
Frontiers in Microbiology 01 frontiersin.org

Linking niche size and 
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Bacteria provide ecosystem services (e.g., biogeochemical cycling) that regulate 
climate, purify water, and produce food and other commodities, yet their 
distribution and likely responses to change or intervention are difficult to predict. 
Using bacterial 16S rRNA gene surveys of 1,381 soil samples from the Biomes 
of Australian Soil Environment (BASE) dataset, we  were able to model relative 
abundances of soil bacterial taxonomic groups and describe bacterial niche space 
and optima. Hold out sample validated hypothetical causal networks (structural 
equation models; SEM) were able to predict the relative abundances of bacterial 
taxa from environmental data and elucidate soil bacterial niche space. By using 
explanatory SEM properties as indicators of microbial traits, we  successfully 
predicted soil bacterial response, and in turn potential ecosystem service 
response, to near-term expected changes in the Australian climate. The methods 
developed enable prediction of continental-scale changes in bacterial relative 
abundances, and demonstrate their utility in predicting changes in bacterial 
function and thereby ecosystem services. These capabilities will be strengthened 
in the future with growing genome-level data.
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Introduction

Soil bacteria provide ecosystem services that regulate climate, purify water, and produce 
food and other commodities. However, despite their central role in regulating terrestrial carbon 
dynamics, nutrient cycles, and plant productivity, much remains unknown about even general 
bacterial traits, including distributions, habitat preferences, and life histories (Fierer and Jackson, 
2006; Fierer, 2017; Delgado-Baquerizo et al., 2018). This deficiency limits opportunities to 
incorporate trait parameters into ecosystem and process models designed to predict responses 
to climate and land-use changes (Coles et al., 2017).

Some progress is, however, being made. Investigators have used drivers of bacterial 
community assembly and turnover (e.g., Hanson et al., 2012; Stegen et al., 2012; Nemergut et al., 
2013) to model how preferred niche space (the ecological space occupied by an organism) 
connects to bacterial spatial dispersal (Philippot et al., 2009; Koeppel and Wu, 2012; Barberán 
et  al., 2014). The link between niche and distribution arises from the interplay between 
organisms shared evolutionary history and the resulting correlations in functional traits (Losos, 
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2008; Barberán et al., 2014). Thus, exploring the processes that give 
rise to niche phylogenetic conservation may enable prediction of 
bacterial spatial distribution and ecosystem functioning from response 
traits of ecosystem members (for an example, see Barberán 
et al., 2014).

If niche preferences are phylogenetically conserved, they may 
interact with abiotic and biotic filtering mechanisms to result in 
patterns of phylogenetically clustered spatial distributions (Goberna 
et  al., 2014). Koeppel and Wu (2012), using categorical habitat 
definitions, suggest four possible hierarchical patterns of habitat 
association, where “parent” and “subtaxa” refer to the relative 
taxonomic level, e.g., “phylum” is the parent of the subtaxa “class” and 
“habitat association” refers to an affinity for a given habitat: (1) habitat 
association maintained among subtaxa, (2) parent taxa exhibit habitat 
association, but subtaxa do not, (3) habitat association not shared 
among subtaxa, or (4) parent has no habitat association, but subtaxa 
do. Simple continuous traits (e.g., activity at different temperatures) 
often exhibit weak phylogenetic signals, while binary (e.g., presence 
or absence of a metabolic pathway) and complex traits (e.g., abiotic 
stress or competition related) often demonstrate strong signals 
(Goberna and Verdú, 2015). Weak phylogenetic signals arising due to 
random events in the shallow phylogenetic tree may be less useful in 
predicting microbial distributions than traits conserved in deep 
divisions (Lu et al., 2016). For example, complex traits linked to abiotic 
filtering, such as pH optima, are likely conserved deep in the 
phylogenetic tree (Goberna and Verdú, 2015; Keck et  al., 2016b). 
Indeed, recent work has identified effects of abiotic factors, such as 
pH, on phylogenetic clustering, with neutral soils leading to 
phylogenetic dispersion (Tripathi et al., 2018).

Conserved responses to pH, carbon, moisture, and temperature 
shape diversity (Siciliano et al., 2014), functional gene distribution 
(Nelson et al., 2016), and enzyme activity (Waldrop et al., 2017) in soil 
microbial communities. In turn, climate and plant communities affect 
these soil parameters and combined climate, plant, and soil properties 
explain significant components of soil microbial composition 
(Tedersoo et  al., 2014; Maestre et  al., 2015; Slessarev et  al., 2016; 
Waldrop et al., 2017). These relationships allow investigators to model 
how bacteria respond to plants (Piper et al., 2015; Mamet et al., 2017), 
grazing (Philippot et  al., 2009), and aridity changes (Delgado-
Baquerizo et al., 2017). Researchers commonly model alpha and/or 
beta diversity when investigating drivers of microbial community 
structure, rather than taxonomic unit relative abundances, because a 
single descriptor is more statistically tractable. While redundancy 
analysis and correspondence analyses have been used to model 
community level responses, they have not been widely applied to 
individual taxa. Much information is lost, however, when the 
multitude of species present in a soil sample are reduced to a single 
number. Novel multivariate (Mamet et al., 2017) and geostatistical 
(Philippot et al., 2009) techniques can identify bacteria from complex 
communities for which specific models need to be created, however a 
broad-scale approach to modeling the relative abundances of soil 
bacteria is yet to be developed.

Given, (1) the clear importance of environmental parameters in 
explaining microbial diversity, (2) the phylogenetic signal associated 
with many microbial traits, and (3) the idea that selection generates 
an adaptive fit of organisms to their environment, we postulated that 
bacterial relative abundances can be modeled using climate, plant, and 
soil factors derived from structural equation models (SEM) as 

indicators of response traits (as defined by Suding et al., 2008 for 
plants, as the traits that allow organisms to respond to their 
environment). The community that will inhabit an environment, 
results from sorting processes among individuals with appropriate 
response traits. We, therefore, expect that these SEM derived links 
between bacterial relative abundance and environmental properties 
would be indicative of soil bacterial traits and niche preference, and 
path coefficients for these links could, therefore, be  treated as 
indicators of bacterial traits. The rationale for using an SEM-based 
approach is that it expressly addresses collinearity within a network of 
causal factors (see Grace, 2006) and outlines biologically plausible 
postulated causal links (unlike unstructured machine learning 
approaches which typically evaluate all possible links), allowing SEM 
to test mechanisms (for example Grace et al., 2016). Further, SEM can 
predict responses to diffuse global and local changes (sensu; Mason 
et al., 2014; Piper et al., 2015), which would allow policy makers to 
better understand how environmental changes may result in long term 
changes to bacterial communities and ecosystem services provision.

Bacterial relative abundance does not necessarily predict 
ecosystem service provision, due to historical contingencies (Evans 
and Wallenstein, 2014; Hawkes and Keitt, 2015), substrate availability, 
temperature, and competition. However, climate, plant, and soil 
parameters have successfully predicted enzyme activity in soil using 
microbial composition and SEM (Waldrop et  al., 2017). Using 
genomic models of bacterial functional prediction (e.g., PICRUST2; 
Langille et al., 2013) bacterial relative abundances can be linked to 
broad ecosystem functions (Eng and Borenstein, 2018; Mushinski 
et al., 2018). Here, we modeled bacterial relative abundances, across 
1,381 soil samples from the Biomes of Australian Soil Environment 
(BASE) dataset (Bissett et al., 2016) to describe bacterial niche space 
and the determinants of bacterial community structure in Australian 
soils. We  hypothesized that: (i) postulated causal networks could 
predict the relative abundance of bacterial taxa from environmental 
data at large scales, (ii) these networks would be indicative of the niche 
space inhabited by the bacteria modeled, and (iii) indicators of certain 
ecological response traits would display a phylogenetic signal. Further, 
to demonstrate the promise of these networks, we  linked them to 
climate change models to predict how soil bacteria, and in turn 
potential microbial function, may respond to short-term expected 
changes in the Australian climate.

Methods

Sample collection/data acquisition

Study site and bacterial diversity data
We used bacterial 16S rRNA gene amplicon data from 1,381 

samples contained in the publicly available Biomes of Australian Soil 
Environment (BASE) microbial database (Bissett et  al., 2016) to 
describe microbial niche space and determinants of bacterial 
distribution in Australian soils (Supplementary Table S1; 
Supplementary Figure S1). Full sampling and data generation methods 
are described in detail elsewhere (Bissett et al., 2016). Briefly, soils 
were collected as 9 cm × 10 cm deeps cores, across a 25 m × 25 m, and 
pooled to a single sample per site. Sites sampled covered 27 IBRA 7 
regions (Interim Biogeographic Regionalisation for Australia; https://
www.Environment.Gov.Au/land/nrs/science/ibra#ibra) and many 
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land-use categories, representing most key vegetation types (Native 
restoration sites and production landscapes, including orchards and 
cereal croplands). Approximately 50% of samples came from 
conservation reserves. Urban landscapes were not sampled. Genomic 
DNA was extracted in triplicate from each sample using Mobio Power 
Soil DNA extraction kits according to manufacturer’s instructions. 
Bacterial 16S rRNA gene (27F—519R; Lane et al., 1985; Lane, 1991) 
amplicons were sequenced using Illumina MiSeq (300 bp PE) and 97% 
sequence similarity operational taxonomic unit (OTU) tables 
generated using open OTU picking in the UPARSE software (Edgar, 
2013). Representative sequences were classified using the RDP 
classifier (Wang et al., 2007) and the Green Genes database (13_5), 
after which chloroplast and mitochondrial sequences were removed. 
The resultant OTU abundance table was rarefied at 22,500 reads per 
sample, to standardize per sample sampling effort, and corrected for 
16S rRNA gene copy number using copyrighter (Angly et al., 2014). 
All sequence data are available from the BASE data portal1 and from 
the Sequence Read Archive under NCBI bioproject ID PRJNA317932. 
R code to run the analyses below is available from the authors 
on request.

Environmental and physicochemical analyses
Edaphic data [soil pH, Organic Carbon, Ammonium, Nitrate, 

Phosphorus, Potassium, Sulfur, trace elements (Cu, Fe, Mn, and Zn), 
exchangeable cations (Mg, K, Na, and Ca), conductivity, and soil 
particle size] were collected as detailed in Bissett et al. (2016).

Present and future (2030 projections) climate data (mean annual 
temperature, total annual precipitation, and mean humidity) and plant 
productivity data (C3 megatherm and mesotherm to describe C3 
photsynthetic plants and C4 macrotherm to describe C4 plants, 
NDVI) were downloaded from climate spatial layers hosted by the 
Atlas of Living Australia’s spatial portal.2 The variation over these data 
captured by sample locations is shown in Supplementary Figure S64.

Structural equation modeling

We used SEM (Grace, 2006) to investigate a range of potential 
mechanisms underlying climate-vegetation-soil-microbial community 
relationships. Whereas a number of multivariate methods are largely 
descriptive and more appropriate for exploratory analyses, SEM is able 
to test a network of causal hypotheses and is recommended for 
evaluation of multivariate hypotheses (Grace, 2006; Grace et al., 2012). 
Specifically, we  used SEM because it allows the evaluation of 
simultaneous influences (for instance, humidity may influence 
bacterial relative abundance both directly and through altering 
vegetation characteristics) rather than individual causes (for example, 
humidity influences bacterial relative abundance only directly). The 
method is thus appropriate for establishing probable causality at the 
system (for example, climate-vegetation-soil-bacteria), rather than the 
individual level (for example, climate–bacteria). SEM relies on 
researcher specification of a network of a priori causal assumptions 

1 https://data.bioplatforms.com/organization/about/

australian-microbiome

2 https://spatial.ala.org.au/

based on a scientific body of evidence (for example, pH is an important 
driver of bacterial richness and not vice versa), and then testing 
whether that causal network is consistent with empirical data (Grace, 
2006; Lefcheck, 2016; Shipley, 2016). The postulated causal network 
gives rise to a series of linear equations, which in turn give rise to a 
modeled covariance matrix. The modeled covariance matrix is then 
compared with the observed covariance matrix arising from the data. 
A statistically acceptable congruence between the modeled (causal 
model implied) and observed covariance matrices is thus an empirical 
validation of the causal assumptions used. In other words, an SEM is 
an ecological theory describing a particular system, and if congruent 
with the data, the theory is supported. SEM is a well-established tool 
widely used in the sciences for testing causal inferences with 
correlative data sets; however, it is critically important that the causal 
assumptions made by the researchers be well-grounded in prior work, 
scientific knowledge, logical arguments, and/or other evidence. An 
SEM model that fits the data does not prove the causal assumptions 
used, but replication of a given model across many systems represents 
a very strong test of the underlying theory (Grace et al., 2012).

We built on the SEM (Grace, 2006) outlined in Siciliano et al. 
(2014), which utilized edaphic, climate, and spatial variables to explain 
soil bacterial diversity and community structure. To compare the 
relative strength of relationships within the SEM, we used standardized 
path coefficients. Unstandardized path coefficients reflect the expected 
(linear) change in the response with each unit change in the predictor, 
though are influenced by the unit of measurement of each variable 
which precludes direct comparison of coefficients within the model 
(Grace, 2006). In contrast, standardized path coefficients are expressed 
in equivalent units, regardless of the original measurements, so may 
be used to make inferences about the relative strength of relationships 
(Grace et  al., 2018). For example, two paths with a standardized 
coefficient of 0.6 are equivalent in terms of relative influence on the 
mean of the response. Herein, we limited exogenous variables to those 
available in future climate predictions: three edaphic variables (pH, 
conductivity, and organic matter); three climatic variables [maximum 
annual temperature (MAT), average humidity, and average 
precipitation]; and three vegetation variables (C3 macrothermal, C3 
mesothermal, and C4 megathermal plant coverages—see descriptions 
of these terms above). Note that organic carbon (OC) was dependent 
on conductivity, pH, humidity, precipitation, and C3 macrothermal 
plant abundance. Our decision to use an observed variable model, 
rather than a latent variable model (as per Siciliano et al., 2014), was 
based on the need to provide a transparent link between bacterial 
relative abundances and predicted changes in exogenous variables. 
Latent variable in SEM parlance refers to an unobserved variable that 
cannot be measured directly (e.g., intelligence), though an observed 
variable hypothesized to represent the unobserved (e.g., SAT scores) 
may be used in its place. In other words, we wanted to use tangible 
variables readily measurable in the real world that may link biotic and 
abiotic variables with bacterial relative abundance. Thus, when future 
climatic scenarios become available, the expected changes in bacterial 
relative abundances can be readily recalculated. Variances of select 
variables were adjusted by taking the log10 of conductivity, OC, 
humidity, precipitation, and C3 vegetation coverage to meet the 
linearity requirements of SEM.

We used several common goodness-of-fit measures to evaluate 
how well the SEM-estimated variance–covariance matrix matched the 
observed variance–covariance matrix (Grace and Keeley, 2006). The 
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Χ2 statistic from the SEM follows the Χ2-distribution and may be used 
to derive a confidence level in the SEM fit. Contrary to typical 
assessment of the Χ2 statistic, in SEM-parlance, failing to reject the 
null hypothesis that the Χ2 is different from 0 (i.e., perfect model fit) 
implies a generally good representation of the data (p > 0.05). 
Therefore, larger Χ2 statistics indicate a rejection of the null hypothesis 
(i.e., a large discrepancy between the observed and modeled variance–
covariance matrices; p < 0.05). Χ2 is affected by sample size. With larger 
sample sizes more likely to generate poor fit due to small absolute 
deviations. Therefore, Χ2 should be interpreted cautiously and with 
several other fit indices that attempt to correct for sample-size biases. 
For instance, the Comparative fit index (CFI) considers the deviation 
from the ‘null’ model and typically the null model estimates all 
variances but sets the covariance to zero. CFIs closer to one are 
considered a good model fit. The root-mean squared error of 
approximation (RMSEA) statistic penalizes models based on sample 
size (i.e., parsimony-adjusted). The standardized root mean square 
residual (SRMR) represents the difference between the residuals of the 
sample covariance matrix and the hypothesized model. SRMR and 
RMSEA values closer to zero represent good model fit.

Bacterial relative abundances were calculated at all levels of 
biological organization, however only class and phylum level relative 
abundances are discussed. SEMs were calculated for 57 phyla 
(CFI = 0.98, R2 = 0.24), 200 classes (0.98, 0.23), 416 orders (0.98, 0.21), 
676 families (0.98, 0.20), and 1,937 genera (0.98, 0.14) using MPlus 
version 8.3 (Muthén and Muthén, 2017). We evaluated the predictive 
accuracy of SEMs using a random sub-sampling of 1,000 samples and 
then predicting bacterial relative abundance for the remaining 381 
samples. Predictions were made using “fitted_lavaan” v. 0.6-11 in R 
(Rosseel, 2011; Siciliano et  al., 2014) and compared to observed 
bacterial relative abundances.

To evaluate bacterial phyla abundance responses along soil 
ecological gradients, we compared clustered SEM path coefficients to 
Huisman–Olff–Fresco (HOF) hierarchical regression models 
(Huisman et al., 1993). Standardized path coefficients of bacterial 
phyla links to climate, vegetation, and soil were hierarchically clustered 
into 10 groups based on Ward’s minimum variance method (Borcard 
et al., 2011). The optimal number of groups (10) was assessed on 
average silhouette width and misclassification. Extended eHOF 
models were used to calculate the niche space ranges and optima, 
where niche optimum was present for soil parameters.

It should be  noted that, as samples are typically separated at 
greater than km scale, our models assume limited geospatial 
dependency between samples. Structural Equation Models, by their 
very nature, assume deterministic processes dominate and are thus ill 
suited to stochastic modeling. While we acknowledge that stochastic 
processes are likely often important at some level in microbial 
community assembly, failure to incorporate them explicitly in the 
model does not make the model invalid, it merely constrains our 
ability to assign causation to stochastic process should the 
deterministic processes modeled not adequately explain the system 
under investigation.

Huisman–Olff–Fresco models

Huisman–Olff–Fresco hierarchical regression models (Huisman 
et al., 1993), as applied in the R package “eHOF” v.1.12 (Jansen et al., 

2013), were used to calculate niche optima, maximum, and minimum 
for each exogenous environmental variable linked to bacterial relative 
abundance. The best HOF model was identified with Akaike 
Information Criterion and boot strapping (n = 5) with a minimum 
occurrence value of 10 in a sample used to determine which samples 
were used in the regression model. Only those models showing an 
optimum, (Type I model is flat with no optimum) were analyzed 
further. Further, every model was visually inspected and those HOF 
models with two niche optima (i.e., Types VI, and VII), at the range 
edges (e.g., pH’s 4 or 10) were interpreted as indicating no optima. 
Niche edges were interpreted as the inflection point of the fitted curve.

Phylogenetic signal

It has been observed that traits of closely related organisms are 
often similar, particularly when these traits are under environmental 
selection pressure. The tendency for related organisms to display 
similar trait values as a consequence of their phylogenetic proximity 
is referred to as “phylogenetic signal” (Keck et al., 2016a). To visualize 
statistically significant conservation of edaphic traits (response to pH 
and conductivity) at the genera level, we calculated Local Indicators 
of Phylogenetic Association (LIPA) using the package “phylosignal” 
v.1.2 (Keck et al., 2016a). Only genera available in the Greengenes 
database (n = 1,431) and genera that occurred in more than 200 soil 
samples (n = 303, mean relative abundance of 0.0003 (>10,000 reads 
across all samples), and mean frequency of 465 samples out of 1,381) 
were analyzed. Phylogenetic trees were constructed by aligning 
sequences to the SILVA alignment (Pruesse et al., 2007; v128) using 
the SINA aligner (Pruesse et al., 2012) followed by manual curation. 
The phylogeny was then constructed by adding the short sequences to 
the SILVA tree using the ARB (Ludwig et  al., 2004) maximum 
parsimony method, resulting in a phylogeny congruent with the 
SILVA full 16S rRNA gene based phylogeny. LIPA is derived from a 
class of statistical tools used to analyze local spatial patterns called 
Local Indicators of Spatial Association (LISA). Within LISA, “Moran’s 
I” (Anselin, 1995) and Abouheif ’s C mean (Abouheif, 1999) are used 
to detect hotspots of positive and negative correlation. This same 
statistic, when applied to phylogenetic data (as LIPA), detects species 
with similar and different neighbors. We plotted traits and LIPA where 
p < 0.05, along with phylogeny.

Bacterial response to change

Input data used to impute responses to predicted change 
comprised the data describing current soil bacterial communities and 
predicted microbial relative abundances for future climate scenarios. 
Current data were prepared from the normalized OTU table described 
above. Microbial relative abundances under future climate, were 
predicted with coefficients of the climate-sensitive SEM (above) 
yielding predicted OTU relative abundances based on projected values 
of vegetation, climate, and soil. To estimate the change in relative 
abundance between present and future Cyanobacteria and Firmicutes 
distributions, we calculated ln-fold changes (“gtools” v.3.5.0 in R). To 
avoid infinite changes due to relative abundance values below 
detection limits (i.e., zero), we  replaced zero values with half the 
lowest current relative abundance of Cyanobacteria, class 
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Synechococcophycideae, and Firmicutes, class Bacilli 
(0.5*0.066 = 0.033). After calculating ln-fold changes, we  used 
ANUDEM interpolation to create spatial maps to visualize these 
changes (Hutchinson, 1989). ANUDEM takes irregular point data and 
creates square-grid surfaces at user-defined resolutions (0.2° here).

To visualize the predicted community level changes of all taxa, 
we  used Principal Coordinate Analysis (PCoA) on Bray-Curtis 
dissimilarities (BC) within the combined present and future microbial 
relative abundance matrix. PCoA produces orthogonal axes whose 
importance is measured by eigenvalues, and since it is based on a 
dissimilarity matrix (Borcard et  al., 2011), here it represents 
relationships among current and future microbial relative abundances. 
We calculated the difference between the first and second axes for 
current and future microbial distributions from the PCoA matrix, and 
used these data to determine the change in n-dimensional space 
between time-periods. We visualized changes microbial composition 
using the interpolation method described above. BC was computed 
using “vegan” v.2.4–2 (Oksanen et al., 2016) and PCoA using “ape” 
v.4.1 (Paradis et al., 2004).

Lastly, we investigated how community composition may change 
soil functional potential under the projected climate changes. We used 
imputed metagenomic analysis to predict KEGG Ortholog (KO) 
functional profiles using PICRUST (Langille et al., 2013). We then 
used these profiles to estimate relative abundance of CH4 cycling 
genes. For each (current and predicted) OTU matrix, OTU’s were 
given Greengenes (ver. 13.5) identifications as per PICRUST 
documentation. OTU’s without a Greengenes’ match were omitted 

(approx. 15% of OTUs). We acknowledge that functional assignment 
is only as good as the database and annotation available at the time of 
analysis and that future efforts will likely improve the reliability of 
modeled data. Functional prediction proceeded on the remaining 
OTUs according to the PICRUST documentation. Once we obtained 
current and future gene relative abundances, we performed a PCoA 
analysis on BC within the combined present and future metagenomics 
matrices. Changes in microbial composition and specific gene relative 
abundances were visualized as described above.

Results

Our postulated causal network, from 1,381 soils taken across the 
breadth of the Australian continent, was congruent with observed data 
(CFI ≈ 0.99, RMSEA ≈ 0.05 X, R2 ≈ 0.3, Figure  1A; 
Supplementary Figures S4–S60). Networks from 1,000 random 
samples successfully predicted bacterial relative abundance in the 381 
hold-out samples (Figure 1B). Using this framework, we interpolated 
the relative abundance of Proteobacteria across Australia (Figure 1C). 
In general, the strongest drivers of soil Proteobacteria relative 
abundance were vegetation type, with C4 Megathermal plants and C3 
Macrothermal plants having nearly equal, but opposite, effects on 
Proteobacteria relative abundance. Climate variables were all equally 
linked to Proteobacteria relative abundance, as were soil variables 
(Figure 1A). Other than C4 Megathermal plants, only conductivity 
was negatively linked to Proteobacteria relative abundance.

FIGURE 1

Structural equation model of Proteobacteria relative abundance across Australia. A SEM with nine endogenous and one exogenous variable was 
constructed and found congruent with the observations from 1,381 soil samples from across Australia. (A) The SEM model for the phylum 
Proteobacteria, see Supplementary Figures S1–S56 for SEMS of other phyla. Solid arrows represent significant relationships (p  <  0.05, dashed lines are 
non-significant) and the thickness of the arrow indicates the strength of the relationship, and the color indicates the origin of the path (blue  =  climate, 
green  =  vegetation, and brown  =  soil). Standardized path coefficients are shown next to each path. Standardized path coefficients can be interpreted as 
follows: if, for example, temperature increases by one standard deviation from the mean, then Proteobacterial relative abundance would increase by 
0.25 standard deviations from its own mean. (B) Evaluation of SEM predictive ability, using a SEM calibrated from 1,000 samples to predict 
Proteobacterial relative abundance across 381 not in the calibration data set, (C) Spatial dispersal of Australian Proteobacterial relative abundance in 
2016.
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FIGURE 2

Ternary diagram of relative influence of soil, vegetation, and climate on bacterial relative abundance at the phyla level. Path coefficients were 
calculated between each phyla and endogenous variables: soil properties (brown; OC, conductivity, and pH), vegetation characteristics (green; C3 
macrothermal plants, C3 mesothermal plants, and C4 megathermal plants), and climate (blue; maximum annual temperature, humidity, and 
precipitation). Relative influence of soil, vegetation, and climate is indicated by the thickness and contrast of the triangles along each axis (darker, 
thicker  =  greater influence; range from 0 to 100). Upper left: full ternary diagram with thick, dark triangle highlighting the region enlarged in the lower 
right. Point positions represent absolute values of standardized direct-path SEM coefficients scaled to sum to 100. For example, the Acidobacteria soil 
path coefficients were: OC  =  0.051, EC  =  −0.358, pH  =  −0.165, and the sum of all 9 was 3.689. Therefore: 
∑[(0.051/3.689)*100  +  (0.358/3.689)*100  +  (0.165/3.689)*100]  =  15.6. Doing the same for vegetation and climate yields 70.5 and 13.9, respectively, the 
sum of all three equates to 100—15.6  +  70.5  +  13.9—which equates to the ternary coordinates for Acidobacteria. Point sizes represent median relative 
abundance. Only phyla with a median relative abundance greater or equal to 1 across 1,381 samples are included here. Point colors correspond to the 
10 groups determined through hierarchical clustering (see Figure 3).

Structural equation models fits (Supplementary Figures S4–S60) 
were robust across many bacterial phyla, with CFIs that ranged 
between 0.972 and 0.996, Root Mean Square Error of Approximations 
(RMSEA) that remained at 0.050, and Standardized Root Mean Square 
Residuals (SRMR) at 0.002. The effects of soil, vegetation, and climate 
drivers varied across phyla (Figure 2), with coefficients of variation 
ranging from 400% for the link between MAT and phylum relative 
abundance, to 1,100% for the link between conductivity and phylum 
relative abundance (Table 1). Most phyla did not display a strong 
response to soil conductivity. Only Acidobacteria (standardized path 
coefficient of −0.33; SE = 0.02) and Verrucomicrobia (−0.15; 
SE = −0.01) displayed a strong negative response, while only 
Bacteroidetes (0.27; SE = 0.03), displayed a positive response. 
Acidobacteria preferred acidic soils (−0.26; SE = 0.04), but indices of 
vegetation composition were also large drivers of Acidobacteria 
relative abundance. Chloroflexi also preferred acidic soils, while the 
common phyla Actinobacteria and Gemmatimonaedetes preferred 
alkaline soils. Unlike Acidobacteria, Actinobacteria did not display 
strong links to vegetation and instead preferred low precipitation. The 
Actinobacteria link to precipitation was of an equal, but opposite, 

magnitude to that observed for Proteobacteria. Firmicutes also 
showed strong negative links to both precipitation and OC. In general, 
phyla were linked to either climate and a soil factor, or climate and a 
vegetation factor.

A consistent group of bacteria were highly responsive to climatic, 
compared to vegetation parameters (Supplementary Table S2). For 
example, seven bacterial classes that were consistently in the top 15 of 
200, were responsive to MAT, humidity, and precipitation (Phylum in 
parentheses): Chloracidobacteria (Acidobacteria), Actinobacteria 
(Acidobacteria), Chthonomonadetes (Armatimonadetes), Gitt.GS.136 
(Chloroflexi), Nitrospira (Nitrospirae), Betaproteobacteria 
(Proteobacteria), and Deltaproteobacteria (Proteobacteria). However, 
we  would note that in general the importance of direct links on 
bacterial relative abundance descended from vegetation to climate 
to soil.

Clustering of phyla based on all nine direct links between climate, 
vegetation, and soil variables modeled using SEM formed 10 groups 
based on their combined environmental traits (Figure 3). SEM derived 
associations between environmental variables and relative abundances 
were often congruent with eHOF calculated niche widths and optima. 
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For example, Bacteroidetes showed positive associations with soil 
conductivity, pH and a weak negative association with soil OC 
(Table 1), all of which are reflected in modeled niche space (Figure 3). 
This was not always the case, however, and often no optima could 
be determined. In such cases, the relationship between the variable 
and microbial relative abundance was either linear (increasing or 
decreasing) or no relationship was apparent (for example, 
Supplementary Figures S2, S3). Similar results were observed for 
eHOF models of climate drivers (Supplementary Figure S4).

Highly abundant taxa and phylogenetically broad taxa, such as 
Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia 
often exhibited wide niche spaces encompassing the majority of the 
range of normal soils, though within those ranges clear optima were 
frequently evident. Occasionally, despite being present in the majority 
of soils, phyla exhibited very defined niches for specific edaphic 
factors, for example Actinobacteria and conductivity (Figure  3; 
Supplementary Figure S3). Niche space was congruent down 
taxonomic ranks to varying degrees. Bacterial classes within a phylum 
with a defined niche space were consistent with the phylum, whereas 
classes within a phylum without a defined niche space, variably 
exhibited a defined niche space. For example, the phylum 
Actinobacteria had a niche optimum for salinity of “Very Saline” 
(1.6 dS m−1). Actinobacterial sub-taxa (classes) all showed defined 
salinity niche optima varying from the Highly Saline (3.5 dS m−1, 
Acidimicrobia and A. OPB41) to the Slightly Saline (0.5 dS m−1 for 
A. actinobacteria). In contrast, the phylum Verrucomicrobia had no 
defined salinity optimum nor did five of the six sub-taxa classes, with 
only Opitutae showing an optimum of “Moderately Saline” (0.98 dS 
m−1). Similar, classes in Verrucomicrobia that did not have a clearly 
defined niche for a particular environmental variable did not have a 
niche at the sub-taxa order level, and ones that did, i.e., Opitutae, 

continued to have niche consistency at this sub-taxa level. For 
example, Methylacidiphilae did not have a niche optimum for salinity 
nor did the four orders contained within this class. In contrast, all of 
the orders within Opitutae exhibited defined saline niches, except 
Opitutae HA64 which was too rare to reliably estimate a 
niche optimum.

Structural equation model coefficients had global phylogenetic 
signals (p < 0.01) for soil (conductivity and pH) and climate (MAT) 
with Abouheif ’s Cmean of 0.18 for conductivity, 0.11 for pH, and 0.06 
for MAT (Supplementary Table S3). Vegetation drivers had weak and 
non-significant phylogenetic signals, as did the other climate drivers. 
Two key soil variables, conductivity and pH, differed greatly among 
genera and showed strong local areas of phylogenetic conservation or 
divergence (Figure 4). Phyla such as Acidobacteria and Actinobacteria 
had areas of conservation and divergence within their subtaxa. Salinity 
responses within 21 different Actinobacteria genera were locally 
phylogenetically conserved, although the nature of the response 
depended on the class, with Actinobacteria displaying a 
phylogenetically conserved (LIPA = 0.02) negative response to salinity 
(path = −52, stdev = 21). In comparison, Actinobacteria and 
Acidimicrobiia displayed a phylogenetically conserved (LIPA = 0.21) 
positive response to salinity (path = 300, stdev = 230).

Using 2030 climate prediction scenarios for the sample locations, 
we  predicted significant climate change driven shifts in microbial 
community structure and function, likely driven by the responses of a 
few key microbial ecotypes (Figure  5). For example, we  predict 
considerable changes in Synechococcophycideae relative abundance 
patterns across Australian soils (Poisson regression: β = 2.98, 
F1,1807 = 117.74, p < 0.001; Figure 5A). Synechococcophycideae relative 
abundance increases are projected to be greatest in Queensland, New 
South Wales, Victoria, South Australia, and eastern Tasmania, whereas 

TABLE 1 Phylum characteristics.

Sum Percent Median Occurrence Conduc�vity pH Organic Carbon C3 Macro C3 Meso C4 Mega Temperature Humidity Precipita�on
Proteobacteria 4.38E+06 26 3157 100 -0.08 0.11 0.07 0.28 0.01 -0.46 0.80 0.24 2.41
Acidobacteria 4.09E+06 24 2755 100 -0.33 -0.26 0.04 0.57 -0.17 -0.55 -0.47 0.15 1.16
Ac�nobacteria 3.91E+06 23 2277 100 0.07 0.44 -0.03 -0.44 0.10 0.43 0.40 -0.16 -2.75
Chloroflexi 8.13E+05 4.8 420 100 0.05 -0.44 -0.06 0.70 -0.64 -0.76 1.51 0.02 0.57
Verrucomicrobia 7.59E+05 4.5 408 100 -0.15 -0.04 -0.05 -0.15 0.20 0.23 -1.48 0.00 -0.27
Planctomycetes 5.69E+05 3.4 386 100 -0.04 0.04 0.09 0.28 -0.12 -0.30 -0.25 0.09 0.79
Gemma�monadetes 5.97E+05 3.5 308 100 0.04 0.46 -0.01 -0.15 0.07 0.20 -0.72 -0.10 -0.62
Bacteroidetes 6.09E+05 3.6 235 100 0.27 0.31 -0.02 -0.42 0.28 0.48 -1.21 -0.26 -0.69
Firmicutes 2.67E+05 1.6 100 99 -0.06 0.37 0.17 -1.00 0.54 1.21 -0.18 0.18 -2.87
Nitrospirae 1.99E+05 1.2 66 94 0.01 0.02 0.01 0.03 0.00 -0.02 -0.01 0.00 0.00
Arma�monadetes 7.54E+04 0.45 43 96 -0.10 -0.08 0.02 0.10 -0.03 -0.07 -0.08 -0.01 -1.39
Cyanobacteria 1.81E+05 1.1 21 100 -0.03 -0.09 -0.10 -0.32 0.24 0.44 -0.73 -0.23 -2.09
TM7 4.67E+04 0.28 21 99 -0.01 -0.01 -0.02 -0.22 0.19 0.24 -0.17 -0.04 -0.40
TM6 3.42E+04 0.20 13 95 -0.01 -0.02 -0.01 0.12 -0.01 -0.14 -0.10 0.04 0.45
Elusimicrobia 2.19E+04 0.13 9 88 -0.03 -0.02 0.01 0.08 -0.01 -0.08 -0.11 0.04 0.15
WPS.2 8.55E+04 0.51 9 88 -0.01 -0.51 -0.02 -0.13 0.15 0.14 0.20 -0.06 -0.52
OD1 1.43E+04 0.08 6 92 -0.03 0.00 0.00 -0.09 0.12 0.12 -0.22 -0.03 -0.44
AD3 8.33E+04 0.49 5 72 -0.07 -0.36 -0.09 0.14 -0.28 -0.17 0.84 0.11 1.12
Chlorobi 2.83E+04 0.17 5 77 0.02 0.05 0.01 -0.03 0.02 0.06 -0.31 -0.04 -0.05
FBP 2.21E+04 0.13 3 76 -0.01 0.04 -0.03 -0.11 0.07 0.15 -0.44 -0.10 -0.88
Tenericutes 6.23E+03 0.04 1 57 -0.02 0.02 0.01 -0.13 0.08 0.15 -0.06 0.01 -0.10
OP3 4.80E+03 0.03 1 58 -0.01 -0.03 -0.01 -0.01 0.03 0.00 0.02 0.02 0.20
BRC1 5.19E+03 0.03 1 66 0.02 0.07 -0.01 -0.06 0.02 0.07 -0.09 -0.02 0.20
Fibrobacteres 5.29E+03 0.03 1 59 -0.01 0.05 0.03 -0.06 0.04 0.09 -0.23 0.00 -0.37
GN02 1.86E+03 0.01 0 53 0.00 0.03 0.00 -0.03 0.03 0.04 -0.10 0.00 -0.11
AC1 8.74E+01 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Aquificae 3.70E+02 0.00 0 1 0.00 0.01 0.00 0.01 0.00 -0.01 -0.01 0.00 -0.04
Caldiserica 4.72E-01 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Caldithrix 9.93E+02 0.01 0 1 0.01 0.00 0.01 -0.02 0.02 0.02 0.10 0.00 0.07
Caldithrix* 1.13E+03 0.01 0 3 0.02 -0.01 0.00 -0.01 0.01 0.01 -0.02 0.00 -0.06
FCPU426 1.65E+03 0.01 0 30 0.00 -0.03 0.00 0.07 -0.02 -0.07 -0.04 0.01 0.16
Fusobacteria 2.83E+01 0.00 0 2 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
GAL15 9.17E+03 0.05 0 27 -0.02 0.00 -0.01 -0.10 -0.01 0.15 0.05 0.01 0.31
GN04 3.37E+02 0.00 0 2 0.01 0.00 0.00 0.01 0.00 -0.01 -0.01 0.00 0.03
GOUTA4 1.37E+02 0.00 0 3 0.00 0.00 0.00 -0.01 0.01 0.01 -0.01 0.00 -0.01
Kazan.3B.28 1.22E+01 0.00 0 1 -0.10 0.32 0.05 0.31 -0.17 -0.32 0.26 0.06 0.58
Len�s 1.91E+02 0.00 0 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MVP.21 1.41E+03 0.01 0 45 0.01 0.00 0.00 -0.02 0.01 0.03 -0.01 0.00 -0.07
NC10 6.23E+03 0.04 0 12 0.00 0.03 0.00 -0.02 0.01 0.02 0.01 0.00 -0.01
NKB19 3.46E+02 0.00 0 19 0.01 0.00 0.00 -0.02 0.02 0.02 -0.02 0.00 -0.06
OP1 1.07E+03 0.01 0 1 0.02 -0.02 0.00 -0.03 0.02 0.04 -0.05 0.00 -0.24
OP11 1.23E+03 0.01 0 37 -0.01 0.01 0.00 -0.02 0.02 0.02 -0.05 0.00 -0.02
OP8 6.44E+01 0.00 0 0 0.00 0.00 0.00 0.01 0.00 -0.01 0.00 0.00 0.01
PAUC34f 5.68E+01 0.00 0 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.02
SAR406 1.01E+02 0.00 0 1 0.01 0.00 0.00 0.00 0.00 0.00 -0.01 0.00 -0.04
SBR1093 2.54E+03 0.02 0 11 0.03 -0.01 0.00 0.01 -0.01 0.00 -0.01 0.01 0.08
SC4 7.22E+00 0.00 0 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Spirochaetes 3.03E+03 0.02 0 21 0.03 -0.03 0.01 0.03 -0.02 -0.03 -0.05 0.01 0.06
SR1 7.23E+01 0.00 0 6 0.00 0.00 0.00 -0.01 0.01 0.01 -0.01 0.00 -0.02
Thermi 2.86E+04 0.17 0 43 0.07 0.02 -0.08 -0.13 0.07 0.16 -0.42 -0.13 -0.22
TPD.58 8.69E+00 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
WS1 8.02E-01 0.00 0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WS2 1.21E+03 0.01 0 42 -0.01 0.05 0.01 -0.03 0.02 0.04 -0.09 0.00 -0.16
WS3 9.87E+03 0.06 0 49 -0.04 0.10 0.02 0.13 -0.06 -0.16 0.13 0.03 0.62
WS4 7.74E+01 0.00 0 5 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.04
WS5 6.45E+01 0.00 0 2 0.00 0.00 0.00 -0.03 0.02 0.03 -0.01 0.00 -0.02
ZB3 2.96E+00 0.00 0 0 0.00 0.00 0.00 -0.05 0.02 0.05 0.03 0.00 0.09

Abundance of Phylum Soil Determinants Vegeta�on Determinants Climate DeterminantsPhylum
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Western Australia and the Northern Territory will experience a mix of 
increases and decreases. These changes are largely driven by changes in 
the climate related factors humidity, temperature and precipitation. 
Photosynthetic cyanobacteria from soils have been shown to prefer arid, 
low organic matter conditions (Cano-Díaz et al., 2019). These conditions 
are expected to increase in the regions of increased predicted 
Synechococcophycideae relative abundance in our models. Relative to 
Synechococcophycideae, Bacilli relative abundances show less change 
under 2030 climate predictions (β = 1.29, F1,2057 = 307.80, p < 0.001; 
Figure 5B). Given Bacilli are spore forming organisms and able to resist 
unfavorable conditions, it was expected that changes in their relative 
abundance would be less evident over the short time frame of our future 
predictions. Indeed the model results show little effects of climate and 
edaphic factors on Bacilli numbers, which responded only to changes in 
overlying plant community, changes to which are expected to be relatively 
small compared to changing climate in the coming decade. Changes 
predicted for these bacterial classes reflect the relative strength of the 
climate drivers of Synechococcophycideae relative abundance, which 
include MAT (−0.22 standardized path coefficient), humidity (−0.46), 
and precipitation (−0.21) compared to weaker effects from vegetation 
[C3 Macrothermal plants: 0.03, C3 Mesothermal plants: 0.06, and C4 
Megathermal plants (0.19), and soil factors (Conductivity: −0.08, pH: 
−0.03, and OC: −0.12)]. In contrast, predicted changes in Firmicutes 
Bacilli relative abundance were much smaller and driven by vegetation 
[C3 Macrothermal plants: −2.8, C3 Mesothermal plants: 0.74, and C4 
Megathermal plants (2.9), compared to climate (temperature: −0.22, 
humidity: 0.00 and precipitation: −0.37) and soil factors (Conductivity: 
−0.01, pH: 0.11, and OC: 0.11)].

Combining 2030 predictions across taxa suggests that there will 
be  non-significant changes in overall community composition 
(one-sample t-test: t1380 = 0.04, p = 0.52), as indicated by PCoA analyses 
of Percentage Difference (alias Bray-Curtis), though there were limited 
“hot spots” of change scattered around the coastal regions of Australia 
(Figure  5C). Relative abundance changed 5.2% (Standard 
deviation = 2.6% across 297 OTUs) between 2016 and 2030 for the 297 
OTUs with relative abundances greater than 0.0003 per gram of soil, 
which was similar to the 6.6% (Standard deviation = 9.1%) change 
across the 2,284 OTUs with relative abundances between 1,000 and 
10,000 per gram of soil.

Finally, using phylogenetic reconstruction methods (PICRUST) 
with our 2030 relative abundance predictions, we suggest the potential 
for relatively large changes in methane metabolism functional 
potential across the Australian continent. Comparison of shotgun 
metagenomic methane metabolism gene data for 370 of the 1,381 
samples used in this study and methane metabolism genes predicted 
by PICRUSt in the same samples showed high congruence 
(Supplementary Figure S63).

Discussion

Soil bacterial community structure and ecosystem function 
change with both natural and experimental perturbations and many 
soil, climate, and stochastic drivers of change have been identified 
(Bissett et  al., 2010; Siciliano et  al., 2014; Fierer, 2017; Delgado-
Baquerizo et al., 2018). Utilizing this knowledge to predict bacterial 

FIGURE 3

Clustering of soil, vegetation and climate drivers of bacterial relative abundances and links to soil niche space of bacterial genera. Standardized path 
coefficients of bacterial links to temperature, humidity, precipitation, C3 mesothermal plants, C3 macrothermal plants, C4 megathermal plants, OC, 
conductivity, and pH were associated based on Euclidean distance and then hierarchically clustered into 10 groups (represented by colored boxes) 
based on Ward’s minimum variance method. Extended Huisman-Olff-Fresco models were used to calculate the niche space ranges (solid lines), niche 
optimum (closed circles) where niche optimum was present for soil parameters. A continuous dashed line indicates a phylum for which a niche 
optimum was not detected.
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community structure and relative abundances has proven difficult, 
however. Herein, we used continental scale SEMs that incorporate 
components of climate, vegetation, and edaphic properties to 
successfully model bacterial relative abundances in Australian soils by 
defining environmental niche spaces. We then applied these models 
to predict soil bacterial relative abundances under future climate 
scenarios, revealing localized hotspots of climate driven change.

Identification of phylogenetically relevant indicators of bacterial 
relative abundance response traits—environmental driver 
relationships quantified as SEM path coefficients—provides a novel 
set of indications of bacterial response traits for environmental 
predictions. We demonstrate that the SEM links derived from models 
are largely consistent with other methods of analysis, such as niche 
optima, and often display phylogenetic signal and conservancy. Thus, 
it is reasonable to consider SEM links as indicators of response traits 
(Suding et al., 2008) defining organism niche space. Importantly, those 
trait indicators most important in our models (e.g., those associated 
with salinity, pH, and water availability) likely have complex genetic 
underpinnings (Evans and Wallenstein, 2014; Barberán et al., 2017).

We utilized projected environmental conditions for 2030 to 
demonstrate the utility of using response traits derived from SEM 
links among climate, vegetation, and soil to predict potential changes 
in bacterial relative abundance and ecosystem function. The principal 
drivers in our predicted shifts in specific taxa (Figures 5A,B), bacterial 
dispersal (Figure 5C), and potential methane metabolism gene relative 
abundance changes (Figure 5D) depended on variations in climate, 
edaphic and associated vegetation changes. While the imputation of 
bacterial function from taxonomic information is not without caveats 
(Louca et al., 2018), we chose to show results for a function for which 
we had strong independent support for the validity of the imputed 
results (Supplementary Figure S63). Analysis of shotgun metagenomic 
data for 374 of the soil samples used herein showed high congruence 
with PICRUST imputed results. We  were able to make similar 
predictions for other environmentally significant functions, but the 
robustness of these predictions does depend upon the validity of the 
other models on which they are based (e.g., climate and functional 
attribution models). These shortcomings do not, in our opinion, 
negate the opportunities created by these models, but do draw 
attention to the importance of understanding the underlying models 
and data being used. Australian soils have been shown to be important 
sinks for methane (Livesley et al., 2009; Bissett et al., 2011; Fest et al., 
2017), and the majority (92%) of genes predicted to be involved in the 
methane metabolism pathway in these soils were associated with 
methane oxidation. The predicted changes to methane metabolism 
associated genes occur as hotspots of change at the continental scale, 
associated with predicted changes in aridity and plant productivity. 
These predicted changes concur with previous work that has shown 
methane oxidation activity is influenced by moisture (Fest et al., 2017) 
and that methane oxidisers have exhibited niche partitioning across 
salinity and moisture gradients in Australian soils (Bissett et al., 2011), 
and support the utilization of our modeling approach to identify 
environmental processes likely to influenced by change.

The responses of individual taxa were taxa dependent, with 
Synechococcophycideae showing localized hotspots of response, 
which may have important effects on soil structure and N fixation in 
these areas. Bacilli, on the other hand, showed less response, perhaps 
a reflection of specific lifestyle traits, such as spore forming ability 
(Bissett et al., 2010), which may confer resilience to the relatively short 

term changes modeled here. The ability to predict hotspots of response 
to change also identifies areas of likely high value in programs seeking 
to monitor and understand likely responses of bacteria and their 
ecosystem functions to change. The dominance of direct climate 
drivers and indirect climate-vegetation drivers are likely due to the 
relatively short timeframe of our forward predictions (~12 years to 
2030). The potential response of bacterial communities to 
precipitation, MAT, and humidity is likely rapid, whereas vegetation 
changes will likely lag by some years behind climate (Corlett and 
Westcott, 2013; Ash et al., 2017). Soil properties (e.g., pH, OC) will 
likely have long time lags before climate impacts become evident. The 
ability to associate changes in these environmental factors with 
bacterial relative abundances and to infer, in this case, the likely effect 
on functional gene dispersal, will be  useful for the prediction of 
potential environmental function and the incorporation of microbial 
information into ecosystem models (Coles et al., 2017). Community 
responses to perturbation will likely be  driven by both the 
environmental niche preferences of organisms, and by within-
community dynamics (Evans and Wallenstein, 2014). The models 
presented are only able to predict responses based on environmental 
change; including competitive and other interactions among OTUs 
and incorporating other microbial interactions (e.g., Fungal-Bacterial 
interrelationships) into the SEM models (e.g., Mamet et al., 2017) will 
enable stronger predictions of potential soil function under a 
changing climate.

Predictions of niche space and optima were dependent on 
taxonomic level, and were not always congruent through subtaxa or 
with SEM path coefficients (Figure 2; Table 1). These results support the 
ecological coherence patterns 1, 3, and 4 described in the introduction 
(Koeppel and Wu, 2012). While it is more difficult to define and observe 
these patterns with continuous, rather than binary, habitat data (e.g., 
pH, salinity, etc.), conceptually at least we  have identified various 
combinations of these patterns in our niche modeling. Generally, once 
a habitat association was defined, subtaxa continued to exhibit the 
association, lending support for all of the above patterns except 2, where 
parent taxa show an association, but subtaxa do not. We additionally 
found cases where both parent and subtaxa did not show an association 
with the habitat variables presented. It seems likely that the taxonomic 
level at which habitat associations become evident is related to the 
diversity within the taxon in question. The Proteobacteria and the 
Verrucomicrobia, for example, are very diverse phyla and it not 
surprising that they do not exhibit clear patterns of habitat association 
at the phylum level, but often did at higher taxonomic resolution, e.g., 
at the Class level, Proteobacteria did begin to exhibit more defined niche 
preferences. Presently much soil microbial data is presented either at 
relatively course taxonomic levels or grouped to indicate categorical 
habitat associations (e.g., Delgado-Baquerizo et al., 2018), a necessity 
given the sparse observations available for many individual taxa at finer 
taxonomic resolution. This situation is likely to change as more 
observations become available and models such as those presented here 
will help define likely useful starting taxonomic resolutions to more 
firmly assign associations. The benefits of working at higher resolution, 
once enough observations are available is evidenced, for example, in 
efforts to characterize ecotypes of marine Prochlorococcus and SAR11 
(Brown et al., 2012; Kashtan et al., 2014), something not yet achieved 
in soils.

The inability to define niche width and/or optima does not imply 
no association with environmental traits, merely that there were no 

https://doi.org/10.3389/fmicb.2023.1097909
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Bissett et al. 10.3389/fmicb.2023.1097909

Frontiers in Microbiology 10 frontiersin.org

inflection points in the relative abundances across the range of that 
environmental factor in the soils studied. For example, Acidobacteria 
showed nearly linear, negative, relationships with pH and conductivity 
(Supplementary Figure S2), but because they were ubiquitous across all 
pH and conductivity conditions and no distribution inflection points 
were found (compare with Actinobacteria and conductivity; 
Supplementary Figure S3) it was not possible to define a phylum level 
niche space for these organisms. These patterns were observed for both 
edaphic and climate related variables; for example, Bacteroidetes 
showed strong negative relationships with temperature and humidity, 
but no defined optima. The strong association of these phyla with 
predictor variables did, however, allow successful prediction of their 
relative abundances.

Many currently poorly defined phyla (e.g., candidate phyla) were 
present in >50% of our samples and our models suggest their 
preferred habitat associations and distributional drivers. The reduced 
genome, putative symbiotic phyla in TM6, TM7, and Elusimicrobia 
were found in >88% of soils and while they often did not display 
habitat optima for edaphic drivers they showed high associations 
with plant drivers. The WPS2 and AD3, recently suggested to 
be  ecologically important in Antarctic oligotrophic soils by 
scavenging atmospheric trace gases (Ji et  al., 2016), were also 
prevalent in Australian soils (88 and 72% of samples respectively) and 
showed preferences for lower pH, low OC, dryer, and warmer soils. 
Their high prevalence and association with many warm soils suggest 
they are likely to be important in nutrient depleted soils globally and 
not restricted to polar habitats. The relationships of bacterial phyla 
with edaphic, climate and vegetation variables in Figures 2, 4 allow 
estimations of habitat preferences for cryptic and difficult to culture 
phyla and their potential to extend and investigate their putative 

ranges. Our statistical approach thus provides a novel method for 
understanding the environmental preferences and likely ranges of 
cryptic phylotypes. Such information will enhance both cultivation 
efforts and opportunities to “capture” population genomes (Hug 
et al., 2016; Parks et al., 2017). Extending this approach to lower 
taxonomic levels in continental-scale datasets provides a way to 
generate OTU-level habitat-preference summaries for the large 
numbers of currently uncharacterized organisms. In turn this will 
enable a better predictive understanding of how soil bacterial 
communities assemble and variation in their functional potential 
across space, time, and in response to anthropogenic change.

The SEM diagrams represent aggregate responses of complex 
bacterial systems to abiotic drivers, and as such, it is not surprising that 
many of these links were relatively weak or weakly significant (p < 0.05). 
Simple, continuous traits are less likely to be strongly phylogenetically 
conserved (Goberna and Verdú, 2015) and, given the relatively coarse 
phylogenetic resolution used in our models, the weak signal from some 
continuous environmental variables was expected. One of the problems 
facing microbial ecology is the increasing size of the phylogenetic and 
niche space being interrogated. The models we present require reasonable 
levels of environmental trait conservatism at the various resolutions used, 
though it is likely that there is also valuable information regarding soil 
microbial distributions that is not resolvable using coarse taxonomic 
groups, but rather requires detailed information regarding microbial 
ecotypes (for example Kashtan et al., 2014). Weak signals in our models 
can thus be  interpreted as evidence for either a diversity of bacteria-
environment responses that may be  detectable at finer phylogenetic 
resolutions, or of an environmental driver that is generally unimportant 
for the phylotype in question. As larger integrated datasets (providing 
more observations in time and space) are assembled at higher taxonomic 

FIGURE 4

Microbial functional traits related to soil salinity and pH are more commonly shared among related taxa. (A) Standardized path coefficients (bars) 
between salinity and pH of the SEM model presented in Figure 1 applied to genus level relative abundances that displayed significant local areas of 
phylogenetic association are displayed in color, gray indicates no significant phylogenetic associations. Branch tips with no associated bar were 
present in less than 200 samples and were therefore excluded. (B) Local areas of phylogenetic conservation or dispersion significantly different from 
zero for all genera present in more than 200 samples (p  <  0.05). Points indicate local Moran’s I for each genus for salinity (inner ring) or pH (outer-ring). 
Points on the ring  =  0, points outside that vary in value (>0–1) and are indicated approximately by the scale indicators for salinity and pH. Bars, points, 
and de novo trees are color-coded according to phylum.
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resolution, the application of predictive models to specific microbial taxa 
and functions will become more practical. In order to have enough 
observations the models we present are largely limited to high taxonomic 
ranks (e.g., phylum), a situation likely to change as larger, coordinated 
datasets are assembled (Bissett et al., 2016; Thompson et al., 2017).

The models we have employed are able to predict continental-scale 
changes in bacterial relative abundances by utilizing indicators of response 
traits (model coefficients). The application of these models has been 
shown in their utility in predicting changes in potential function, and by 
extension ecosystem services. The reliability of these predictions is 
dependent on the validity of the future climate and edaphic models used 
to predict future scenarios, as well as the sequence data used herein. Both 
of which will be strengthened in the future with growing genome-level 
sequence data and more robust future environmental predictions. 
Bacteria are key regulators of biogeochemical cycles at both local and 
global scales, thus understanding their responses to environmental 
perturbation is important in predicting and managing change. We provide 
postulated causal networks able to predict bacterial relative abundances 
and niche preference across large scales. Using model derived coefficients 

as microbial traits allows prediction and understanding of microbial 
response to change, identifies likely hotspots of change and vulnerability 
and enables more targeted attempts to culture and isolate cryptic and 
difficult to culture organisms.
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FIGURE 5

Changes in key microbial community composition and ecological function across Australia from 2016 to 2030. (A,B) ln-fold changes in Cyanobacteria 
Synechococcophycideae and Firmicutes Bacilli relative abundance. Change in n-dimensional space of PCoAs Bray–Curtis dissimilarity matrices of 
current and future (C) microbial composition and (D) methane metabolism. Color indicates the magnitude of change between time periods: (A,B) pink/
violet  =  increased and yellow/orange  =  decreased future relative abundances; (C,D) pink/violet indicates relatively large changes and yellow/orange 
relatively small changes in community composition/methane metabolism. Standardized path coefficients from SEMs of soil factors, vegetation, and 
climate on bacterial relative abundance are presented for Cyanobacteria Synechococcophycideae and Firmicutes Bacilli. Soil influences (brown): OC, 
soil OC; EC, electrical conductivity. Vegetation influences (green): C3A, C3 macrothermal plants, C3E, C3 mesothermal plants; C4M, C4 megathermal 
plants. Climatic influences (blue): Tmp, temperature; Hmd, humidity; and Prc, precipitation.
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