressed in 
E. coli for the first time. Later, it was reported that violacein-
synthesizing gene cluster can also be  heterologously expressed in 
Citrobacter freundii, the final concentration of violacein reached 
4.13 g/L. This is the first report on the efficient production of violacein 
by genetic engineering strains in fermentation tanks (Yang et al., 2011).

In order to control the cost, increase the supply of tryptophan and 
improve the yield of violacein, most people began to choose the 
combination of the upstream pathway of tryptophan production and 
the downstream pathway of purple mold production (Fang et al., 2015; 
Park et al., 2021). By combining knockout of trpR/tnaA/pheA gene 
and overexpression of trpEfbr/trpD, then, the gene cluster of violacein 
biosynthetic pathway was introduced into the downstream of 
tryptophan production pathway. Recombinant E. coli B2/PED+pVio 
produced 1.75 g/L of purpomycin with glucose as the carbon source 
(Fang et al., 2015). After the discovery that VioE is the rate limiting 
step of Aspergillus purpureus synthesis, a strain of E. coli B8/PTRPH1-
PVIo-Vioe was obtained by overexpressing VioE, 4.45 g/L violacein 
was obtained after fed-batch fermentation (Zhou et  al., 2018). 
Fuethermore, the production of recombinant E. coli violacein could 
be  pushed to a new level of 6.19 g/L through integrated system 
metabolic engineering, cell morphology engineering, inner- and 
outer-membrane vesicle formation, and fermentation optimization 
(Yang et al., 2021).

Deoxyviolacein

Deoxyviolacein is a structural analogue of violacein and a 
microbial metabolite. It lacks one oxygen atom at the 6th position 
of indole ring (Wanga et al., 2012). It has attracted much attention 
due to its biological activities against tumor, Gram-positive bacteria 
and plant pathogenic fungi. However, the production of 
deoxyviolacein in wild Vio bacteria is very low, which is difficult to 
meet the practical needs (Andre Luis Rodrigues et al., 2014). The 
vioABCDE pathway was successfully expressed in E.coli, creating a 
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new way for heterologous synthesis of violacein and deoxyviolacein 
(Pemberton et al., 1991). In addition, the production pathway of 
deoxyviolacein is mostly coincident with that of purplemycin. Only 
after PDVA is produced, VioC can directly use PDVA as the 
substrate to produce deoxyviolacein (Ahmed et al., 2021). Therefore, 
under conventional conditions, violacein produced by various 
bacteria is crude violacein, that is, the mixture of violacein and 
deoxyviolacein (Sun et  al., 2016). In order to obtain pure 
deoxyviolacein, further purification is needed, such as silica gel 
(SiO2) column chromatography (Bilsland et  al., 2018). Pathway 
summary shows that the expression of VioABCE without VioD 

would lead to a single end-product of deoxyviolacein (Park et al., 
2021). Although E. coli with pLvioABCE (vioDdeleted Vio gene 
cluster) completely eliminate the production of violacein, however, 
the presence of a small amount of intermediate PDV associated 
with deoxyviolacein may regulate the violacein pathway, leading to 
inefficient production of deoxyviolacein (Sánchez et al., 2006).

A stable and efficient biosynthesis system for the synthesis of pure 
deoxyviolacein was first attempted and developed. The vioABCE gene 
cluster from Duganella sp.B2 was spliced and introduced into 
C. freundii, the recombinant strain produced 1.9 g/L pure 
deoxyviolacein in the shake flask (Jiang et al., 2012).

FIGURE 6

Biosynthetic pathway of violacein and deoxyviolacein. VioA, tryptophan oxidase; VioB, iminophenyl-pyruvate dimer synthase; VioE, violacein 
biosynthesis enzyme; VioD, protodeoxyviolaceinate monooxygenase; VioC, violacein synthase.

https://doi.org/10.3389/fmicb.2023.1099098
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Xiao et al. 10.3389/fmicb.2023.1099098

Frontiers in Microbiology 11 frontiersin.org

The synthesis of deoxyviolacein can also start directly from the 
synthesis of tryptophan. The araBAD promoter, which controls the 
expression of deoxyviolomycin cluster vioABCE, was deleted, 
deoxyviolacein biosynthesis was induced by pentose. Then, 1.6 g/L 
deoxyviolacein was obtained from E. coli dvio-8 with glycerol as the 
carbon source (Andre Luis Rodrigues et al., 2014). On the other hand, 
by integrating system metabolic engineering, cell morphology 
engineering, internal and external membrane vesicle formation and 
fermentation optimization, the yield of deoxyviolacein was further 
increased to 11.26 g/L (Yang et al., 2021).

Halogenated tryptophan and its 
derivatives

Halogenated amino acids are widely used in pharmaceutical, 
chemical and agrochemical industries. They exist in a variety of 
natural products, including antibiotics chloramphenicol and 
pyrrolidomycin, plant growth regulating thienodolin and anti 
Eubacterium pyrrolnitrin, and rebeccamycin, which inhibits DNA 
topoisomerase I  (Veldmann et  al., 2019b). Among them, halides 
derived from tryptophan include 7-chloro-tryptophan and 7-bromo-
tryptophan. 7-chloro-tryptophan (Karabencheva-Christova et  al., 
2017) is the precursor of pyrrolnitrin and rebeccamycin, 7-bromo-
tryptophan (Ferrer et  al., 2022a) is a precursor of the bioactive 
protease inhibitor TMC-95A.

Halogenated tryptophan (7-chloro-L- 
tryptophan, 7-bromo-L-tryptophan)

In traditional chemical synthesis, the halogenation reaction is 
usually not an environmentally friendly reaction, so a green 
method is used by many scholars, that is, halogenase to catalyze 
the halogenation reaction (Phintha et al., 2021). The enzymatic 
catalysis of 7-halotryptophan can be  completed by FADH-
dependent halogenase RebH, NADH-dependent flavin reductase 
RebF from the biosynthesis of rebeccamycin, or tryptophan 
7-halogenase PrnA and its partner flavin reductase Fre from the 
biosynthesis of pyrrolnitrin (Dong et al., 2005; Yeh et al., 2005; van 
Pee and Patallo, 2006; Figure 7). They can catalyze the regioselective 
chlorination/bromination of tryptophan at the 7-position of indole 
ring (Glenn et  al., 2011; van Pee, 2012). The halogenation 
mechanism is that FAD, O2, and halogen ions are used as substrates, 
FAD is reduced to FADH2 by flavin reductase, combined with 
halogenase, and reacts with O2, halogen ions (Cl−, Br−) and 
substrates at the active site of halogenase to generate halogenated 
products (Dong et  al., 2005; Yeh et  al., 2006). For the detailed 
reaction principle, some scholars have proposed nucleophilic and 
electrophilic mechanisms respectively, but they have been proved 
incorrect (Chen and van Pee, 2008).

Based on the information obtained from the structural study, 
the reaction mechanism of tryptophan enzymatic chlorination was 
proposed (Karabencheva-Christova et al., 2017). In the catalytic 
cycle of tryptophan 7-halogenase, the reduced form of its cofactor 
flavin adenine dinucleotide (FAD)-FADH2 first reacts with 
molecular oxygen O2 to generate C4a-peroxyflavin, and then reacts 
with chlorine to generate HOCl. The HOCl formed at the FAD 

binding site moves through the tunnel within the enzyme and is 
activated to chlorinate the substrate at the tryptophan binding site. 
The hydrogen bond between HOCl and lysine 79 activates HOCl 
by increasing its electrophilicity, thereby promoting the 
chlorination reaction (Dong et al., 2005; Karabencheva-Christova 
et al., 2017).

The gram-level synthesis of halogenated tryptophan by RebH 
reaction has been reported, but the efficiency is too low, and it takes 
8 days to complete the transformation (Frese and Sewald, 2015). 
Veldmann et al. (2019b) reported that a trpE gene variant encoding 
feedback resistant anthranilate synthase component 1, trpD encoding 
E. coli anthranilate phosphoribosyltransferase and the genes encoding 
RebH and RebF were overexpressed in C. glutamicum, could obtain 
108 mg/L 7-Cl-Trp. According to the above method, with NaBr as the 
bromine source, the recombinant C. glutamicum could be used to 
culture in 2 L working volume to obtain 1.2 g/L 7-Br-Trp (Veldmann 
et al., 2019a).

In the use of enzymes, it was found that when the ratio of RebF 
and RebH was 3:1, the activity was the best (Yeh et al., 2005). Perhaps 
we can increase the production of halogenated tryptophan through 
this idea. In addition, tryptophan can not only be halogenated by 
enzyme PrnA and RebH at position 7, but also can be halogenated by 
tryptophan 5-halogenase (PyrH; Zhu et al., 2009) and tryptophan 
6-halogenase (Thal; Moritzer et al., 2019), (SttH; Shepherd et al., 2016; 
Lee et al., 2021) at positions 5 and 6.

Pyrrolnitrin

Pyrrolnitrin (3-chloro-4-(2′-nitro-3′-chlorophenyl)-pyrrole) is a 
tryptophan-derived secondary metabolite (Hamill et al., 1970), it was 
first isolated from Burkholderia pyrrocinia (Pseudomonas pyrrocinia) 
by Arima et al. (1964) and this compound and its derivatives can also 
be  isolated from rhizospheric fluorescent or non-fluorescent 
pseudomonads, Serratia and Burkholderia (Pawar et  al., 2019). 
Pyrrolnitrin has been used to treat skin fungal infections due to its 
strong antifungal activity, and has also been developed as an 
agricultural fungicide to inhibit soil borne fungal pathogens that affect 
crop yield (Kwak and Shin, 2015).

The gene cluster necessary for the synthesis of pyrrolnitrin was 
isolated from Pseudomonas fluorescens BL915, which can produce 
pyrrolidinitroprotein. It was composed of four genes (ORF1234), 
named as prnABCD, respectively (Hammer et al., 1997). Combined 
with the synthesis pathway of pyrrolnitrin speculated by van Pée et al. 
(1980), the complete gene coding catalytic synthesis pathway of 
pyrrolnitrin was proposed: the prnA gene product catalyzes the 
chlorination reaction of L-Trp to produce 7-chloro-tryptophan, and 
the prnB gene product catalyzes the ring rearrangement and 
decarboxylation to convert 7-chloro-tryptophan to 
monochloroaminopyrrolitrin, the prnC gene product chlorinates 
monodechloroaminopyrrolnitrin at the 3 position to form 
aminopyrrolnitrin, and the prnD gene product catalyzes the oxidation 
of the amino group of aminopyrrolnitrin to a nitro group to form 
pyrrolnitrin (Kirner et al., 1998; Figure 7).

The prnABCD operon was cloned from plymuthica G3 and 
expressed in E. coli DH5α, the mutant was able to overproduce 
pyrrolnitrin with isopropyl β-D-thiogalactoside (IPTG) induction by 
overexpressing prnABCD (Liu et al., 2018). In the wild-type strain, the 
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amount of pyrrolnitrin secreted is small (Pawar et  al., 2019). For 
example, the pyrrolnitrin production of P. aureofaciens ATCC 15926 
strain was less than 0.3 μg/ml when grown in minimal medium, but it 
could be  induced by N-methyl-N′-nitro-N nitrosoguanidine to 
increase its yield (Salcher and Lingens, 1980). In addition, the yield of 
pyrrolnitrin was also affected by pH, the shake flask fermentation of 
P. cepacia LT4-12-W showed that the final yield of pyrrolnitrin (168 h) 
almost doubled at pH 5.8 (Pawar et al., 2019). Therefore, it is necessary 
to fully consider the influence of various factors in the production 

process of pyrrolnitrin to improve the output of pyrrolnitrin as much 
as possible.

Rebeccamycin

Rebeccamycin is a yellow crystalline hydrophobic substance, 
which was isolated from lechevalieria aerogenes 92 in 1985 (Nettleton 
et al., 1985; Bush et al., 1987). It is a halogenated natural product of 

FIGURE 7

Biosynthetic pathway of 7-Halo-tryptophan, pyrrolnitrin and rebeccamycin. PrnA and RebH are FAD-dependent halogenases. RebF and Fre are NADH-
dependent flavin reductases. PrnB, monodechloroaminopyrrolnitrin synthase; PrnC, monodechloroaminopyrrolnitrin halogenase; PrnD, 
aminopyrrolnitrin oxygenase; RebD acts as both a catalase and a CPA synthase; RebO, FAD-dependent L-tryptophan oxidase; RebP, cytochrome P450 
enzyme; RebC, monooxygenase; RebG, N-glycosyltransferase; RebM, methyltransferase. The order of action of enzymes is from top to bottom. The 
straight line and dotted line represent one-step and multi-step, respectively.
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indolcarbazole family, with antibiotic and anti-tumor effects. It has 
antibacterial activity against several Gram-positive bacteria, such as 
Staphylococcus aureus and Streptococcus faecalis and can also cause 
DNA double strand breaks and inhibit topoisomerase I, and inhibit 
the growth of some tumor cell lines (Sanchez et al., 2002; Waliskoa 
et al., 2017).

Rebeccamycin is derived from one unit of glucose, one of 
methionine, and two of tryptophan (Lain et al., 1990). The gene cluster 
of its biosynthesis was determined by Sanchez et al. (2002). Based on 
sequence analysis and database searches, they proposed four indole 
carbazole biosynthetic genes (rebO, rebD, rebC and rebP), two 
halogenation genes (rebH and rebF), glycosylation gene (rebG, 
renamed by ngt) and sugar methylation gene (rebM), as well as one 
regulatory gene (rebR) and two resistance and secretion genes (rebU 
and rebT), a total of 11 genes involved in rebeccamycin biosynthesis. 
Subsequently, mutants of the above genes were constructed, after the 
products of each gene were studied, through the identification of 
several key biosynthetic intermediates, the biosynthetic pathway of 
rebekamycin was found, but the RebD catalytic product was not clear 
(Onaka et al., 2003a). After studying the heterologous expression of 
RebO and RebD, a mechanism of converting IPA imines through 
RebO/RebD and a mechanism of generating CPA from L-Trp through 
two enzyme RebO/RebD system were proposed (Jones and Walsh, 
2005). Furthermore, these mechanisms have been proved through 
experiments (Spolitak and Ballou, 2015). Therefore, the biosynthetic 
pathway of rebeccamycin is more complete and credible.

The biosynthesis of rebekamycin begins with L-Trp, and forms 
bisindole pyrrole CPA in a three-step process. The first step is the 
halogenation reaction of tryptophan, which is catalyzed by RebF/
RebH to generate 7-chloro-tryptophan. And then, RebO, a 
fad-dependent L-Trp oxidase, converts 7-chloro-tryptophan to 
7-chloroindole-3-pyruvic acid imine by releasing hydrogen peroxide. 
The oxidase RebD converts two molecules of 7-chloroindole-3-
pyruvate imine to 11,11′-dichlorochromopyrrolic acid. The 
monooxygenase RebC and cytochrome P450 enzyme RebP perform 
decarboxylative ring closure. Rebeccamycin aglycon is glycosylated by 
RebG to 4′-o-dimethyl-rebeccamycin, and then RebM partially 
methylates glucose to rebeccamycin (Sanchez et  al., 2002, 2006; 
Pommerehne et al., 2019; Figure 7).

As early as 1987, the production of rebeccamycin was attempted 
by using a strain with aeromycelium c-38,383-RK-2, the strain 
produced 663 mg/L rebeccamycin after fermentation (Bush et  al., 
1987). Of course, in addition to the use of wild-type bacteria 
producing rebekamycin, other types of bacteria can also be used to 
heterologously express the rebekamycin gene. For example, S. lividans 
pTOYAMAcos was used to express the whole gene cluster from 
Lechevalieria aerogenes that synthesized rebeccamycin, and the 
production of rebeccamycin was detected in transformed S. lividans 
(Onaka et al., 2003b). Jana et al. have reported that the enhanced 
culture of micro- and macroparticle has a positive effect on the 
production of rebeccamycin in the pellet-like morphology of bacteria 
particles (Waliskoa et al., 2017). In addition, Hiroyasu et al. (Onaka 
et al., 2015) reported that the yield of biosynthetic gene clusters of 
goadsporin, staurosporine and rebekamycin was significantly higher 
in co-culture than in pure culture. Therefore, we may improve the 
production of rebeccamycin by co-culturing gene clusters expressing 
different natural products or adding particles of different sizes in the 
process of culture.

Conclusion

It can be seen from the above that tryptophan derivatives have 
been applied in various fields such as medicine, agriculture and life. 
For example, they are used to make cosmetics, textile dyeing products, 
drugs, pesticides, etc. And they have become an indispensable part of 
various fields. With the progress of metabolic engineering and 
synthetic biology, the chemical synthesis methods of tryptophan 
derivatives with pollution problems have been gradually replaced by 
green and healthy biosynthesis, such as the research and use of more 
serotonin, melatonin, indigo, indirubin and so on, they are produced 
by heterologous expression of genes, and their titer and efficiency are 
also improved. At present, the biosynthesis methods of tryptophan 
derivatives can be roughly divided into three categories: one is the 
production of tryptophan derivatives by native bacteria or plants; the 
second is the cultivation of mutants on the basis of native bacteria; the 
third is the heterologous expression of related genes. In substrate 
selection, tryptophan can be directly added as a substrate to generate 
various derivatives, and glucose, glycerol, etc. can also be used as 
carbon sources to integrate the tryptophan synthesis pathway and the 
tryptophan derivative pathway in the same strain to achieve de 
novo synthesis.

In the process of biosynthesis of tryptophan derivatives, high yield 
has always been the pursuit of everyone. For how to improve the yield, 
the methods of various derivatives described above are different. Here, 
the author summarizes these methods: the first is to control the 
proportion of various enzymes. The appropriate proportion of enzymes 
can maximize the synthesis of catalytic products. Second, the substrate 
concentration should be  controlled. High substrate concentration 
would inhibit the biological activity and reduce the productivity of the 
final product. The third is to inhibit the consumption of the final 
product, when the bacteria produce tryptophan derivatives, the 
bacteria will also use the final product to meet their own life activities. 
The fourth is the combined culture of bacteria, there is a mutual 
promotion between the enzymes and their catalytic products in several 
bacteria, the combined culture of multiple colonies is expected to 
increase the yield, but further purification may be needed when various 
products are harvested. In addition, there is also a complex relationship 
between cell morphology and yield. Culture parameters including 
inoculum size and age, genetic factors, culture medium composition, 
pH, mechanical stress, mass transfer, viscosity, osmotic pressure, solid 
particles, addition of polymers, surfactants or chelates, temperature, 
and the geometry of reactors and agitators can significantly affect their 
morphology, which in turn affects yield.

The biosynthesis of tryptophan derivatives is indeed a green and 
safe way than chemical synthesis. However, the cost of using 
tryptophan as the substrate is higher. Therefore, it is a major trend to 
synthesize tryptophan derivatives from the source using glucose, 
glycerol and other carbon sources. However, the yield of synthesize 
tryptophan derivatives from glucose is low. It is also because of this 
problem that many tryptophan derivatives, such as pyrrolnitrin, have 
not yet met the requirements of industrial biological manufacturing. 
According to the above description, we can try to improve the enzyme 
activity and optimize the culture conditions to improve the yield. On 
this basis, we can also try to cultivate more suitable strains or use 
genetic engineering to optimize the synthesis pathway to achieve 
efficient synthesis of tryptophan derivatives from the source. Finally, 
because of the wide variety of secondary metabolites of tryptophan, 
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there are still blank in the function, synthesis pathway, and relationship 
between many secondary metabolites. The tryptophan derivative 
system needs to be further expanded and improved, and they are also 
worth exploring for more efficacy and more functions in various fields.
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