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Introduction: Deformed wing virus (DWV) is one of the causative agents of colony 
collapse disorder. The structural protein of DWV plays a vital role in the process of 
viral invasion and host infection; however, there is limited research on DWV.

Methods and Results: In this study, we screened the host protein snapin, which can interact 
with the VP2 protein of DWV, using the yeast two-hybrid system. Through computer 
simulation and GST pull-down and CO-IP assays, an interaction between snapin and 
VP2 was confirmed. Furthermore, immunofluorescence and co-localization experiments 
revealed that VP2 and snapin primarily co-localized in the cytoplasm. Consequently, 
RNAi was used to interfere with the expression of snapin in worker bees to examine the 
replication of DWV after the interference. After silencing of snapin, the replication of DWV 
in worker bees was significantly downregulated. Hence, we speculated that snapin was 
associated with DWV infection and involved in at least one stage of the viral life cycle. 
Finally, we used an online server to predict the interaction domains between VP2 and 
snapin, and the results indicate that the interaction domain of VP2 was approximately 
located at 56–90, 136–145, 184–190, and 239–242 aa and the snapin interaction domain 
was approximately located at 31–54 and 115–136 aa.

Conclusion: This research confirmed that DWV VP2 protein could interacts with the 
snapin of host protein, which provides a theoretical basis for further investigation of 
its pathogenesis and development of targeted therapeutic drugs.
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Introduction

Honeybees play a significant role as a pollinating insect in food security, agricultural production, and 
maintenance of natural plant diversity (Klein et al., 2007). In the past 15 years, a sharp decline in the 
number of honeybee colonies during winter has been reported in different parts of the world (Carreck 
and Neumann, 2010; Breeze et al., 2014). Decline in the number of pollinators affects beekeeping and 
agriculture, thereby threatening human food safety (Francis et al., 2013). The main reasons for the decline 
in the number of bee colonies include pesticide use, pathogens, industries, agriculture, climate change, 
habitat destruction, and inadequate food supply (Ullah et al., 2021). Viral infections are the key risk factors 
for the health of honeybees at the individual and colony levels (Ullah et al., 2021). At present, there are at 
least 24 viruses that can harm the health of bees (Runckel et al., 2011; Gisder and Genersch, 2015, 2017; 
Dolezal et al., 2016; Remnant et al., 2017; Chagas et al., 2019), among which, the deformed wing virus 
(DWV) is a major pathogen that is detected at all developmental stages of honeybees and causes colony 
collapse disorder (De Miranda and Genersch, 2010).
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Deformed wing virus is a single-stranded RNA virus belonging to the 
family Iflaviridae and can infect honeybees and other insects (Diao et al., 
2019). Its genome is approximately 10,000 bp long with a large open reading 
frame and encodes a polyprotein of 2,894 amino acids. The polyproteins 
include structural proteins and nonstructural proteins. The structural 
proteins consist of VP1, VP2, VP3, and VP4, of which VP1 is 44 kDa in size 
and is the largest capsid protein of all viruses in the order Picornavirales 
(Organtini et al., 2016). The size of VP2 (32 kDa) and VP3 (28 kDa) is similar 
to that of other picornavirus capsid proteins, and VP2 has been reported to 
exhibit good immunogenicity (Fei et al., 2020). Previous studies have shown 
that the structural proteins of Iflavirus are involved in viral invasion and 
replication (Brutscher et al., 2016; Kalynych et al., 2016; Procházková et al., 
2018; Zhang et al., 2019). We speculated that the structural proteins of DWV 
also exert a similar effect. However, only a few studies have explored the 
function and mechanism of the structural proteins of DWV.

Therefore, in this study, we screened the host proteins that interact 
with the VP2 protein of DWV using the yeast two-hybrid membrane 
library system and selected the protein snapin for further investigation. 
The interaction between snapin and VP2 was determined through Co-IP, 
GST pull-down assay, immunofluorescence staining, and confocal 
microscopy. We performed silencing experiments to examine the function 
of snapin in the process of viral infection. Finally, an online software1 was 
used to predict the interaction domain between VP2 and snapin.

Materials and methods

cDNA library, viruses, and primary reagents

The plasmids pOST1-NubI, pTT5, pPR3N, pET28a, pGEX-6P-1, 
pTSU2-APP, and pBT3STE were procured from the Laboratory Animal 
Center of Jinzhou Medical University. DWV VP2, purified DWV, NMY32 
yeast, and Apis cerana larvae yeast cDNA libraries were prepared in our 
laboratory. Escherichia coli DH5α and BL21 strains were purchased from 
TransGen Biotech (Beijing, China). The transfection reagent Lipofectamine 
2000 was purchased from GeneCopoeia (Rockville, MD, United States). 
GST-tagged protein purification kit was purchased from Beyotime 
(Shanghai, China). Anti-his tag mouse monoclonal antibody was purchased 
from Solarbio (Beijing, China). The worker bees is provided by the 
Experimental Animal Center of Jinzhou Medical University.

Plasmid construction

Total RNA was extracted from worker bees infected with DWV using 
Trizol reagent (TransGen, Beijing, China) and reverse-transcribed into 
cDNA using the first-strand cDNA synthesis kit (TransGen). Five pairs of 
primers were designed for pET28a-VP2, pBT3STE-VP2, pGEX-6p-1-
snapin, pTT5-VP2-His, and pTT5-snapin-Flag (Supplementary Table S1). 
Insertion of enzyme-cutting sites was based on the DWV sequence 
(GenBank No. MF770715) and snapin gene (GenBank No. XM_006619914). 
PCR was performed under the following conditions: initial denaturation at 
94°C for 5 min, 94°C for 45 s, 58°C for 45 s (pBT3STE-VP2, pET28a-VP2, 
and pTT5-VP2-His) or 65°C for 45 s (pTT5-snapin-Flag) or 61°C for 30 s 
(pGEX-6p-1-snapin), 72°C for 45 s, amplification for 30 cycles, and 

1 https://www.ebi.ac.uk/msd-srv/prot_int/pistart.html

extension at 72°C for 7 min. The PCR products were authenticated using 
1.2% agarose gel electrophoresis, purified, and then cloned into vectors. 
These recombinant vectors were transformed into E. coli DH5α and verified 
through enzyme digestion and sequencing (Genewiz Biological Technology 
Co., Ltd., Suzhou, China).

Self-autoactivation and function test

To test the bait plasmid pBT3STE-VP2 with respect to its self-
activation and function, it was co-transformed with pPR3N into the 
reporter NMY32 yeast strain. The co-transformants were grown on 
SD/−Trp/−Leu, SD/−Trp/−Leu/-His, and SD/−Trp/−Leu/-His/Ala 
agar plates at 30°C for 3–5 days (Supplementary Table S2).

Yeast two-hybrid screening

After ensuring that the bait is functional in the membrane protein yeast 
two-hybrid system, the host cell proteins that interact with VP2 can 
be screened. We transformed the A. cerana larvae cDNA library and the bait 
plasmid pBT3STE-VP2 into NMY32 cells and cultured them at 30°C for 
3–4 days. Then, the NMY32 cells were plated on a series of selective agar 
plates, including SD/−Trp/−Leu and 60 mM 3-amino-1,2,4-triazole SD/−
Trp/−Leu/−Ade/-His selective media, and cultured for 1–2 days at 30°C to 
select potentially positive colonies. The selected positive colonies were 
cultured in SD/−Trp/−Leu liquid medium at 30°C for 14 h. Plasmids were 
extracted from yeast and retransformed into E. coli DH5α for subsequent 
analysis. The plasmids were sequenced by Synbio Technologies Co. Ltd 
(Jiangsu, China). The resulting sequences were analyzed and aligned using 
BLAST in NCBI and GenBank databases.

Molecular docking of VP2 with snapin

Because there was no experimental structure available for snapin, it 
was modeled using the I-TASSER server2 and modified using the 
GalaxyRefine server.3

In contrast, since an experimental structure was available for VP2, 
it was modeled using the SWISS-MODEL workspace.4

The ClusPro server5 is a widely used tool for protein–protein 
docking and can be used to predict protein interactions. To reveal the 
binding affinity between VP2 and snapin, we used the ClusPro server 
for docking analysis.6 Snapin acts as a receptor for antigen recognition. 
The ClusPro server computed the models based on desolvation energy 
and electrostatic interactions.

GST pull-down assay

The GST pull-down assay was performed according to the 
manufacturer’s instructions (Bio-Works, Sweden) to confirm the 

2 https://zhanggroup.org/I-TASSER/

3 https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE

4 https://swissmodel.expasy.org/assess

5 https://cluspro.org

6 https://cluspro.bu.edu/login.php?redir/queue.php
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interaction detected between snapin and VP2. The plasmids PGEX-6p-1-
snapin and PET28-VP2 were transformed into E. coli BL21 (DE3) for 
induction, expression, and purification. The purified GST–snapin fusion 
protein was incubated with glutathione agarose beads at 4°C for 3 h, 
followed by overnight incubation at 4°C with 0.1 mg/ml of the input 
protein His-VP2. The agarose complex was eluted, separated, collected, 
centrifuged, and solubilized in 2× sodium dodecyl sulfate sample buffer. 
Next, western blotting was performed to analyze the collected proteins. As 
a negative control, GST was incubated with beads alone with E. coli lysates.

Co-IP assays

Co-IP assays were performed to further confirm the interaction 
between snapin and VP2 in cells. pTT5-VP2-His and pTT5-snapin-Flag 
were co-transfected into BHK cells. After 48 h, the cell lysates were 
harvested by centrifugation (Thermo Fisher, Waltham, MA, 
United States) at 12,000 rpm for 25 min at 4°C and incubated overnight 
with a Flag-tagged antibody (Proteintech, Wuhan, China) at 4°C. Then, 
Protein A/G Plus-Agarose (Santa Cruz Biotechnology, Santa Cruz, CA, 
United States) was added, and the mixture was incubated at 4°C for 6 h. 
This was followed by centrifugation at 1500 rpm for 3 min at 4°C, and 
the resulting precipitate was washed three times with ice-cold PBS and 
finally identified using western blotting.

Detection of co-localization via 
immunofluorescence staining and confocal 
microscopy

The plasmids pTT5-VP2-His and pTT5-snapin-Flag were 
co-transfected into BHK cells. After 24 h, the cells were fixed in 2 ml of 4% 
paraformaldehyde (Solarbio, Beijing, China) at 4°C for 20 min and then 
washed three times with PBS. Next, the cells were permeabilized with 2 ml 
of 0.5% Triton X-100 (Sangon Biotech, Shanghai, China) for 30 min at room 
temperature, washed three times with PBS, and then blocked in Tris-
buffered saline-Tween 20 (TBST) containing 2% bovine serum albumin 
(Solarbio) for 1 h at room temperature. The coverslips were incubated 
overnight together with His-tagged and Flag-tagged antibodies (1:400 
dilution; Proteintech) at 4°C. The cells were washed three times with 
PBS. The coverslips were then incubated with goat anti-mouse and goat anti-
rabbit fluorescent antibodies (diluted 1:2000 with TBST) in the dark for 1 h 
at 37°C. DAPI (Coolaber, Beijing, China) (1:750 dilution) was used to stain 
the cell nucleus in the dark for 20 min, after which the stained cells were 
viewed under a laser scanning confocal microscope (LEICA, Germany).

Snapin level in honeybees after deformed 
wing virus infection

A total of 20 healthy worker bees were selected from the same 
colony and randomly divided into two groups, with each group 
containing 10 bees. The bees were placed on ice and anesthetized with 
CO2 for 1 min. Group I was injected with 1 μL of a DWV suspension 
between the 2nd and 3rd integuments using a similar controlled-volume 
syringe (Huang et al., 2020), and group II was injected with 1 μL PBS as 
control. The inoculated bees were fed with sufficient sterilized food and 
water. The clinical signs in each group of bees were monitored and 
recorded daily until the bees died. RT-PCR was performed to detect the 

infection of DWV, Chinese sacbrood virus (CSBV), Chronic bee 
paralysis virus (CBPV), Black queen cell virus (BQCV), Kashmir bee 
virus (KBV), Israel acute paralysis virus (IAPV), and Acute Bee Paralysis 
Virus (ABPV) in dead bees (Hassanyar et al., 2019). The levels of snapin 
in bees after DWV infection were analyzed via SYBR Green RT-PCR.

Effect of silencing of snapin on VP2 
expression

We conducted silencing experiments to examine the function of 
snapin in the process of viral infection. Three pairs of siRNAs of snapin 
were designed and synthesized by Suzhou Jima Biotechnology Co., Ltd. 
A total of 40 healthy worker bees were retrieved from the same colony 
and randomly distributed into four groups (groups 1–4), with each 
group containing 10 bees. Group 1 was injected with 1 μg of siRNA1, 
group 2 was injected with 1 μg of siRNA2, group 3 was injected with 1 μg 
of siRNA3, and group 4 was injected with 1 μL PBS. After 72 h, three 
bees were randomly selected from each group for qPCR analysis.

After screening the best siRNA capable of inhibiting the function of 
snapin, 20 worker bees were retrieved from the same colony and 
randomly distributed into two groups (groups 5 and 6), with each group 
containing 10 bees. Group  5 was injected with 1 μg of siRNA and 
group 6 was injected with 1 μL of PBS. After 24 h, groups 5 and 6 were 
injected with 1 μL of DWV. After 72 h, three bees were randomly selected 
from each group, and the replication of DWV was analyzed via qPCR 
(Bradford et al., 2017).

Predictive analysis of the interaction pocket

The docking model was analyzed using the PDBePISA server (see 
text footnote 1) and according to the interface area Å2 and ΔIg kcal/mol 
to judge the docking effect. The interaction domain between VP2 and 
snapin was analyzed according to the interactions between the protein 
chains and residual interactions across the interface using the PDBsum 
server.7

Results

Construction of recombinant plasmids

The positive recombinant plasmids pBT3STE-VP2, pET28a-VP2, 
pGEX-6p-1-snapin, pTT5-snapin-Flag, and pTT5-VP2-His were 
identified through restriction digestion and sequencing analysis, which 
indicated that all recombinant plasmids were successfully constructed 
(Figure 1).

Autoactivation and function detection of the 
pBT3STE-VP2 plasmid

Selective plate assays revealed that white clones grew on all SD/−
Trp/−Leu plates. In the positive control and functional test groups, 

7 http://www.ebi.ac.uk/
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white clones were detected on the solid plates of SD/−Trp/−Leu/-His 
and SD/−Trp/−Leu/−Ade/-His; however, in the self-activation 
detection and negative control groups, no such clones were observed 
(Supplementary Figure S1). These results show that the bait plasmid 
pBT3STE-VP2 had function and no autoactivation on Y2H. It was used 
for subsequent screening experiments.

VP2 Y2H screening

The yeast two-hybrid system was used to screen for VP2-interacting 
host proteins from the A. cerana cDNA library. A total of 24 possible 
yeast proteins with a positive bait–prey interaction were screened from 
the membrane protein Y2H system and their reporter gene was detected. 
Sequence analysis of the 24 positive plasmids indicated that they 
represented 20 A. cerana cDNAs of potential protein genes interacting 
with VP2 (Supplementary Table S3). After analysis, we believe that the 
snapin gene is a useful host protein in these genes. Therefore, we selected 
the snapin gene for further investment.

Prediction, refinement, and docking 
prediction of snapin and VP2 tertiary 
structures

Snapin was modeled using the I-TASSER server and five models 
were generated. Model 1 had the top Ramachandran favored and was 
therefore selected for optimization. The initial model 1 was optimized 
in the GalaxyRefine server that generated five models based on repeated 
structure perturbation and subsequent overall structural relaxation via 
molecular dynamics simulation. Based on the comprehensive analysis 
of TM score, root mean square deviation (RMSD), MolProbity, and 
Ramachandran plot, model 1 was selected for docking purposes 
(Figure 2A). The initial model 1 generated from the I-TASSER server 
and the refined model 1 generated from the GalaxyRefine server were 
evaluated using the SWISS-MODEL workspace. The initial model 1 and 
the refined model 1 had 70.33 and 89.88% of residues in the 

Ramachandran favored region, respectively (Figure 2B). Other favorable 
parameters of the refined model were as follows: GDT score of 0.8926, 
RMSD value of 0.554, MolProbability of 1.983, clash score of 7.9, and 
poor rotamers totaling 0.6 (Supplementary Figure S2).

VP2 was modeled using the SWISS-MODEL workspace and two 
models were generated. Model 1 had the top Global Model Quality 
Estimate and Ramachandran favored and was therefore selected for 
docking purposes (Figure 2C).

The ClusPro server yielded 30 candidate models with different 
binding energies, among which, model complex 1 with the lowest 
binding energy score of −1011.6 was chosen (Figure 2D). The interaction 
between VP2 and snapin was predicted.

GST pull-down assay

The GST pull-down assay was performed to detect the interaction 
between VP2 and host snapin in vitro. In this experiment, GST–snapin 
was used as the bait protein, His-VP2 was used as the prey protein, and 
GST tag was used as the negative control. The results were analyzed via 
western blotting. The experimental and positive control groups exhibited 
an approximately 33-kDa protein band, consistent with the expected 
His-labeled VP2 protein sizes, whereas the negative control group 
exhibited no protein band (Figure  3). These results indicated the 
presence of an interaction between VP2 and snapin.

Co-IP assay

Co-IP assay is a common technique to identify or confirm 
physiologically relevant protein–protein interaction events and can 
be used for further confirmation of the interaction between VP2 and 
snapin. We performed Co-IP assay in BHK cells coexpressing snapin-Flag 
and VP2-His to further determine whether the interaction between 
snapin and VP2 occurs in vitro. As shown in Figure 4, detection with 
either anti-Flag or anti-His antibodies revealed the corresponding bands, 
demonstrating a specific interaction between snapin and VP2 in the cells.

FIGURE 1

Restriction endonuclease digestion results of construction plasmid of pBT3STE-VP2, pET28a-VP2, pTT5-Snapin-Flag, pGEX-6p-1-Snapin, and pTT5-VP2-
His.

https://doi.org/10.3389/fmicb.2023.1096306
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Sun et al. 10.3389/fmicb.2023.1096306

Frontiers in Microbiology 05 frontiersin.org

Detection of co-localization via 
immunofluorescence staining and confocal 
microscopy

To determine whether VP2 and snapin localize within the same 
cellular compartment, the recombinant plasmids pEGFP-snapin-Flag 
and pTT5-VP2-His were co-transfected into BHK cells. As shown in 
Figure 5, both snapin and VP2 localized in the cytoplasm. The results 
of co-localization revealed that VP2 and snapin could completely 
overlap in cells and were primarily localized in the cytoplasm.

Snapin level in honeybees after deformed 
wing virus infection

We conducted SYBR Green RT-PCR to further investigate the 
changes in snapin expression in worker honeybees after DWV 
infection. Results indicated that the expression of snapin in worker 
honeybees was increased after DWV infection (Figure 6). Moreover, all 
honey bees used during the experiments were analyzed using RT-PCR, 
and the results showed that no honey bee viruses were detected in 
healthy workers and that only DWV was detected in infected workers 
(Supplementary Figure S3).

Effect of silencing of snapin on VP2 
expression

We have found that snapin expression was upregulated in vivo when 
the worker bees were infected with DWV. To examine the function of 
snapin in the process of DWV infection, we  conducted silencing 
experiments. Compared with other siRNAs, siRNA1 exerted the maximum 
inhibitory effect on snapin expression (Figure 7A). Therefore, we selected 
siRNA1 for subsequent experiments. Results showed that DWV expression 
was significantly downregulated in group 5 (Figure 7B), indicating that 
snapin was involved in the replication of DWV in honeybees.

Analysis of molecular docking between VP2 
and snapin

The interaction domain between VP2 and snapin was analyzed 
using the PDBsum server, and the results are shown in Figure  8. 
We detected 3 salt bridges and 16 hydrogen bonds in the interaction 
between VP2 and snapin at the protein–protein interface. The protein–
protein interaction site of VP2 was approximately located at 56–90, 
136–145, 184–190, and 239–242 aa. The protein–protein interaction 
site of snapin was approximately located at 31–54 and 115–136 aa.

A B

C
D

FIGURE 2

VP2 and snapin interaction prediction. (A) Optimized snapin 3D model. (B) Ramachandran plots. a, snapin model modeled using the I-TASSER SERVER; b, 
optimized snapin model. (C) 3D model of VP2 protein. (D) Molecular docking model of VP2 and snapin. The green model is VP2 and the blue model is 
snapin.
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Discussion

Honeybees are important pollinators; however, there has been a 
severe decline in bee populations in the past 20 years. The main reason 
for the serious decline in honeybee colonies is the interaction between 

parasites and pathogens, including viruses, mites, fungi, bacteria, and 
other pests (Goulson et al., 2015). Among several diseases caused by 
pathogens, viral diseases are considered to be  the primary threat to 
apiculture, and more than 20 honeybee viruses have been confirmed to 
infect honeybees (Berényi et al., 2007; Baker and Schroeder, 2008; Reddy 
et al., 2013). DWV is a highly prevalent and pathogenic honeybee virus 
and can cause colony collapse disorder (Organtini et al., 2016; Kevill 
et al., 2017). Recently, several studies have investigated the structure and 
genes of DWV (Mordecai et al., 2016; Organtini et al., 2016; Dalmon 
et al., 2017; Škubník et al., 2017; Tehel et al., 2019); however, information 
on the mechanism underlying DWV infection is limited.

In this study, we used the yeast two-hybrid system to capture the 
proteins interacting with the VP2 protein of DWV and found that 
snapin could interact with VP2. We used the I-TASSER server and 
SWISS-MODEL server to model VP2 and snapin and selected the best 
docking optimization model, following which the ClusPro server was 
used for docking. We found that VP2 and snapin could interact with 
each other. The GST pull-down assay revealed expected bands in the 
experimental group, indicating the interaction between VP2 and snapin. 
The results of the Co-IP assay revealed the presence of a specific 
interaction between snapin and VP2  in cells. Immunofluorescence 
staining and confocal microscopy demonstrated that VP2 and snapin 
were completely overlapped in cells and were primarily localized in the 
cytoplasm. These results suggest that VP2 can interact with snapin and 
co-localize with it in the cytoplasm. After DWV infection in worker 
honeybees, the expression of snapin was significantly upregulated. 
Silencing of snapin via siRNA interference resulted in significant 
downregulation of DWV replication in the worker honeybees. These 
results showed that snapin was associated with DWV infection and 
involved in at least one stage of the viral life cycle.

Snapin was originally detected as a SNAP-25-binding protein in the 
SNARE complex in nerve cells. It has been reported to be expressed in both 
the cytosol and plasma membrane of nerve cells and non-nerve cells and is 
an important component of the neurotransmitter release process (Ilardi 
et al., 1999). Snapin consists of 136 amino acids, with a relative molecular 
weight of approximately 15 kDa. It plays a key role in cell vesicle transport 

FIGURE 3

SDS-PAGE (12%; Coomassie blue staining; top) and Western blotting 
analysis (bottom) of GST pull-down samples. GST tag was used as the 
negative control, His-VP2 was used as the positive control, GST-snapin 
was used as the experimental group. Compared with the negative 
control group, the experimental and positive control groups showed a 
protein band with a molecular weight of approximately 33 kDa, which 
was consistent with the expected VP2 protein sizes (top), indicating 
that VP2 and GST-snapin may have formed a complex. Western 
blotting was performed with anti-His antibody. His-VP2 protein 
appeared at a molecular mass of approximately 33 kDa (bottom).

FIGURE 4

Co-IP assay results of the interaction between VP2 and snapin. The co-transformed pTT5-VP2-His and Gal-Flag recombinant plasmids were used as the 
negative control. In the recovered products, VP2 protein bands were detected using anti-His antibody, and snapin protein bands were detected using anti-
Flag antibody. No corresponding band was detected in the negative control.
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and fusion and has been implicated in the regulation of exocytosis and 
endocytosis (Hertel and Mocarski, 2004). A previous study suggested that 
snapin serves as an important regulator of the late endocytic fusion 
machinery (Li et al., 2009). Another study showed that snapin acts as a 
dynein motor adaptor and coordinates retrograde transport and late 
endosomal–lysosomal trafficking, thereby maintaining efficient autophagy–
lysosomal function in neurons (Cai and Sheng, 2011). It has been reported 
that the viral proteins pul130, ul70, ul105, and UL142 interact with the host 
protein snapin and affect viral DNA replication in human cytomegalovirus 
infection (Shen et al., 2011; Luo et al., 2013; Liu et al., 2015; Wang et al., 
2016). After infection in bees, DWV can cause abnormal neural activity and 
movement. Our study showed that VP2 and snapin were co-localized in the 
cytoplasm, and the expression of snapin was significantly upregulated after 
DWV infection in worker bees. Moreover, the replication of DWV was 

significantly downregulated after snapin silencing. Based on our results, 
we  speculate that snapin participates in the processes of nerve cell 
autophagy, nerve injury, and incomplete autophagy induced by DWV.

To summarize, the host protein snapin that interacts with VP2 of 
DWV was screened for the first time and a direct interaction between VP2 
and snapin was confirmed in vitro. Moreover, VP2 and snapin were found 
to be highly co-localized in co-transfected BHK cells. The regulatory effect 
of snapin on DWV replication was confirmed based on the results of 
worker bee infection and siRNA interference experiments. We speculate 
that snapin affects the assembly of virus particles in the cytoplasm and 
participates in the process of nerve cell autophagy induced by DWV. The 
interaction pocket between VP2 and snapin was predicted, which 
provided a theoretical basis for further investigation of the pathogenesis 
of DWV infection and the development of targeted therapeutic drugs.
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