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The concept of the gut microbiome is emerging as a metabolic interactome 
influenced by diet, xenobiotics, genetics, and other environmental factors that affect 
the host’s absorption of nutrients, metabolism, and immune system. Beyond nutrient 
digestion and production, the gut microbiome also functions as personalized 
polypharmacy, where bioactive metabolites that our microbes excrete or conjugate 
may reach systemic circulation and impact all organs, including the brain. Appreciable 
evidence shows that gut microbiota produce diverse neuroactive metabolites, 
particularly neurotransmitters (and their precursors), stimulating the local nervous 
system (i.e., enteric and vagus nerves) and affecting brain function and cognition. 
Several studies have demonstrated correlations between the gut microbiome and the 
central nervous system sparking an exciting new research field, neuromicrobiology. 
Microbiome-targeted interventions are seen as promising adjunctive treatments 
(pre-, pro-, post-, and synbiotics), but the mechanisms underlying host-microbiome 
interactions have yet to be  established, thus preventing informed evidence-based 
therapeutic applications. In this paper, we review the current state of knowledge for 
each of the major classes of microbial neuroactive metabolites, emphasizing their 
biological effects on the microbiome, gut environment, and brain. Also, we discuss 
the biosynthesis, absorption, and transport of gut microbiota-derived neuroactive 
metabolites to the brain and their implication in mental disorders.
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1. Introduction

Over the past few decades, increasing attention has been paid to the gastrointestinal 
microbiome as one of the key elements contributing to the regulation of host physiology (de Vos 
et al., 2022). The microbiome has recently been redefined to pertain not only to the community 
of microorganisms but also their theatre of activity, including microbial structures, metabolites, 
and mobile genetic elements, whereas the microbiota is an assemblage of microbial communities 
associated with a habitat (Berg et al., 2020). The metabolic activities of gut symbionts go beyond 
simply assisting in digestion and nutrient production, or modulating and protecting the intestinal 
barrier, and have important implications for one health (Berg et al., 2020). Over the past decade, 
gut neuromicrobiology has emerged as an exciting area of research that encompasses 
understanding the link between the gut microbiome, its neurometabolic interactome, and its 
association with brain health and diseases (de la Fuente-Nunez et al., 2018). Indeed, appreciable 
evidence highlight that alterations in the diversity and the metabolic activity of the gut 
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microbiome, also known as “dysbiosis,” are linked to multiple 
psychiatric and neurological disorders (de la Fuente-Nunez 
et al., 2018).

The gut-brain axis is a bi-directional communication system 
linking the gut microbiome to the brain and plays a crucial role in 
neuronal development, cognitive regulation, mental state, emotional 
regulation, behavior, and brain function (Cryan et al., 2020; Agirman 
and Hsiao, 2021). Gut-brain axis activity can be  modulated by 
broadly two approaches: “top-down” and “bottom-up” (Figure 1). A 
combination of endocrine (cortisol), immune (cytokines), and 
neural (vagus and enteric nervous systems) pathways are involved in 
these two approaches. In the top-down approach, the brain recruits 
these mechanisms in order to influence the composition of the 
microbiota in the gut. It is known that the hypothalamus-pituitary–
adrenal axis regulates cortisol secretion under stress conditions, and 
cortisol directly affects immune cells (including the secretion of 
cytokines) both locally in the gut and systemically. Also, cortisol 
affects gut permeability and barrier function, as well as the 
composition of the gut microbiota (Cryan and Dinan, 2012). In the 
bottom-up approach, the gut microbiota signals the brain through 
immune regulation (production of cytokines) and the production of 
microbial neuroactive metabolites and neurotransmitters. Through 
this approach, for instance, the level of systemic tryptophan and the 
stimulation of the vagus and enteric nerves play a significant role in 
the communication between the gut microbiome and the brain. 
Appreciable evidence suggests that the gut microbiota produce a 
broad spectrum of neuroactive metabolites (Valles-Colomer et al., 
2019; Lai et  al., 2021), particularly neurotransmitters and their 
precursors, highlighting a potential involvement in 

neuroendocrinology-based mechanisms, illustrated by the 
bottom-up pathway in Figure 1. For example, spore-forming bacteria 
secrete their metabolites, stimulating serotonin biosynthesis in 
enterochromaffin cells (Yano et  al., 2015). Moreover, some 
neurotransmitters and their precursors produced by the gut 
microbiota and enteroendocrine cells are transferred to the 
bloodstream and could reach the brain. Figure  1 shows the 
importance of the microbiome and produced neuroactive 
metabolites in the gut-brain axis, especially in the “bottom-up” 
pathway.

In recent years, an increasing number of studies have reported on 
the biosynthesis of gut microbiome-derived neurotransmitters [i.e., 
γ-aminobutyric acid (GABA), serotonin, dopamine, norepinephrine, 
etc.] and other neuroactive metabolites that could impact brain 
functions and condition (Cox and Weiner, 2018; Cryan et al., 2020). For 
instance, some research groups found that gut dysbiosis and the 
following interference in releasing monoamine cause severe major 
depressive disorder (MDD) in an animal model, proving a deep 
relationship between the gut microbiome and mental disorders (Heijtz 
et  al., 2011; Neufeld et  al., 2011; Clarke et  al., 2013). Therefore, 
microbially-produced neuroactive metabolites could be an integral part 
of the gut microbiome–host crosstalk mechanisms, thus, eliciting 
various health-promoting effects. Despite recent research progress, 
multiple questions surrounding gut neuromicrobiology remain 
unsolved. Why and how do some specific gut microbes harbor the 
genes responsible for producing neuroactive molecules but not others? 
Is it an intra-kingdom or inter-kingdom quorum sensing signaling 
mechanism or both? What are the possible routes of delivery of these 
neuroactive metabolites to the gut environment and brain? In this 

FIGURE 1

Top-down and bottom-up pathways between the gut microbiota and the brain. Right side: Gut microbiota-derived neurotransmitters and their precursor in 
the gut microbiome-brain axis; left side: the hypothalamus-pituitary–adrenal axis.
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review, we discuss the diversity, biosynthesis, transport, and interplay 
of microbiome-produced neuroactive metabolites with the 
gut-brain axis.

2. Microbiota-produced 
neurotransmitters and related 
metabolites

2.1. Diversity within gut 
neurotransmitter-producing bacteria

A consideration of some of the more well-studied neuroactive gut 
microorganisms demonstrates their considerable phylogenetic and 
neuroactive diversity (Figure  2). As detailed below, multiple 
neurotransmitters secreted by the gut microbiome have been 
reported; as such, gut neuromicrobiology has been proposed as a 
separate field of study in recent years. As shown in Figure 2, some 
bacterial strains can produce more than one main neurotransmitter. 
It is often difficult to correlate neurotransmitter production with 
phylogeny (Figure  2) due to the possible adaptation of bacteria 
through horizontal gene transfer. Indeed, the gut environment is one 
of the most favorable ecological niches for lateral gene transfer, which 
is characterized by stable temperatures, continuous food supply, 
stable physicochemical conditions, a high concentration of bacterial 
cells and phages, and ample opportunities for conjugation of these 

cells and phages on food particles and host tissues (Lerner et  al., 
2017). In response to selective pressures in the gut, bacteria may 
undergo genetic restructuring, but the transfer of neuroactive genes 
has not yet been documented so far.

2.2. Synthesis of neurotransmitters by gut 
microbiota

2.2.1. γ-Aminobutyric acid
GABA, a nonprotein amino acid generated by the decarboxylation 

of glutamic acid, is a naturally occurring amino acid, and it functions as 
a neurotransmitter at the inhibitory synapses of the vertebrate and 
invertebrate nervous system. GABA plays a crucial role in controlling 
neuronal excitability in the nervous system and has shown many other 
physiological functions. It is important to mention that a wide range of 
GABA-binding proteins are present in gut-associated bacteria and are 
thought to be critical in bacterial and inter-domain communication 
(Valles-Colomer et al., 2019). The low level of GABA in the brain causes 
severe psychiatric and neurological disorders, including depression, 
anxiety, insomnia, and epilepsy (Luscher et al., 2011; Gabbay et al., 2017; 
Erjavec et al., 2021). Some evidence revealed that the gut microbiome 
affects the level of GABA and subsequently influences mental health. For 
instance, Bravo et al. (2011) reported that L. rhamnosus elevated the 
abundance of GABAB1b mRNA (GABAB produces slow and prolonged 
inhibitory signals) while decreasing the level of GABAAα2 mRNA 

FIGURE 2

Phylogenetic diversity of neurotransmitter-producing bacteria. Sequences are based on published whole-genome or partial sequences from the NCBI 
Reference Sequence (NCBI RefSeq Targeted Loci Project, Direct Submission, National Center for Biotechnology, Information, NIH, Bethesda, MD 20894, 
USA). GeneBank accession numbers for the 16S rRNA sequence are shown in the bracket. The phylogenetic tree was constructed using MEGA 11 software 
(version 11.0.10). Briefly, the evolutionary history was inferred using the Neighbor-Joining method (Saitou and Nei, 1987). The bootstrap consensus tree 
inferred from 1,000 replicates represents the evolutionary history of the taxa analyzed (Felsenstein, 1992). Branches corresponding to partitions reproduced 
in less than 50% of bootstrap replicates are collapsed. The evolutionary distances were computed using the Tamura 3-parameter method (Tamura, 1992) 
and are in the units of the number of base substitutions per site. This analysis involved 34 nucleotide sequences. All ambiguous positions were removed for 
each sequence pair (pairwise deletion option). There were a total of 1,606 positions in the final dataset. Evolutionary analyses were conducted in MEGA11 
(Tamura et al., 2021).
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(GABAA mediates fast inhibitory signals) in the cortex of mice, leading 
to the inhibition of anxiety and depression-like behaviors (Bravo et al., 
2011; Terunuma, 2018). In mammalians, approximately 25–50% of 
neurons contain GABA as a primary inhibitory neurotransmitter in 
their central nervous system (CNS; Peters et al., 2019). In this section, 
we focused on the biosynthesis of GABA in potential gut microbes. The 
biosynthesis of GABA has been reported in various microorganisms 
(Figure  2). Microbial species can produce GABA either using the 
glutamate decarboxylase (GAD) or putrescine (Puu) pathways (Diez-
Gutiérrez et al., 2020). Most bacteria use the GAD pathway, while the 
Puu pathway is considered a minor route for synthesizing GABA (Diez-
Gutiérrez et al., 2020). Mainly, Lactobacillus spp., Bifidobacterium spp., 
Escherichia coli, Listeria monocytogenes, and Aspergillus oryzae produce 
GABA through the GAD pathway (Huang et al., 2014; Das and Goyal, 
2015; Sano et al., 2016), while the Puu pathway is described only for 
Escherichia coli (Cha et al., 2014) and Aspergillus oryzae (Akasaka et al., 
2018). The GAD pathway is initiated by Glu/GABA antiporters encoded 
by a gadC gene (Gao et  al., 2019). As a result of the action of this 
antiporter, glutamate or monosodium glutamate is pumped into the 
microorganism (Choi et al., 2013). gadB gene encodes the GAD enzyme, 
which catalyzes the transformation of Glu to GABA. This enzyme 
consists of six repetitive subunits containing a conserved lysine residue 
that binds to pyridoxal-5-phosphate (Yu et al., 2019). However, Lyu et al. 
(2019) reported that the gadA gene plays the same role as gadB in GAD 
expression, while the deletion of gadB has more effect on reducing 
GABA production (Lyu et al., 2019).

The putrescine pathway begins with the transport of Puu into the 
cell via an antiporter encoded by the puuP gene (or ycjJ). Then, Puu 
undergoes two paths; (1) direct conversion to γ-aminobutyraldehyde 
catalyzed by a Puu-amino-transferase encoded by patA gene (ygjG) and 
subsequent oxidation to GABA by a γ-aminobutyraldehyde-
dehydrogenase encoded by patD gene (ydcW gene). (2) Transformation 
to γ-glutamyl-Puu catalyzed by γ-glutamate-putrescine-synthetase 
encoded by a PuuA gene and then two oxidation reactions for the 
production of γ-Glu-GABA by γ-Glutamyl-oxidase and a γ-glutamyl-γ-
butyraldehyde dehydrogenase encoded by puuB (ycjA) and a puuC 
genes, respectively. Then, γ-Glu-GABA hydrolase (encoded by puuD 
gene) degrades γ-Glu-GABA into GABA (Wu et  al., 2017). It is 
noteworthy that GABA can degrade by following the Puu pathway and 
entering the tricarboxylic acid cycle (TCA). In this path, GABA converts 
to succinic semialdehyde catalyzed by GABA-aminotransferase 
(encoded by gabT gene) and subsequently converted into succinate yield 
by a succinic semialdehyde dehydrogenase encoded by a gabB gene (Yu 
et  al., 2019). Then the succinate is introduced into the TCA cycle 
(Kurihara et al., 2010).

GABA shunts and polyamine pathways are metabolic pathways that 
enable microorganisms to produce and maintain optimal levels of GABA 
(Cui et al., 2020). Some gut commensal microbes produce GABA, such 
as Bacteroides, Bifidobacterium, and Lactobacillus genera, as listed in 
Figure  2. Strandwitz et  al. (2019) reported several GABA-producing 
bacteria, including Bacteroides caccae, Bacteroides vulgatus, Bacteroides 
ovatus, Bacteroides dorei, Bacteroides uniformis, Parabacteroides merdae, 
Bifidobacterium adolescentis, and Eubacterium rectale in which they 
showed a discrepancy in GABA-producing capacity depending on pH of 
the liquid medium used for growing those bacteria, with B. caccae, 
B. vulgatus, and B. ovatus being the most GABA producers (Strandwitz 
et  al., 2019). Recently, Sultan et  al. (2022) reported a high GABA 
production (3–6 mM) for B. finegoldii, B. caccae, and B. faecis, three 
human gut isolates having a distinctive signature operon compared to low 

GABA-producing isolates. Previously, Barrett et al. (2012) reported on 
the GABA-producing capacity of Lactobacillus and Bifidobacterium from 
the human gut. Out of 91 tested bacteria, the authors found one 
Lactobacillus strain and four strains of Bifidobacterium capable of 
producing GABA, with Levilactobacillus brevis DPC6108 being the most 
potential producer strain (Barrett et al., 2012). Likewise, Pokusaeva et al. 
(2017) reported that commensal Bifidobacterium dentium generates 
GABA through the enzymatic decarboxylation of glutamate by glutamate 
decarboxylase beta (gadB) in the rat fecal retention model (Pokusaeva 
et al., 2017). Besides, chronic treatment of mice with Lacticaseibacillus 
rhamnosus attenuates depression and anxiety-like behavior by producing 
GABA and regulating GABA receptors such as GABAAα2 and GABAB1b 
in the brain (Bravo et al., 2011). Aside from the above microorganisms, 
several lactobacilli, Monascus purpureus, and Streptococcus salivarius 
subsp. thermophilus have also been reported as efficient GABA-producing 
microbes in the gut environment (Cui et al., 2020). A recent study showed 
that Lentilactobacillus curieae produces GABA through two distinct 
pathways: (1) Transamination of succinic semialdehyde by GABA 
transaminase; and (2) decarboxylation of L-glutamate by 5-Oxopent-3-
ene-1,2,5-tricarboxylate decarboxylase (HpaG; Xie et al., 2022).

2.2.2. Dopamine
Dopamine, 3,4-dihydroxyphenethylamine, is a primary 

catecholaminergic neurotransmitter that plays a significant role in brain 
physiological functions (i.e., emotion, attention, memory, motivation, 
food intake, and reward; Kleinridders and Pothos, 2019). Dopamine 
dysregulation was strongly associated with psychiatric and neurological 
disorders, such as anxiety, depression, autism, Parkinson, and 
Alzheimer’s (Moraga-Amaro et al., 2014; Bäuerl et al., 2018; Eltokhi 
et al., 2020). Although the brain is the main site of dopamine synthesis, 
enteric neurons and intestinal epithelial cells produce approximately 
50% of total dopamine in the gastrointestinal tract (Eisenhofer et al., 
1997). The mechanism of dopamine synthesis is well-known through 
the phenylalanine–tyrosine–dopa–dopamine pathway. In this pathway, 
L-phenylalanine is converted to L-tyrosine by phenylalanine 
hydroxylase, which mainly occurs in the liver and kidney (Møller et al., 
2000). L-tyrosine (from the diet or the liver and kidney) can cross the 
blood–brain barrier (BBB) and enter the brain. In the brain, it converts 
to (s)-3,4-dihydroxyphenylalanine (L-dopa) by tyrosine hydroxylase, 
then the transformation of L-dopa is completed to dopamine by dopa 
decarboxylase (Seeman, 2010). Tyrosine hydroxylase is considered one 
of the most important enzymes due to its role as the rate-limiting 
enzyme in the biosynthesis of catecholamines. It is a monooxygenase 
that contains iron and requires tetrahydrobiopterin (BH4) as a cofactor 
(Nagatsu et al., 2019). There is growing evidence pointing out that the 
intestinal microbiome contains bacteria that produce BH4 and that 
phenylalanine–tyrosine–dopa–dopamine metabolic pathways also exist 
in microorganisms. Therefore, bacteria may contain homologs of the 
enzyme genes that mammals use to produce dopamine (Iyer and 
Ananthanarayan, 2008; Belik et al., 2017). As shown in Figure 2, several 
bacteria have been reported to produce dopamine in the gut, including 
bacilli, E. coli, Proteus vulgaris, Serratia marcescens, Staphylococcus 
aureus, Hafnia alvei, Klebsiella pneumoniae (Tsavkelova et  al., 2000; 
Cryan and Dinan, 2012). However, the detailed mechanism of dopamine 
biosynthesis by the gut microbiome has not yet been fully elucidated.

2.2.3. Serotonin
Serotonin, a monoamine neurotransmitter, is involved in various 

brain functions such as modulating mood, reward, cognition, memory, 
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learning, and many physiological processes, including vasoconstriction 
and vomiting (Berger et al., 2009). The altered expression, production, 
and function of serotonin in the brain result in the pathogenesis of 
mental illnesses, such as anxiety and depressive disorders (Helton and 
Lohoff, 2015). Several local effects are also conferred by gut-produced 
serotonin (5-hydroxytryptamine), including stimulating gut motility. 
The primary serotonin synthesis pathway occurs via enteric 
enterochromaffin cells, in which tryptophan hydroxylase 1 (Tph1) takes 
part in the reaction as the rate-limiting enzyme for serotonin 
synthesizing (Kwon et  al., 2019). Indeed, most serotonin is present 
around enterochromaffin cells in the gastrointestinal tract and enteric 
nerves after their biosynthesis from tryptophan (Spiller, 2008; Gershon, 
2013; Mawe and Hoffman, 2013). The production capacity of serotonin 
by the enterochromaffin cells is beholden to the available level of 
tryptophan needed for the synthesis; thus, maintaining the abundant 
amount of tryptophan in the gastrointestinal tract is crucial to synthesize 
an adequate level of serotonin. So far, many research groups have 
explored serotonin-producing bacteria in the gut, including E. coli K-12, 
Lactiplantibacillus plantarum FI8595, Lactococcus lactis subsp. cremoris 
MG 1363, Streptococcus thermophilus NCFB2392, Candida spp., 
Streptococcus spp., Escherichia spp., and Enterococcus spp. (Shishov et al., 
2009; Cryan and Dinan, 2012). As opposed to eukaryotes, little is known 
about the serotonin synthesis pathway in bacteria. Several bacteria have 
been identified to encode for eukaryote-like aromatic amino acid 
hydroxylase and aromatic amino acid decarboxylase, although the 
serotonin production pathway has not yet been investigated in most of 
these bacteria (Gonçalves et al., 2022).

Gut microbiota also indirectly take part in the production of 
serotonin: for instance, enterochromaffin cells produce serotonin once 
they receive signals through gut microbiome-produced metabolites that 
upregulate expression of the tph1 gene (Legan et al., 2022). Indeed, 
germ-free mice (GF) have substantially reduced colonic Tph1 mRNA 
expression, serum serotonin levels, and increased serotonin-selective 
reuptake transporter mRNA expression compared to control mice 
(Sjögren et al., 2012). In another study, gut microbiome was shown to 
play a role in the production of serotonin by comparing three mice 
groups: GF mice, GF mice colonized with human gut bacteria, and 
normally raised mice with mouse microbiomes. The colonized mice 
with human gut bacteria and normally raised mice expressed higher 
levels of colonic Tph1 mRNA and protein along with an increase in 
colonic serotonin level compared to GF mice. There was no difference 
in enterochromaffin cell density between the three groups, so the gut 
microbiome could directly regulate serotonin levels in the 
gastrointestinal tract (Reigstad et  al., 2015). Likewise, the gut 
microbiome release short-chain fatty acids and bile acids, inducing 
serotonin production in the enterochromaffin cells (Reigstad et al., 2015; 
Legan et al., 2022). Although Legan et al. (2022) provided some evidence 
of the direct and indirect effects of the gut microbiome on host serotonin 
systems, they also mentioned that no serotonin-producing human 
commensal has not yet been reported (Legan et al., 2022).

2.2.4. Norepinephrine
Norepinephrine is a catecholamine that plays roles in learning, 

attention, cognition, and memory, in addition to its function in 
alertness, arousal, and sensory detection (Borodovitsyna et al., 2017). 
Disturbances in norepinephrine neurotransmission in the CNS are 
increasingly associated with developing psychiatric and neurological 
diseases (Vazey and Aston-Jones, 2012; Bäuerl et al., 2018), although 
pathophysiological implication remains limited (Moret and Briley, 

2011). The biosynthesis of this neurotransmitter takes place mainly at 
the adrenal medulla and postganglionic neurons by the multiple 
enzymatic reactions in which the structural changes of tyrosine, a 
precursor molecule, to dopamine occurs primarily in the cytoplasm, 
while the alteration of dopamine to norepinephrine by dopamine 
β-monooxygenase takes place in the neurotransmitter vesicles (Zahoor 
et al., 2018). Bacteria such as Bacillus mycoides, Bacillus subtilis, Proteus 
vulgaris, and Serratia marcescens have been reported as norepinephrine-
producing microorganisms (Tsavkelova et al., 2000), while E. coli K-12, 
Bacillus spp., and Saccharomyces spp. have also displayed noradrenalin-
producing ability (Shishov et  al., 2009; Cryan and Dinan, 2012). 
Sperandio et al. (2003) reported that norepinephrine is responsible for 
the quorum-sensing ability of the bacterial population (Sperandio et al., 
2003). Wu and Luo (2021) also considered norepinephrine as one of the 
five main signaling molecules in the classical quorum-sensing system 
involved in interkingdom communication (Wu and Luo, 2021). The 
bacterial adrenergic receptors QseC (encoded by the qseC gene) and 
QseE (encoded by qseE) are membrane-bound histidine kinases that 
sense epinephrine and norepinephrine (Kendall and Sperandio, 2016). 
QseC quorum-sensing sensors have been associated with changes in 
bacterial motility and activation of virulence genes in several bacteria, 
including enterohemorrhagic E. coli and Salmonella enterica serovar 
Typhimurium (Karavolos et al., 2008; Kendall and Sperandio, 2016). It 
is documented that bacterial quorum-sensing sensors also sense the host 
hormones norepinephrine/epinephrine so that they may 
be interchangeable in the crosstalk between the microbiota and human 
gut (Li et al., 2019; Wu and Luo, 2021).

Although the related biosynthesis pathway of these 
neurotransmitters involving the gut microbiome remains unclear, it is 
assumed that the above bacteria may possess the relevant enzyme, such 
as dopamine β-monooxygenase needed for converting dopamine into 
norepinephrine. Shishov et al. (2009) reported that bacterial cells could 
produce and degrade monoamine neuromodulators via enzyme systems 
that are presumably similar to those found in animals (Shishov 
et al., 2009).

2.3. Neurotransmitter precursors and their 
biosynthesis pathways

The gut microbiome is primarily known to perform a fundamental 
function in metabolizing indigestible material consumed by the host, 
thus contributing to optimum energy production. Accordingly, human 
colonic bacteria have access to 5–12 grams of proteinaceous material 
daily. Therefore, amino acids, an essential part of the human diet, serve 
not only as the basic building blocks of proteins and peptides but also as 
the precursors to a wide variety of bioactive molecules essential for 
signaling pathways and metabolic processes. Given the diversity of 
amino acids and the complex mechanisms involved in metabolic 
pathways, we will focus here on amino acids that serve as precursors 
for neurotransmitters.

2.3.1. Tryptophan and its metabolites
As an essential aromatic amino acid, tryptophan is found in several 

common foods, such as milk, fish, cheese, chocolate, bananas, bread, 
and wine. It is composed of an indole group and a β carbon. For more 
than a century, it has been known that certain bacteria can produce 
amino acids, a trait that has been significantly exploited in the food and 
feed industry. Since the 1980s, the development of the amino acid 
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industry has been vibrant and has centered primarily on amino acids for 
feed supplements, which constitute 56% of the total market. The 
remaining 44% were primarily used in the agriculture, pharmaceutical, 
food, and cosmetic industries (Lim et al., 2019). A number of studies 
have indicated that lactic acid bacteria (LAB) possess genes for amino 
acid synthesis in addition to their well-established proteolytic system. 
An increasing understanding of the functions and properties of amino 
acid-producing bacteria has led to increasing commercial interest and 
diverse commercial applications. LABs are also considered an excellent 
candidate for amino-acid production for feed supplements (Lim et al., 
2019). It is known that some gut bacteria, including E. coli, can produce 
tryptophan, but there is no evidence that bacteria-derived tryptophan 
contributes significantly to host health (Krautkramer et al., 2021). Since 
tryptophan is not produced by animal cells, humans must obtain it from 
an exogenous source through their diet. It has been reported that 
members of Clostridium spp. and Tannerella spp. co-occurred with 
tryptophan biosynthesis and contained genes for tryptophan 
biosynthetic pathways (Kaur et al., 2019; Valles-Colomer et al., 2019; 
Aleti et  al., 2022). Generally, five enzymes encoded by seven genes 
(trpA-F), typically arranged in a single cluster, are involved in tryptophan 
biosynthesis in microbes (Crawford, 1989). Gut microorganisms can 
convert tryptophan to several signaling molecules, including serotonin, 
melatonin, tryptamine, and other indole derivatives. As mentioned 
above, tryptophan metabolism is a major pathway leading to the 
production of serotonin in the gut environment. It is noteworthy that 
gut-produced serotonin may indirectly impact central serotoninergic 
pathways, even if they do not cross the BBB, by modulating tryptophan 
and tryptamine availability (Agus et al., 2018). Some members of the 
human gut microbiota, such as Clostridium sporogenes, have been 
identified to decarboxylate tryptophan to produce tryptamine, a 
chemical that modulates host neurological activity (Williams et  al., 
2014). In addition, tryptophan is also the precursor to melatonin, which 
acts as an antioxidant and free radical scavenger in microorganisms 
while having positive effects on human health and could regulate the 
circadian sleep–wake rhythm if it crosses the BBB. It is noticeable that 
melatonin is mainly produced in the pineal gland (Danilovich 
et al., 2021).

In addition, 90% of the circulating tryptophan is metabolized 
through the kynurenine pathway in the human body (Jenkins et al., 
2016). Kynurenine has importance in generating cellular energy in the 
form of nicotinamide adenine dinucleotide (NAD+; Savitz, 2020). In the 
first step of the kynurenine pathway, tryptophan is converted to 
N-formylkynurenine by indoleamine 2,3-Dioxgenase 1 and 2 (IDO-1 
and IDO-2) and tryptophan-2,3-dioxygenase (TDO), then converted to 
kynurenine by formamides (Kennedy et al., 2017). Lastly, kynurenine is 
metabolized into NAD+ by different enzymes such as kynurenine 
aminotransferases (KATs), kynurenine monooxygenase (KMO), and 
3-hydroxyanthralinic acid dioxygenase (HAAO; Schwarcz and 
Pellicciari, 2002). Więdłocha et al. (2021) recently reviewed the current 
knowledge on the effect of gut microbiota on the kynurenine pathway 
and their relation with specific psychiatric disorders such as 
schizophrenia, Alzheimer’s disease, bipolar disorder, depression, autism 
spectrum disorders, and alcoholism (Więdłocha et al., 2021). Authors 
mentioned that gut bacteria are capable of synthesizing kynurenine 
pathway enzymes analogous to TDO, formamidase, KATs, and KMO, 
which affect this pathway further (Kurnasov et al., 2003; Więdłocha 
et al., 2021). Synthesis of B6 and B12 vitamins are also dependent on gut 
microbiome activity. These compounds are cofactors to kynurenine 
pathway enzymes (Oxenkrug et al., 2013).

Indoles is also one of the derivatives of tryptophan metabolisms. It 
is documented that the bacterial metabolism of tryptophan generates 
more than 600 indoles in the gut (Regunathan-Shenk et  al., 2022). 
Indoles are structurally related to neuroactive substances such as 
serotonin and Lysergic acid diethylamide (LSD). The structural 
similarity of these compounds has led to increased interest in their 
potential as neurotoxins. However, studies showed that administration 
of uremic indoles showed no altering CNS function (Himmelfarb and 
Sayegh, 2010). Walters and Sperandio (2006) mentioned that indole is 
considered a bacterial quorum-sensing system in the gut and acts as a 
signaling molecule. The same authors highlighted that indole could 
contribute to adapting bacterial cells to nutrient-poor environments 
where amino acid catabolism is an important energy source (Walters 
and Sperandio, 2006). A recent study showed that Lactobacillus reuteri 
isolated from murine gut microbiomes metabolize host dietary 
tryptophan into indole derivatives, kynurenines, and cresol and 
imidazoles, which may be  involved in the regulation of CNS 
autoimmunity (Montgomery et al., 2022).

2.3.2. Glutamate and its metabolites
Prokaryote and eukaryote organisms produce glutamate as a part of 

their intra- and inter-kingdom signaling. A portion of the free glutamate 
in the lumen comes from bacterial synthesis. For instance, several 
bacteria, such as Corynebacterium glutamycum, L. plantarum, 
L. paracasei, and L. lactis, were reported to produce glutamate (Mazzoli 
and Pessione, 2016). Although, glutamate plays a fundamental role as an 
excitatory neurotransmitter in the central nervous system (CNS) and in 
the enteric nervous system (ENS), where it is synthesized by neurons 
and glia (Miladinovic et al., 2015). It has been demonstrated that Gram-
positive and Gram-negative bacteria use glutamate as a substrate for 
synthesizing GABA via decarboxylation by glutamate decarboxylase 
(GAD; Tsai and Miller, 2013). Therefore, we  mainly considered 
microbiota-produced glutamate as a precursor for GABA, as mentioned 
above, and a signaling molecule in this section. A comprehensive 
evaluation of the microbiome-gut-brain axis and glutamate as a 
neurotransmitter/neuromodulator has been elegantly reviewed 
elsewhere (Baj et  al., 2019). Authors mentioned that glutamatergic 
pathways may contribute to interkingdom communication in the gut 
microbiota (Baj et al., 2019).

Ionotropic (iGlu) and metabotropic (mGlu) glutamate receptors are 
the two major types of glutamate receptors. Studies have identified at 
least 100 prokaryotic potassium channels containing putative glutamate 
binding domains, of which 22 have homology with vertebrate iGlu 
receptors (Ger et  al., 2010). This point allows hypothesizing that 
glutamate can play a role as inter-bacterial and inter-kingdom signaling 
molecules and glutamate-producing bacteria can modulate signaling 
pathways both locally and systemically. There are some evidence that the 
modulation of glutamatergic receptors along the microbiome-gut-brain 
axis affects several physiological responses in the brain and the gut, 
potentially having significant consequences for diseases involving 
dysfunctions of this communication pathway (Filpa et al., 2016; Mazzoli 
and Pessione, 2016). It is noteworthy that more investigations are needed 
to identify gut bacteria able to produce, sense, and respond to glutamate.

Previously, probiotics administered to mice resulted in a long-
lasting increase in levels of glutamine/glutamate in the brain, 
suggesting that the gut microbiome may control enzymatic 
biosynthesis pathways involved in the production of glutamate in the 
brain since the BBB impedes the passage of amino acids into the CNS 
under physiological conditions (Janik et  al., 2016). As mentioned 
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above, GABA is synthesized in the gut environment from glutamate 
through the enzymatic activity of GAD. In addition, the gut 
microbiome may indirectly affect glutamatergic pathways along the 
microbiome-gut-brain axis by controlling the metabolic process for 
L-tryptophan (Agus et  al., 2018). It is relevant to mention that 
decarboxylation of glutamate to GABA is an important survival 
mechanism for bacteria in the stomach’s extreme acidity (Feehily and 
Karatzas, 2013).

3. Other microbiota-produced 
neuroactive metabolites

Several metabolites produced by the gut microbiome contribute to 
the host physiology and homeostasis through, for instance, serving as 
substrates for reactions or signaling molecules. Although elucidating 
host-microbiome interactions remains challenging due to the high 
diversity of produced metabolites and the extent of crosstalk among gut 
microbes, several actionable microbial targets relevant to host health 
have been identified through metabolite-focused research (Krautkramer 
et al., 2021). Here, we mainly discuss only metabolites reported to have 
mental effects.

3.1. Short-chain fatty acids

Extensive research studied the production and metabolism of short-
chain fatty acids (SCFAs) by gut microbes. SCFAs are a subclass of fatty 
acids, ranging from one to six carbon atoms, and they are generated by 
the gut microbiota fermentation of nondigestible polysaccharides/fibers 
(Krautkramer et al., 2021). The main route of SCFA production in the 
colon occurs via saccharolytic fermentation of carbohydrates not 
absorbed in the small intestine, mainly nondigestible polysaccharides/
fibers. Butyrate is also formed from amino acid metabolism, and 
produced SCFAs contribute to the decrease in the pH of the colon (Louis 
and Flint, 2017). The most common SCFAs found in the human body 
are acetate, propionate, and butyrate, along with less amount of 
fumarate, valerate, and caproate, and their levels reach nearly 
500–600 mmol per day in the gut depending on the composition and 
amount of fiber in the diet (Macfarlane and Macfarlane, 2003). In some 
studies, SCFAs modulated neurotransmitter and neurotrophic factors 
levels (Silva et al., 2020). Acetate has been shown to alter glutamine, 
glutamate, and GABA levels and stimulate the production of 
anorexigenic neuropeptides in the hypothalamus (Frost et al., 2014). 
Butyrate was also reported with antidepressant properties and effects on 
social dominance (Hao et al., 2019; Wang, T. et al., 2022). Likewise, 
propionate, a precursor in lipid biosynthesis, has neuroprotective effects 
(Hu et  al., 2018). In this research, propionate was found to protect 
against haloperidol-induced neurite lesions and prevent the reduction 
of neuropeptide Y (Hu et al., 2018). Moreover, SCFAs influence the 
expression of tryptophan 5-hydroxylase 1 that is responsible for the 
synthesis of serotonin as well as tyrosine hydroxylase, which takes part 
in the biosynthesis of dopamine, adrenaline, and noradrenaline; thus, 
SCFAs play a crucial role in brain neurochemistry by affecting the 
production of neurotransmitters (Reigstad et al., 2015; Yano et al., 2015; 
Dalile et al., 2019). Even though the detailed mechanism of their action 
in the CNS remains unclear, some animal studies have shown that 
SCFAs have a widespread influence on significant neurological and 
behavioral processes and may be  engaged in important steps of 

neurodevelopmental and neurodegenerative disorders (Dalile et  al., 
2019; Fung et al., 2019).

Metagenomic approaches have been widely used to determine 
individual bacterium responsible for generating SCFAs in the colon. The 
production routes for propionate, butyrate, and lactate are more 
conserved and substrate-specific than the acetate production pathways; 
for instance, limited bacterial genera are involved in propionate 
production (Reichardt et al., 2014). Many studies have been carried out 
to identify SCFAs-producing microorganisms and their substrates, and 
are presented in Table  1. A report listed SCFAs-producing gut 
microbiomes along with dietary sources used for fermentation (Cheng 
et  al., 2021). The authors found 11 gut commensals that possess a 
potential capacity to produce SCFAs in the colon, including 
Bifidobacterium spp., Eubacterium spp., Ruminococcus spp., Prevotella 
spp., Faecalibacterium spp., Collinsella spp., Atopobium spp., Enterococcus 
spp., Lactobacillus spp., Clostridium cluster XIVa, and Roseburia spp. 
(Cheng et al., 2021). Basson et al. (2016) also provided a list of acetate-, 
propionate-, butyrate- and lactate-producing gut microbiomes (Basson 
et  al., 2016). It is reported that Akkermansia muciniphila is a 
representative propionate-producing organism (Naito et  al., 2018). 
Moreover, Ze et al. (2012) showed that Ruminococcus bromii significantly 
contributes to butyrate production in the presence of resistant starch in 
the colon (Ze et  al., 2012). Besides, Chang et  al. (2021) combined 
bioinformatics to scan gut-inhabiting Clostridia genomes pathways and 
in vitro assay to detect fatty acid amides, revealing that these metabolites 
might mimic human signaling molecules to modulate their host (Chang 
et al., 2021). Wang, T. et al. (2022) recently demonstrated that most 
dominant hosts are characterized by butyrate-producing core microbes, 
and that colonization of Clostridium butyricum alone is adequate to 
restore the host’s dominance (Wang, T. et al., 2022). In addition, SCFAs 
commonly have chemical structures similar to the diffusible signal 
factors (DSF) families. Some Gram-negative bacteria use DSFs as 
quorum-sensing signals for biofilm formation and virulence. SCFAs, as 
DSFs mimic, can inhibit bacterial biofilm or other dependent gene 
expressions in the quorum-sensing system, influencing autoinducer 
signals (Kumar et al., 2020). Furthermore, SCFAs can be used by other 
bacteria or pathogens as sources of nutrients or aid colonization, 
virulence, and invasion. For instance, SCFAs promote adhesion, 
flagellum growth, and virulence of Salmonella Typhimurium by 
upregulating the expression of T3SS gene (Lawhon et al., 2002).

3.2. Neuroactive peptides

Peptide YY, glucagon-like peptide 1, gastric inhibitory peptide, 
cholecystokinin, oxytocin, corticotropin-releasing factor, and ghrelin are 
only found in gut produced by the stimulation of the enteric bacterial 
microbiome. In the systemic circulation, gut peptides can bind cognate 
receptors on vagus nerve terminals and immune cells, enabling indirect 
communication between the gut and the brain. Intestinal microbiome 
composition influences gut peptide concentrations and enteric signals 
(Lach et  al., 2018). The neuropeptide Y family is the brain’s most 
abundant family of peptides and is expressed across the gut-brain axis, 
such as enteric neurons, primary afferent neurons, sympathetic neurons, 
and several neuronal pathways throughout the brain (Holzer and Farzi, 
2014). In the brain, neuropeptide Y, for instance, is expressed by a 
multitude of neuronal systems in regions spanning from the medullary 
brainstem to the cerebral cortex. Gut peptides YY and pancreatic 
polypeptides are mainly released by enteroendocrine cells, where peptide 
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TABLE 1 SCFAs-producing microorganisms and substrates associated with bacterial fermentation.

SCFAs type Bacterial strains Substrate Potential 
neuroactivity

Deficiency effect Ref.

Acetate Bacteroides (B. 

thetaiotaomicron)

Cellulose, hemicellulose, 

pectin, fructans, mucins, 

mucopolysaccharides

Cognitive functions Depletion of acetate-producing 

bacteria resulted in the reduction 

of synaptophysin in the 

hippocampus as well as learning 

and memory impairments in 

diabetic mice

Basson et al. 

(2016), Zheng 

et al. (2021)

Ruminococci Celluloses

Bifidobacteria Milk oligosaccharides, 

fructose, lactoseClostridia

Proteobacteria (Desulfovibrio 

pigler)

Eubacteria

Fusobacteria

Peptoccocci

Peptostreptococci

Propionibacteria

Veillonella

Propionate Bacteroides Cellulose, hemicellulose, 

pectin, fructans, mucins, 

mucopolysaccharides

Effect on anxiety and 

stress behaviors

Minimal variation in the 

abundance of butyrate and 

propionate was observed in the 

gut of depressed individuals 

compared to healthy controls; 

however, antidepressant-like 

effects of sodium propionate 

were reported

Liu et al. (2015), 

Basson et al. 

(2016), Hoyles 

et al. (2018), Li 

et al. (2018)

Clostridium cluster IX

Propionibacteria

Veilonella

Akkermansia municiphilla Mucin and 

mucopolysaccharides

Acetate, 

propionate, and 

butyrate

Faecalibacterium spp. Prevotella 

spp. Bifidobacterium spp. 

Eubacterium spp. Ruminococcus 

spp. Collinsella spp. Atopobium 

spp. Enterococcus spp. 

Lactobacillus spp. Clostridium 

cluster XIVa

Pectin, fructans

Roseburia spp. Hemi-cellulose, bacterial 

polysaccharides

Milk oligosaccharides, 

fructose, lactose

Butyrate Roseburia spp. Hemi-cellulose, fructose, 

fructans

Neuroprotective effects The long-term supplementation 

of acetate, propionate, and 

butyrate in drinking water for 

chronic cerebral hypoperfusion 

mice models revealed a positive 

neuroprotective effect by 

reducing inflammation and 

hippocampal neuronal apoptosis 

following bilateral occlusion of 

the common carotid artery.

Basson et al. 

(2016), Xiao et al. 

(2022)
F. prusnitztii

E. rectale

E. hallii

R. bromine

Anaerostipes

Ruminococcus bromii Ze et al. (2012)

Lachnospiraceae Plant polysaccharides Sun et al. (2021)

Lactate Bifidobacterium spp. Milk oligosaccharides, 

fructose, lactose

Antidepressant effect To the best of our knowledge, no 

study has examined the 

relationship between lactate 

production in the gut 

microbiome and its deficiency 

effect. However, there is a well-

established interchange of lactate 

between the periphery and the 

CNS.

Basson et al. 

(2016), Caspani 

et al. (2019)
Collinsella aerofaciens
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YY is released by the L cells of the ileum and colon in response to food 
intake. Gut peptides can be activated by their cognate receptors in vagal 
afferents to signal the brain stem (Latorre et al., 2016). A recent study has 
identified dipeptides (Phe-Val and Tyr-Val) and their biosynthetic gene 
clusters in the human microbiome (Cao et al., 2019). These molecules 
play a critical role in quorum sensing (cell-to-cell communication) to 
promote the growth of beneficial Bifidobacterium and maintain cell 
density (Hatanaka et al., 2020). A previous study showed that the Phe-Phe 
produced by Clostridium sp. can inhibit host cellular proteins, particularly 
cathepsins, by chemical modifications causing inflammation (Guo et al., 
2017). Another study showed that three quorum sensing peptides (BIP-2, 
PhrANTH2, PhrCACET1) could selectively penetrate BBB, and two of 
them influx into the mouse brain (Wynendaele et al., 2015). Since gram-
positive bacteria mostly use peptides as signal molecules, this may 
highlight the potential benefits of probiotics and the human microbiome 
in depression, anxiety, and stress (Luna and Foster, 2015). This topic is 
undoubtedly an area of research that requires further exploration.

Other studies showed that some bacterial strains could modulate the 
expression of gut peptides. For example, Ko et al. (2022) reported that the 
administration of L. plantarum SBT2227 promotes sleep in Drosophila 
melanogaster through the induction of neuropeptide F (a homolog of 
mammalian neuropeptide Y; Ko et al., 2022). On the other hand, different 
types of proteases are produced by the gut microbiome, which results in 
the generation of a large number of peptides during the digestion of food 
proteins. In the case of simulated gastrointestinal digestion in vitro, some 
studies have shown the production of bioactive peptides (Wu et al., 2021). 
For instance, Capriotti et al. (2015) showed that hundreds of peptides 
with various biological activities were produced from soybean proteins 
in the simulated gastrointestinal digestion. It has been found in other 
studies that these peptides were stable and remained intact, allowing 
them to reach their target sites and exert their potential health benefits 
(Miri et al., 2019; Virgilio, 2019). However, little is known about the 
interaction mechanism of peptides produced by the gut microbiome and 
enteroendocrine cells and their interactions with brain physiology.

3.3. Bile acids

The liver synthesizes primary bile acids primarily from cholesterol 
metabolism, a process that is in part mediated and controlled by the gut 
microbiome. It is thought that microbial enzymes are responsible for 
deconjugating and dehydroxylation of conjugated primary bile acids to 
produce secondary bile acids that function as signaling molecules 
(Wahlström et al., 2016). Due to the possibility that gut bacteria may 
control the composition of the brain’s bile acid pool, bile acids may serve 
as a communication link between the gut microbiome and the brain 
(Monteiro-Cardoso and Corlianò, 2021). It is well-documented that the 
vagal nerve modulates brain function indirectly through 
neurotransmitters, which are unlikely to cross the BBB. However, studies 
demonstrated that bile acids could cross the BBB and are therefore capable 
of directly signaling through the brain’s bile acids receptors. Still, little is 
known about the molecular mechanisms involved and the physiological 
functions of microbiome-derived bile acids in the central nervous system.

3.4. Vitamins

Most gut microorganisms have the ability to synthesize de novo and 
metabolize vitamins, including vitamin K2 (menaquinone), vitamin A 

(retinol), as well as water-soluble B-vitamins, such as B1 (thiamine), B2 
(riboflavin), B3 (niacin), B5 (pantothenic acid), B6 (pyridoxine), B7 
(biotin), B9 (Folate), and B12 (cobalamin; Das et al., 2019; Rudzki et al., 
2021). Several biochemical processes, such as the metabolism of 
neurotransmitters, require the B vitamins as coenzymes. Microbial-
produced B vitamins and their role in CNS and their effect on gut 
bacteria are summarized in Figure 3. B vitamins play an important role 
in neuroprotection, myelin formation, energy production, mitochondrial 
function, and cellular respiration, as well as exert antioxidant and anti-
inflammatory properties (Rudzki et al., 2021). Das et al. (2019) studied 
the abundance of vitamin biosynthetic gene(s) and consumption of 
vitamins through uptake transporter(s) using human fecal metagenomic 
data collected from four different countries (i.e., China, USA, Spain, and 
Denmark; Das et al., 2019). The authors showed that the range of total 
gene abundances remained constant across healthy populations in all 
studied countries. Based on their estimation, 49% of vitamin-related 
pathways are found in the Firmicutes phylum, 19% in the Proteobacteria 
phylum, 14% in the Bacteroidetes phylum, and 13% in the Actinobacteria 
phylum (Das et al., 2019; Rudzki et al., 2021). Moreover, a comprehensive 
analysis of 256 common human gut bacteria genomes revealed that 
40–65% of these bacteria could produce some or all of the B vitamins. 
This prediction was validated by published data in 88% of cases 
(Magnúsdóttir et al., 2015). It is also important to note that gut microbial 
metabolism of B vitamins is age dependent. There has been evidence 
that infant gut microbiomes are enriched for genes involved in de novo 
folate biosynthesis, whereas adult gut microbiomes are enriched for 
genes involved in folate metabolism and its reduced form 
tetrahydrofolate (Yatsunenko et al., 2012).

3.5. Other potential neurochemical 
compounds

Recently, Sultan et  al. (2022) reported the presence of several 
neurotransmitter-related compounds or their precursors, such as 
arachidonyl-dopamine (NADA), gabapentin, and N-acylethanolamines 
inside gut microbiome-secreted extracellular vesicles (MEVs; Sultan 
et al., 2022). Dopamine, a representative human neurotransmitter, was 
also found in these MEVs as a conjugated form with arachidonic acid. 
N-acylethanolamines (NAEs), such as palmitoyl-ethanolamide (PEA) 
and linoleoyl-ethanolamide (LEA), have been reported as effective 
neuroprotective agents (Sun et al., 2007; Schomacher et al., 2008). Also, 
NADA is an endocannabinoid with widespread physiological and 
pharmacological activities, including modulation of neuropathic pain, 
inflammatory hyperalgesia, and immune and vascular systems (Grabiec 
and Dehghani, 2017). Two potential biosynthetic pathways for NADA 
have been proposed, though no conclusive evidence exists. First, NADA 
biosynthesis pathways could involve the conjugation of N-arachidonoyl 
tyrosine to N-arachidonoyl-l-DOPA by tyrosine hydroxylase (TH), 
which would then be converted to NADA by L-amino acid decarboxylase 
(AADC). Hu et al. (2009) reported the possibility that fatty acid amide 
hydrolase (FAAH) has the potential to be  involved in the direct 
conjugation of dopamine with arachidonic acid liberated from 
arachidonoyl-ethanolamide (AEA), the blockade of which significantly 
decreases in vivo the production of NADA (Hu et al., 2009). According 
to the same authors, FAAH functions either as a rate-limiting enzyme 
that liberates arachidonic acid from AEA, a conjugation enzyme, or both 
(Hu et al., 2009). Previous comparative analyses of FAAH enzymes from 
bacteria, yeast, and mammals showed a strong evolutionary relationship. 
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The alignment of bacterial amidases and mammalian FAAH cDNA 
confirmed the existence of a highly conserved region known as the 
signature sequence (Mayaux et  al., 1990; Cravatt et  al., 1996). This 
evidence implies the potential presence of genes coding for FAAH 
enzymes in the gut microbiome, but this has not yet been reported.

4. Impact of neuroactive compounds 
on the gut environment

Neurochemicals, such as GABA, serotonin, dopamine, or their 
precursors and derivatives, are microbially metabolized by gut 
commensals and being considered major modulators of the gut 
environment, including the enteric nervous system (Sarkar et al., 2016). 
Neuroactive molecules, such as GABA, once secreted into the intestinal 
environment by bacteria, possibly induce epithelial cells to release 
molecules that, in turn, modulate neural signaling within the enteric 
nervous system and consequently signal the brain function and 
behavior of the host. For instance, Bifidobacterium dentium ATCC 
27678, a GABA-producing bacterium, was shown to modulate sensory 
neuron activity in a rat fecal retention model of visceral hypersensitivity, 
suggesting that GABA-producing bacteria may represent future 

therapeutics for recurrent abdominal pain and functional bowel 
disorders (Pokusaeva et  al., 2017). The GABA neurochemical was 
detected in the cytoplasm and brush border of epithelial cells in the rat 
jejunum and colon (Wang, 2004). The exposure of GABA to epithelial 
cells selectively stimulated MUC1 expression in isolated pig jejunum 
(Braun et al., 2015) and increased the expression of tight junctions and 
transforming growth factor beta (TGF-β; Sokovic Bajic et al., 2019) 
while decreasing IL-1β-mediated inflammation in vitro (Sokovic Bajic 
et al., 2019), providing a protective effect against the disruption of the 
intestinal barrier. GABA-producing bacteria are believed to modulate 
the gut microbiome and interact with the brain via GABAergic 
signaling via vagal afferent neurons (Pokusaeva et  al., 2017). The 
GABAergic system involves GABA receptors, neurons, and enzymes 
that regulate the immune system to release inflammatory cytokines and 
attenuate pain. The contribution of the GABAergic system in the 
pathogenesis of mood disorders is now well-recognized (Northoff and 
Sibille, 2014; Romeo et al., 2018). Additionally, probiotic bacteria can 
alter GABA receptor mRNA expression in the brain, which is associated 
with reduced anxiety and depression (Holzer and Farzi, 2014). 
Importantly, GABA has also been identified as an essential growth 
factor that solely can induce the growth of unculturable gut 
microorganisms (Strandwitz et al., 2019). Indeed, bacteria are known 

FIGURE 3

The role of microbially-produced B vitamins in CNS and gut microbiome.
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to both produce and consume GABA (Strandwitz et al., 2019). GABA 
consumption has been studied less than GABA production, however, 
Feehily and Karatzas (2013) found that GABA is converted to succinate 
for use in the TCA cycle (Feehily and Karatzas, 2013). Dover & Halpern 
also described GABA as a source of nitrogen and carbon in E. coli 
(Dover and Halpern, 1972). GABA-producing bacteria also could 
modulate the gut microbiome structure and metabolism. In our recent 
study, we  have shown the potential of Bifidobacterium animalis, 
Lactobacillus delbrueckii subsp. bulgaricus, and Streptococcus 
thermophilus, three GABA-producing bacteria, to promote gut health 
(Mousavi et  al., 2022). While these GABA-producing probiotic 
candidates had no change in gut microbiome diversity, ex-vivo 
supplementation induced an increase of the Bacteroidetes, a key gut 
population having anti-inflammatory properties (Mousavi et al., 2022). 
The relative abundance of Bacteroides, a major GABA-producing genus 
in the gut, was also negatively correlated with depression-associated 
brain signatures (Strandwitz et al., 2019), indicating a significant role 
of microbiota-derived GABA in brain functionality. Also, Bacteroides 
spp. were linked with higher levels of serotonin, and myoinositol, which 
is pivotal in maintaining signaling between the enteric and central 
nervous systems (Mudd et al., 2017). Likewise, Mason et al. (2020) have 
reported depletion of Bacteroides in depression and anxiety (Mason 
et  al., 2020). The oral administration of B. fragilis reduced gut 
permeability, microbiome dysbiosis, and several behavioral 
abnormalities in a mice model of autism spectrum disorder (ASD), 
thus highlighting the potential of microbial interventions for the 
treatment of gut microbiota-mediated neurological disorders (Hsiao 
et al., 2013).

Interestingly, Wang, J. et al. (2022) demonstrated that pollutants-
treated zebrafish could be  rescued from the disorder of intestinal 
peristalsis by using an exogenous treatment containing 100 μg/L of 
serotonin (5-hydroxytryptophan). They also suggested that 
Lactobacillus rhamnosus GG could normalize gut motility via 
increasing serotonin secretion (Wang, J. et al., 2022). It is estimated 
that 90–95% of the body’s serotonin is located within the 
gastrointestinal tract. The gut microbiome produces a significant 
amount of serotonin (Kelly et al., 2015). At the same time, these levels 
of serotonin affect the gut microbiome. Researchers found that 
increased levels of serotonin promote the colonization of gut bacteria. 
In other studies, dopamine and norepinephrine have also been shown 
to affect the gut microbiome. For instance, E. coli grows more rapidly 
when dopamine and norepinephrine are present. It also exhibits an 
increase in biofilm formation, motility, and virulence in the presence 
of norepinephrine (Yano et al., 2015; Strandwitz, 2016). In addition 
to the ability to produce histamine, gut bacteria could degrade it. It is 
important to note that if more histamine is produced than is 
degraded, this could create symptoms of histamine intolerance. 
Eventually, this results in gut inflammation (Shulpekova et al., 2021). 
Moreover, microorganisms that produce SCFAs in the gut have been 
demonstrated to suppress gut motility. These findings support the 
theory that the microbiome participate in gut motility regulation 
through gut-to-brain signaling (Kelly et al., 2015; Muller et al., 2020). 
The understanding of the effect of neuroactive compounds on gut 
microbiome composition and activity is still limited despite significant 
efforts. Some recent studies mentioned that serotonin has a quorum-
sensing effect on probiotic Enterococcus faecium NCIMB10415 and 
Campylobacter jejuni, a pathway that can modulate their behavior and 
subsequent interaction with the gut epithelium (Lyte et  al., 2021; 
Scardaci et al., 2022). Due to the critical role of gut microorganisms 

in the production of neuroactive compounds and mental health, 
further research in this area is necessary.

5. Transport mechanisms of gut 
microbiota-produced neuroactive 
metabolites to the brain

It has long been assumed that gut-produced neurotransmitters, such 
as GABA, are unlikely to cross the BBB, but the investigations that have 
built this paradigm are often conflicting and vary widely in their used 
methods (Boonstra et al., 2015). However, recent research points out 
that gut microbiota-derived neurometabolites may cross intestinal 
barriers and reach distal organs, such as the brain. A fecal transplant 
from lean to obese individuals illustrated such gut microbiome-host 
interplay, which resulted in increased plasma levels of GABA (Kootte 
et al., 2017). For instance, gut microbiota-derived GABA is potentially 
transported through different pathways to the brain. The intestinal 
GABA absorption may occur via the transcellular pathway with the 
support of the relevant carrier proteins, and Nacher et  al. (1994) 
reported that GABA could share a transporter with β-alanine in rat 
intestine models. GABA in the plasma can enter the BBB through 
GABA transporters such as GABA transporter types 1, 2, 3, and 4 
(GAT1, GAT2, GAT3, and GAT4, respectively), which are also widely 
distributed to other organs, including the liver and kidneys (Nacher 
et al., 1994). The plasma membrane GABA transporters in the brain play 
a crucial role in maintaining the extracellular GABA level around the 
synapse (Liu et al., 2015). The GABA transporter is an active voltage-
dependent system in which the inward electrochemical gradient of Na+ 
ions significantly affects the activity of the GABA transporter instead of 
ATP (Scimemi, 2014). Furthermore, the GABA transporter shows a 
weak micromolecular affinity to GABA molecules and requires Cl− ions 
in the extracellular matrix (Scimemi, 2014). Still, the exact transportation 
mechanism of GABA from the intestinal tract to the brain is not well 
understood. Likewise, most neurotransmitters, such as dopamine, 
norepinephrine, and acetylcholine, present in blood circulation cannot 
penetrate the BBB due to the absence of relevant transporters (Chen 
et al., 2021). However, the precursors of the above neurotransmitters, 
such as tyrosine and tryptophan, can penetrate BBB; thus, they can 
be  transferred to the corresponding cells and used to synthesize 
corresponding neurotransmitters in the brain.

The SCFAs produced by the gut microbiota-mediated fermentation 
of fiber are absorbed through the colonocytes via monocarboxylate 
transporters (MCTs) and sodium-coupled MCTs (SMCTs), which are 
known as active transport (Vijay and Morris, 2014). SCFAs are 
transported via MCT1 transporters in an H+-dependent (electroneutral 
manner), while they are also transported through the electrogenic and 
sodium-dependent SMCTs, known as SCFA anion transport (Stumpff, 
2018). Most SCFAs introduced into the colonocytes are metabolized by 
entering the citric acid cycle in the mitochondria to produce ATP and 
energy (Schönfeld and Wojtczak, 2016). However, some portions of 
SCFAs in the colonocytes are not metabolized, which leads to their 
introduction into the portal circulation, used as an energy source for 
hepatocytes, except for acetate, which is not metabolized in the liver 
(Schönfeld and Wojtczak, 2016). This indicates that only a limited 
amount of colon-derived SCFAs is allowed to enter the systemic 
circulation and other organs and tissues; namely, only 36, 9, and 2% of 
gut-derived acetate, propionate, and butyrate, respectively, reach the 
blood plasma and peripheral tissues (Boets et  al., 2015). 

https://doi.org/10.3389/fmicb.2023.1098412
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Miri et al. 10.3389/fmicb.2023.1098412

Frontiers in Microbiology 12 frontiersin.org

Bloemen et  al. (2009) reported that the respective average levels of 
acetate, propionate, and butyrate in the portal blood of humans were 
260, 30, and 30 μM (Bloemen et al., 2009). However, the penetration 
capacity of SCFAs in the BBB has not been well investigated to date, 
indicating that more research is needed to better understand the effects 
of gut microbiota-derived neuroactive metabolites on brain functions.

Recently, secreted microbiota extracellular vesicles (MEVs) have been 
proposed as a potential new carrier for the transportation of gut 
microbiota-derived neuroactive compounds to the brain (Sultan et al., 
2021, 2022; Figure 4). Accumulating evidence suggests that MEVs are 
significant mediators in the intercellular signaling mechanism that could 
be an integral part of microbiome-host communications (Sultan et al., 
2021). MEVs are small membrane-bound phospholipid vesicles that 
encase a spectrum of biologically active molecules (i.e., proteins, mRNA, 
miRNA, DNA, carbohydrates, and lipids) that protect them from lytic 

enzymes and RNases in the extracellular environment (Al-Nedawi et al., 
2015) and facilitate their horizontal transfer across both short and distant 
locations, such as the brain (Choi et al., 2015; Sultan et al., 2021). For 
instance, Akkermansia muciniphila-produced extracellular vesicles were 
reported to induce serotonin secretion in both the colon and 
hippocampus of mice, suggesting MEVs’ potential as signaling molecules 
in the gut–brain axis (Yaghoubfar et al., 2020). Besides, MEVs may cross 
intestinal barriers and reach distal organs, such as the liver and adipose 
tissues, inducing insulin resistance and glucose intolerance (Choi et al., 
2015). A reported increased level of systemic LPS-positive bacterial 
MEVs in humans with intestinal barrier dysfunction provides evidence 
of their capacity to reach the systemic circulation (Tulkens et al., 2020) 
and deliver and elicit various immunological and metabolic responses in 
different organs, including the brain. From another point of view, the 
phospholipid nature of MEVs itself may directly influence neuronal 

FIGURE 4

The transportation pathways of gut microbiota-derived neuroactive compounds to the brain. (A) Indirect transportation: gut microbiome regulates or 
induces host biosynthesis of neurotransmitters in cells like serotonin (5-HT) through tryptophan hydroxylase 1 (Tph1) or GABA through glutamate 
decarboxylase (GAD). (B) Microbial extracellular vesicle transportation: MEVs may bind to the cell receptor and deliver their contents to the host cell, 
activate a cell response, or be fully incorporated into the host cell’s cytoplasm. (C) Direct transport: Microbially modulated neurotransmitters could interact 
with receptors or circulate systemically to reach the blood–brain barrier.
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function under stress-related conditions (Donoso et  al., 2020). For 
instance, Lactiplantibacillus plantarum-secreted extra vesicles exhibited 
an antidepressant-like effect in chronic restraint stress-treated mice (Choi 
et al., 2019). MEVs released by Bacteroides fragilis contain GABA and its 
intermediates α-ketoglutarate and glutamate as part of their content 
(Zakharzhevskaya et al., 2017). MEVs containing neuroactive compounds 
from B. fragilis may explain the observation of a previous study that 
showed the oral administration of this bacteria reduced gut permeability, 
microbiome dysbiosis, and several behavioral abnormalities in a mice 
model of autism spectrum disorder (ASD; Hsiao et  al., 2013). Also, 
Bacteroides, a significant GABA-producing genus in the gut, was linked 
with higher levels of serotonin, and myoinositol, which is pivotal in 
maintaining signaling between the enteric and central nervous systems 
(Mudd et al., 2017). The relative abundance of Bacteroides was negatively 
correlated with depression-associated brain signatures (Strandwitz et al., 
2019), indicating a significant role of microbiome-secreted GABA in 
brain functionality. Likewise, Mason et al. (2020) have reported depletion 
of Bacteroides in depression and anxiety (Mason et al., 2020). Recently, 
metabolomics profiling of MEVs content isolated from human gut 
microbiome revealed presence of a wide array of embedded metabolites, 
including neurotransmitter-related compounds such as arachidonyl-
dopamine (NADA), gabapentin, glutamate and N-acylethanolamines 
(Sultan et  al., 2022). The same authors reported that gut Bacteroides 
isolates (B. finegoldii, B. faecis, and B. caccae) produce high GABA levels 
(4.5–7 mM range) in supernatants, and importantly, GABA was detected 
inside secreted microvesicles at 2.2–4 μM. Such vesicles can transfer their 
cargo to the host cells such as Caco-2, RIN14B, and hCMEC/D3 cells, 
which showed capacity to internalize labeled MEVs through an endocytic 
mechanism (Sultan et al., 2022). These results provided novel insights on 
the shuttle role of MEVs for neuroactive molecules to the brain as a new 
signaling mechanism in microbiota-gut-brain axis communications. 
MEVs should be considered of utmost importance as delivery vehicles for 
host neuroactive compounds to the intestinal mucosa and other organs 
in the body such as the brain, thus, affecting the host’s mental health.

6. Conclusion and future 
perspectives

One of the most intriguing and controversial topics in microbiome 
research is the relationship between gut microbial metabolism and 
mental health. Accumulating evidence showed that the gut microbiome 
produces a broad spectrum of neuroactive compounds, including 
neurotransmitters and their precursors, highlighting a potential 
involvement in neuroendocrinology-based mechanisms. One of the key 
challenges facing this field is the identification of neuroactive compounds 
originating from the host rather than the gut microbiome, which can 
be challenging due to complex biological communications between the 
gut microbiome and the brain. It is also difficult to determine the extent 
to which gut microbial metabolism directly influences central nervous 
system activity. This limitation may be attributed partly to the lack of a 
clear understanding of the general rate at which microbial molecules are 
transported into the brain. Indeed, the direct effects of microbial 
metabolites on the central nervous system function are difficult to 
distinguish from other communication pathways (such as immunological 
or neuronal pathways) that could confound in vivo studies. Some of these 
neuroactive compounds can travel through portal circulation to interact 
with the host’s enteric nervous system, influence metabolism, or affect 
local neuronal cells of the ENS and afferent pathways of the vagus nerve 
that signal directly to the brain. When neurotransmitters cannot pass the 

BBB, their bacterial precursors do (such as tyrosine and tryptophan); 
thus, they can be located in the corresponding cells and synthesized into 
neurotransmitters in the brain. However, recent studies highlighted that 
secreted microbiome extracellular vesicles are potential new carriers for 
the transportation of gut microbiota-derived neuroactive compounds to 
the brain. In addition, most of the studies focusing on these relationships 
have relied heavily on simplified animal models, which cannot 
adequately simulate the complexity of the mechanism of microbial-
produced neuroactive. Therefore, more studies on the mechanism, 
biosynthesis, absorption, and transportation of gut microbiota-derived 
neurotransmitters to the brain are needed. More analytical and statistical 
frameworks are needed to acquire and integrate multi-omics data types 
for a systematic approach to this extensively complex system. As 
described above, gut microbial neuroactive metabolites have various 
health-promoting effects. Despite recent research progress, multiple 
questions surrounding this field of gut neuromicrobiology remain 
unsolved. Indeed, there is a limited understanding of how gut microbes 
orchestrate the microbiome-gut-brain axis, a prerequisite for developing 
evidence-based microbiota-targeted interventions. Future research needs 
to progress from phenomenological studies to a mechanistic 
understanding of the microbiome-host dialogue and how these microbes 
impact host neurobiological functions. Future studies integrating 
metabolomic and metagenomic profiles with functional and behavioral 
outcomes will help us bridge this gulf of understanding toward 
translation into specific microbiota-targeted interventions. While further 
investigations remain necessary before the possibilities for evidence-
based therapeutic applications, this review provided an overview of the 
biosynthesis and transport of gut microbiome-derived neurotransmitters 
and their precursors and interplays with the microbiome-gut-brain axis.
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