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Extensive research in well-studied animal models underscores the importance of 
commensal gastrointestinal (gut) microbes to animal physiology. Gut microbes have 
been shown to impact dietary digestion, mediate infection, and even modify behavior 
and cognition. Given the large physiological and pathophysiological contribution 
microbes provide their host, it is reasonable to assume that the vertebrate gut 
microbiome may also impact the fitness, health and ecology of wildlife. In accordance 
with this expectation, an increasing number of investigations have considered the 
role of the gut microbiome in wildlife ecology, health, and conservation. To help 
promote the development of this nascent field, we need to dissolve the technical 
barriers prohibitive to performing wildlife microbiome research. The present review 
discusses the 16S rRNA gene microbiome research landscape, clarifying best 
practices in microbiome data generation and analysis, with particular emphasis on 
unique situations that arise during wildlife investigations. Special consideration is 
given to topics relevant for microbiome wildlife research from sample collection to 
molecular techniques for data generation, to data analysis strategies. Our hope is that 
this article not only calls for greater integration of microbiome analyses into wildlife 
ecology and health studies but provides researchers with the technical framework 
needed to successfully conduct such investigations.
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1. Introduction

The advent of high-throughput DNA sequencing technologies has facilitated transformations 
in our understanding of the microbial biosphere. Until recently, the majority of microbial diversity 
was unseen, unidentified, and unstudied. Our newfound ability to interrogate the genomic 
information of microbes in situ has unlocked new understanding about the vast diversity of the 
microbial biosphere, the ecological distribution of microbes, and their linkage to key ecosystem 
services. One of the most rapidly accelerating areas of understanding that high throughput 
sequencing has unlocked is that of the integral role that microbes play in vertebrate (patho)
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physiological mechanisms. While a relatively small number of 
infectious, easily culturable microbes have been intensively studied, 
environmental DNA sequencing has revealed an extensive diversity of 
uncultured host associated microorganisms and has begun to uncover 
the complex interaction of commensals, mutualists, pathobionts, and 
pathogens that live in association with their vertebrate host (See Box 1 
for definitions).

In particular, the community of microorganisms that occupies the 
gastrointestinal tract, and their genes, collectively referred to as the gut 
microbiome, can play a central role in myriad aspects of vertebrate 
biology, including: digestion (Hanning and Diaz-Sanchez, 2015; Miller 
et al., 2020), metabolism (Koropatkin et al., 2012), growth (Yan et al., 
2016), immune modulation (Thaiss et al., 2016; Levy et al., 2017; Sylvia 
and Demas, 2018) and pathogen defense (Khosravi and Mazmanian, 
2013). In addition, gut microbiomes have been associated with 
neurological development (Lu et al., 2018) and behavior (Ezenwa et al., 
2012; Archie and Tung, 2015; Lu et al., 2018), including mate selection 
(Sharon et al., 2010; Najarro et al., 2015; Rosenberg et al., 2018), thereby 
influencing selective advantages, such as mating success (Brucker and 
Bordenstein, 2013; Hird, 2017). The gut microbiome comprises a diverse 
set of microbial taxa, including bacteria, archaea, microbial eukaryotes 
and viruses, the composition of which can affect host physiology, where 
even low abundant taxa may be disproportionately impactful to their 
host. Diverse factors have been found to influence the gut microbiota 
community composition including diet, stress, and exposure to 
pollutants. Severely altered microbial community composition, or 
dysbiosis, has the potential to influence normal vertebrate homeostatic 
mechanisms, thereby manifesting patterns of microbial imbalance with 

clinical signs of disease. Various diseases have been found to associate 
with dysbiosis including increased susceptibility to infectious diseases 
(Bandera et al., 2018), malnutrition (Kumar et al., 2018), autoimmune 
diseases (de Oliveira et  al., 2017; Wei et  al., 2020), cardiometabolic 
disorders (Morel et al., 2020), and behavioral or cognitive impairments 
(Fröhlich et al., 2016; Noble et al., 2017; Sylvia and Demas, 2018). The 
relationship between the gut microbiome and host physiology is 
bidirectional; alterations in host physiology can affect the composition 
of the gut microbiome such as in the case of increased intestinal 
inflammation, which can differentially impede the growth of gut 
microbiota (Kamada et  al., 2013; Halfvarson et  al., 2017; Spiga and 
Winter, 2019) and vice versa.

The intimate association between the gut microbiome and host 
physiology has motivated recent efforts to consider the gut microbiome 
in the context of wildlife health, conservation, and management. Indeed, 
high-throughput DNA sequencing has already identified potential 
pathogenic bacteria in wildlife, thereby increasing our ability to monitor 
and mitigate zoonotic disease outbreaks (Galan et  al., 2016). 
Understanding the possible influence of host-associated taxa on the 
evolution of a species is increasingly important to studies on wild 
vertebrates, particularly where insights could result in management 
protocols and extinction mitigation strategies for threatened species 
(West et al., 2019). However, our current knowledge of microbiomes is 
mostly limited to studies based on humans and model animal systems 
(Hird, 2017), with the majority of research focusing on the human gut 
microbiome (Davenport et al., 2017). This fact is problematic from a 
conservation standpoint because results from model animal systems are 
not necessarily representative of wildlife systems. A number of studies 

BOX 1 Definitions.

α-diversity A measure of the diversity of the microbial community within a sample

Amplicon A piece of DNA or RNA that can be the source or the product of a natural or artificial replication or amplification event, such as Polymerase 

Chain Reaction (PCR)

β-diversity A measure of the similarity in terms of sample features (microbial composition) between pairs of samples

Chimeras Amplicons that form from two different biological sequences, often occurring as a result of misreading a sample

Clade A group of organisms believed to all have descended from a common ancestor

Commensals Organisms in a relationship where one benefits, while the other is unaffected

Contigs Shorter reads assembled into longer sequences based on matching overlapping regions

Degenerate primers Primers in which a few bases are altered so that the primer will cover all the possible nucleotide combinations in the target protein; useful 

for amplifying the same gene (phylogenetic marker gene) from different organisms

Ecophylogenetics A fusion of ecology with evolutionary history to determine how monophyletic lineages distribute with respect to ecologic metadata 

parameters of interest.

Mate pairs Two fragments distal to each other in a genome and opposite in orientation that are produced during library preparation

Microbiome The community of microorganisms (such as bacteria, fungi and viruses) and their genes, that inhabit a particular environment

Microbiota The microorganisms that usually inhabit an environment, such as a plant or the human body

Mock communities Sets of cells, genomes, or amplicons with known ratios that are used as controls to account for stochastic variation in microbiome studies

Monophyletic lineage Descended from a common ancestor

Mutualists Organisms in a relationship where both organisms benefit

Pathobionts Organisms that can cause harm or promote pathology under certain genetic and/or environmental conditions

Pathogens An agent that can cause disease, which could be a bacterium, virus or fungus.

PCR Polymerase Chain Reaction (PCR) is a technique used in molecular biology to rapidly make up to a billion copies of a DNA gene target 

within a sample
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have shown the influence of captivity on the vertebrate gut microbiome 
(McKenzie et  al., 2017) including fish (Dhanasiri et  al., 2011), 
lizards(Kohl et al., 2017), parrots (Xenoulis et al., 2010), Antarctic seals 
(Nelson et al., 2013), chimpanzees (Uenishi et al., 2007), grizzly bears 
(Schwab et al., 2009), Tasmanian devils (Cheng et al., 2015), European 
wild rabbits (Funosas et al., 2021) and Namibian cheetah (Wasimuddin 
Menke et al., 2017). These differences between captive and wild gut 
microbiomes could have implications for wildlife management strategies 
such as captive breeding and species reintroduction programs. As a 
result, a growing number of studies have sought to characterize and 
evaluate the gut microbiome of wildlife populations (Couch et al., 2020, 
2021; Sabey et  al., 2020) with the objective of determining if the 
microbiome can serve as a useful resource for monitoring and managing 
the health of wild populations.

Owing to the often elusive, potentially dangerous nature or 
threatened/protected status of many wildlife species, the ability to obtain 
sufficient samples to make a meaningful contribution to the field can 
be a major limiting factor and constraint in many wildlife microbiome 
investigations. As such, wildlife microbiome investigations often 
coincide with samples being collected as part of veterinary inspections 
(Menke et al., 2015), or ad hoc collections from rehabilitated species [see 
DeCandia et al., 2019 for a skin microbiome investigation in three canid 
species]. The elusiveness of many wildlife species adds further 
complexity in that the exact time of fecal sample deposition is unknown, 
and exposure can lead to changes in microbial communities present in 
the sample (Menke et al., 2015). One potential caveat to account for this 
could be to conduct a small study of the target population, leaving fecal 
samples of known age exposed to the surrounding environment and 
sampling them at regular intervals to assess changes in microbiome 
changes over time. Menke et al. (2015) showed in two ungulate species 
in Namibia (giraffe and springbok) that microbiome composition 
changed little with environmental exposure over time, except for periods 
of moisture or light drizzle. In their case, the intermittent rain showers 
in a sense reactivated the microbial growth which had seemingly ceased 
owing to the hot desert conditions (Menke et al., 2015).

Another shortcoming of many wildlife microbiome investigations 
to date is the lack of repeated measures and longitudinal project designs. 
Primarily, this would be due to the logistics and costs involved in not 
only capturing and tagging or observing specific individuals within a 
population, but also the long-term investment required to resample the 
same individual over time (including telemetry equipment and 
personnel time). Moreover, if deposition of the fecal sample is not 
witnessed, genotyping may be necessary to confirm that the collected 
sample belongs to the target animal. These may be additional project and 
personnel costs that should be incorporated into wildlife microbiome 
investigation designs. Despite this, the inclusion of longitudinal time-
series data tracking changes in gut microbiome composition will allow 
researchers to address questions such as whether the gut microbiomes 
of individuals within a population will respond synchronously or 
asynchronously to shifting environmental resources (Björk et al., 2022). 
Human research suggests that the gut microbiome can change rapidly 
in response to environmental change, often with individual health and 
fitness consequences (Björk et al., 2019). As such, longitudinal studies 
detecting differences in synchronicity of gut microbiome response to 
changing environmental resources could elucidate shared microbiota-
associated traits, such as differences in susceptibility to disease (Björk 
et al., 2022). Furthermore, longitudinal studies will allow researchers to 
determine the impact that host population structure and sociality has 
on individual gut microbiome composition (Murillo et al., 2022).

The progress and inferences made from many human microbiome 
studies, owe their success largely to efforts such as the Human 
Microbiome Project (HMP) dedicated to characterizing the human 
microbiome at 5 different body sites (Turnbaugh et  al., 2007). 
Consequently, many of the gut bacteria for humans have been sequenced 
and classified taxonomically, with sequences stored in searchable 
databases (Turnbaugh et al., 2007; Hamady and Knight, 2009; Wylie 
et al., 2012). The same is not necessarily true for wildlife (Couch and 
Epps, 2022). For some species, this problem may not be as drastic as 
often wildlife species will have a well-studied domesticated counterpart 
[e.g., with ruminants such as domestic cattle vs. African buffalo (Couch 
et al., 2021) or domestic sheep vs. Desert bighorn sheep (Couch et al., 
2020)] where many gut bacterial taxa may be shared, allowing for greater 
precision when taxonomically annotating 16S rRNA gene sequences 
from these host species. While this lack of referential taxonomic 
classification for less-studied wildlife species may challenge initial 
investigations (Couch and Epps, 2022), this limitation could also 
be  viewed as a timely opportunity to describe and characterize the 
taxonomic diversity of these less well studied systems.

Efforts to characterize the gut microbiome involve a variety of 
techniques that must be accurately implemented to ensure meaningful 
outcomes. Perhaps the most common approach used to classify 
microbial taxa is the sequencing of universally conserved, taxonomically 
diagnostic phylogenetic marker genes, the most characterized of such 
genes being the small subunit ribosomal RNA (16S rRNA) gene or 16S 
rDNA. By sequencing the 16S rRNA genes of the various taxa that 
comprise an archaeal and bacterial microbial community with high-
throughput sequencing technology, researchers can quickly and 
inexpensively determine which organisms comprise the community, 
quantify biodiversity, and measure the phylogenetic relatedness of 
these organisms.

While this approach is powerful, it requires the implementation of 
several key steps prior to bioinformatic analysis. First, biological 
specimens, such as environmental or host-associated samples (e.g., 
feces), that contain microorganisms need to be collected and preserved 
in ways that avoid contamination or bias. The DNA from the organisms 
that comprise each sample is then simultaneously extracted to enable 
DNA-based inferences of community composition. As a result, DNA 
extraction techniques that are biased in the efficiency with which the 
cells are lysed can yield biased interpretations of community 
composition. Moreover, degenerate primers are often used to amplify 
through PCR a specific genomic locus (e.g., hypervariable regions of the 
16S rRNA gene) from each of the genomes present in the sample. Here, 
biases can result from the selection of primer or PCR conditions. Finally, 
after the PCR amplicons are sequenced, a variety of bioinformatic 
approaches can be used to analyze the sequences and test hypotheses, 
but different approaches may reveal different patterns in the 
resulting data.

The specific analytical approaches used can, in some cases, 
dramatically impact conclusions. Therefore, to maximize the impact 
of the addition of microbiome research to wildlife population 
studies and to assist researchers wishing to embark on a 
microbiome-based investigation, we have reviewed and summarized 
the state of knowledge on various study parameters, including: 
sample storage and preservation techniques, PCR, mock 
communities and batch effects, hypervariable region selection, 
sequencing platforms, and bioinformatic pipelines, and how 
different decisions at each stage can affect inferences about the 
bacterial communities of interest. While prior reviews have clarified 
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best practices in a more general sense (see Knight et al. (2018) and 
Quince et  al. (2017)), or have focused on domestic livestock 
(Weinroth et al., 2022) and companion animals (Jarett et al., 2021), 

we focus our discussion specifically around points of consideration 
for incorporating 16S rRNA gene analyses into wildlife investigations 
(See Figure 1 and Supplementary Decision Tree Flowchart).

FIGURE 1

Points of consideration in 16S rRNA gene analyses of wildlife gut microbiome investigations.
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2. Sample collection and preservation 
techniques

After designing well controlled and powered studies, microbiome 
investigations begin by collecting biological specimens. In the case 
of gut microbiome investigations, this typically involves obtaining a 
fecal sample from the individual hosts being studied in part because 
stool samples provide non-invasive access to the gut microbiome. In 
some systems, tissue biopsies (e.g., in tranquilized animals) or 
collection of lumenal contents of specific regions of the 
gastrointestinal tract (e.g., in fistulated or necropsied animals) are 
possible. Regardless, all samples must be  collected using sterile 
techniques to avoid contamination by the researcher. Additionally, 
samples need to be  preserved and stored to mitigate subsequent 
microbial growth. Here, we discuss points of consideration regarding 
gut microbiome sample collection and preservation (summarized in 
Supplementary Table 1).

Many ecological studies require the use of environmental and host-
associated samples containing microbial biomass to be collected long 
before DNA extraction. For non-invasively obtained fecal samples, 
collection should be as soon as possible after defecation (Amato et al., 
2013). Changes in sample microbial composition, particularly the ratio 
of anaerobic to facultative aerobic and aerobic bacteria have been shown 
to occur with increased time of exposure of samples to the external 
environment (Menke et al., 2015). Care should also be taken during 
collection and processing, to exclude those parts of a sample that may 
have been contaminated by the ground or surrounding environment 
(Amato et  al., 2013). An array of preservation techniques has been 
developed to stabilize microbial DNA to ensure more accurate detection 
of microbial taxa at a later date. Several studies have assessed the impact 
of preservation on the accuracy of estimates of patterns in microbiome 
variation, including sample and community composition [α- and 
β-diversity (See Supplementary Table  1)]. α-diversity measures the 
diversity of the microbial community within a sample, whereas 
β-diversity is a measure of the similarity in terms of sample features 
(microbial composition) between pairs of samples (Knight et al., 2018). 
Some studies have shown little effect of preservation method on 
α-diversity measures (Chen et  al., 2019; Moossavi et  al., 2019) and 
several studies attribute the largest difference in microbial community 
composition to inter-sample or inter-subject variation (Carruthers et al., 
2019; Chen et al., 2019; Moossavi et al., 2019; Lim et al., 2020). However, 
choice of storage method may affect frequencies of bacteria more than 
their presence/absence (Song et al., 2016).

Microbiome preservation methods can be grouped into three main 
categories, being cold storage, buffer solutions and dry storage / card 
preservation. It is important to note that each preservation and storage 
method produces unique inherent biases in 16S rRNA gene-based 
studies and as such no perfect procedure exists. Storing samples in 
temperature-controlled environments can reduce variation in microbial 
communities that can occur over time. Generally, −80°C storage of 
biological and environmental samples or cryopreservation is regarded 
as the highest fidelity storage temperature or “gold standard” to preserve 
DNA quality and ensure accurate microbial community profiles 
(Tzeneva et al., 2009; Lauber et al., 2010; Bahl et al., 2012; Choo et al., 
2015; Fouhy et al., 2015; Vandeputte et al., 2017; Carruthers et al., 2019; 
Chen et al., 2019; Moossavi et al., 2019; Marotz et al., 2021). Applying 
cryopreservation techniques in a field situation could be  difficult, 
although it may be feasible if one can obtain liquid nitrogen or dry ice 
at or near one’s field site.

Storage temperature has been shown to affect abundance-weighted 
β-diversity (Song et al., 2016). Relative abundance estimates have also 
been shown to vary by sample storage temperature ranging from −80°C 
to approximately 25°C (Roesch et al., 2009; Lauber et al., 2010; Bahl 
et  al., 2012; Choo et  al., 2015; Gorzelak et  al., 2015). Some gut 
microbiome studies in humans have reported significant shifts in the 
abundance of the phyla Firmicutes and Bacteroidetes between samples 
stored at different temperatures (Bahl et al., 2012; Gorzelak et al., 2015). 
Variation in the ratios of these phyla may obscure biologically 
meaningful results because the ratio of Bacteriodetes to Firmicutes in 
fecal samples is often evaluated as an indicator of host health (Ley et al., 
2005; Koliada et al., 2017). Conversely, other studies have found that 
there are no significant differences between the relative abundance of 
major phyla in gut microbiome samples stored in differing temperatures 
without buffers or subjected to two thaw cycles (Dominianni et al., 2014; 
Bassis et al., 2017).

The effects of storage temperature on microbial communities may 
also be  biome specific. Although minimal variation in microbial 
community composition has been associated with storage temperatures 
for human oral (Luo et al., 2016), skin (Lauber et al., 2010) and vaginal 
microbiome samples (Bai et al., 2012) stored in buffer solutions, the 
converse is true for free-living soil communities. The community 
composition of soil samples stored at room temperature for up to 14 days 
was mostly unaffected (Lauber et  al., 2010); however, air-dried soil 
samples stored for 3 months exhibited significant differences in richness 
and diversity of bacterial profiles compared to samples stored at −80°C 
(Tzeneva et al., 2009).

Some preservation solutions (OMNIgene.GUT buffer and Whatman 
FTA cards) were shown to result in lower compositional changes in 
freshly sampled fecal samples compared to others (RNAlater, 70% 
ethanol and 95% ethanol), however Whatman FTA cards consistently 
produced higher diversity values (Song et al., 2016). Another study 
showed that samples preserved in OMNIgene.GUT were more similar 
to cold-stored samples, generally considered to stabilize DNA, than 
replicates stored in RNAlater, Tris-EDTA, or at room-temperature 
(Choo et al., 2015). When cooling is unavailable, card-based preservation 
methods such as fecal occult blood test (FOBT) or Whatman FTA cards 
may be better choices than buffer solutions (Dominianni et al., 2014; 
Sinha et  al., 2016; Song et  al., 2016). However, according to the 
manufacturer, OMNIgene.GUT can preserve microbial composition at 
ambient temperature for 60 days (Doukhanine et  al., 2016). Recent 
studies showed that OMNIgene.GUT maintained microbiome profiles 
for 21 days (Lim et al., 2020) and preserved β-diversity weighted unifrac 
stability for 48 h at room temperature (Liang et al., 2020). In a study on 
rats, Ma et  al. (2020) found MGIEasy to be  superior for DNA 
concentration than OMNIgene.GUT and LongSee at ambient 
temperature. Another study showed NBgene.GUT to be as effective as 
OMNIgene.GUT at preserving the relative abundance of dominant and 
functional bacteria in human stool samples compared to frozen controls 
(Park et al., 2020). Similarly, Chen et al. (2019) showed Norgen Biotek 
to be comparable to OMNIgene.GUT, CURNA, DNA Genotek HEMA 
and RNAlater buffer solutions in maintaining β-diversity 
microbial composition.

Use of RNAlater, however, may result in decreased DNA purity and 
lower microbial diversity (Dominianni et al., 2014), higher variation in 
microbial communities with heat (Song et al., 2016), and reduced DNA 
yields (Gorzelak et al., 2015). Preservation in 70% ethanol was found 
least effective at stabilizing community structure and yielded similar 
results to using no preservative measures (Song et  al., 2016). 
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Consequently, if ethanol preservation is used, concentrations of at least 
95% should be used to reduce preservation biases, particularly where 
freezing is unavailable and for prolonged sample storage in ambient or 
sub-optimal conditions (Hale et al., 2015; Song et al., 2016).

Additional considerations when selecting between available 
preservation techniques include potential for conducting further 
analyses and whether the study is longitudinal in nature. For example, 
samples stored in RNAlater can be used for downstream transcriptomic 
investigations and samples stored in ethanol can be  used for 
metabolomics studies (Sinha et al., 2016). Should multiple molecules 
need to be extracted from a single sample, preservation using a fixative 
suitable to various types of molecules (such as 95% ethanol) may 
be  preferable (Song et  al., 2016). Marotz et  al. (2021) showed 95% 
ethanol to be an effective storage preservation method for several weeks 
at room temperature. For studies following individuals or populations 
over time with repeated sampling to measure changes in microbiome 
communities, it is imperative that the same sampling protocol and 
sample storage preservation methods be employed to avoid confounding 
differences in community composition with sample preservation 
techniques. Therefore, the sample preservation method should consider 
planned analyses, future sample collections from the same individuals 
or populations, and potential future uses of samples to investigate the 
biological question(s) of interest.

In summary, based on the findings of our literature search (See 
Supplementary Table 1), when samples cannot be processed shortly after 
collection, storage of microbial samples using OMNIgene.GUT buffer 
solution, >95% ethanol, cryopreservation or freezing at a maximum 
temperature of −80°C yields the most stability in microbial community 
composition. New preservation methods that enter the market may yield 
similar or improved results. Due to the diversity of DNA preservation 
methods employed in conjunction with temperature storage, it is 
difficult to disentangle absolute guidelines. Further work should 
be conducted to elucidate the effects of sample preservation and long-
term storage strategy on the integrity of microbial community DNA 
across different microbiomes. However regardless of methodology, 
we stress the importance of preservation consistency across samples to 
reduce batch effects.

3. DNA extraction

Once samples have been preserved and stored, the next goal is 
extraction of the greatest yield and purest quality of DNA possible. 
Choice of DNA extraction method can influence both the concentration 
and quality of the DNA obtained from the assay (Nechvatal et al., 2008). 
Here, we discuss the effects of different DNA extraction methods (e.g., 
enzymatic vs. mechanical cell lysis) on DNA purity and yield 
(summarized in Supplementary Table 2).

In the age of high-throughput sequencing, biotech companies have 
engineered all-inclusive kits to expedite extractions and standardize 
methodology. Depending on the extraction method, researchers have 
reported varying yields of DNA (Nechvatal et al., 2008) and purity of 
nucleic acids (Gerasimidis et al., 2016; Szopinska et al., 2018). DNA yield 
and purity have been shown to result in differing community diversity 
and abundance estimates. Yet despite improvements, and regardless of 
method, biases are introduced during DNA extraction (Yuan et al., 2012; 
Brooks et al., 2015) and must be considered in study design.

Fecal microbiome samples will reasonably contain a certain amount 
of undigested raw food remains, which will differ based on dietary 

preferences, and which may be  of particular concern to wildlife 
microbiome investigations. Chloroplast and mitochondrial sequences 
included in the extraction could result in off-target amplification and 
could impact the resulting microbiome profile. In certain cases where it 
is vitally important for researchers to determine the relative 
contributions of diet to the diversity and composition of the fecal 
microbiome compared to other factors under study, similar methods 
that are utilized to identify microbial taxa can be used to identify dietary 
constituents. For herbivorous animals, the internal transcribed spacers 
of the nuclear ribosomal loci can be  used to identify various plant 
species in a given fecal sample (Iwanowicz et al., 2016), for carnivorous 
animals, sequencing the partial mitochondrial control region can 
identify mammalian prey species (Shi et al., 2021), and for insectivorous 
animals, sequencing mitochondrial cytochrome oxidase subunit1 can 
similarly identify insect prey species (Esnaola et al., 2018). For carnivores 
insectivores, these methods could be coupled with a variety of direct 
examination methods for determining diet from fecal samples (Klare 
et al., 2011).

An additional aspect for consideration is that depending on the 
physical properties of the microorganisms present in the sample, DNA 
extractions that only incorporate standard chemical lysis may be unable 
to access DNA from the whole microbial community. Organisms such 
as Mycobacterium spp. and Bacillus can form spores which contain thick 
cell walls that require mechanical lysis techniques to recover DNA 
(Kuske et al., 1998; Vandeventer et al., 2011). Mechanical lysis via bead 
beating has been shown to reduce biases during DNA extraction that 
affect downstream community calculations of richness and relative 
abundance estimations due to the inability to access DNA from subsets 
of bacterial and archaeal populations (Kuske et al., 1998; Carrigg et al., 
2007; de Boer et al., 2010; Salonen et al., 2010; Smith et al., 2011; Yuan 
et  al., 2012). Furthermore, while there are a multitude of different 
options for mechanical lysis, 0.1 mm silica beads have improved the 
recovery of Gram positive bacteria during DNA extractions without 
negatively impacting Gram negative organisms (de Boer et al., 2010).

Choice of DNA extraction method affects the overall DNA 
concentration obtained from samples, although conflicting evidence 
exists as to which method and kit recovers the most accurate and highest 
quality DNA. In human fecal samples, use of the QIAamp DNA Stool 
Kit (QIAGEN) for DNA extractions was shown to produce higher 
average DNA yields than extractions using the MoBio Fecal Kit (now 
owned by QIAGEN) (Nechvatal et al., 2008). Similarly, Szopinska et al. 
(2018) found that the QIAamp DNA Stool Mini Kit yielded greater DNA 
concentrations and higher DNA purity compared to the MoBio 
PowerFecal DNA Kit (now owned by QIAGEN). Additionally, use of the 
QIAamp DNA Stool Mini Kit for extracting DNA produces better 
nucleic acid purity, greater sequencing yield, longer reads after quality 
trimming, and higher OTU-level diversity than phenol-chloroform or 
chaotropic salt based DNA extractions, yet lower double stranded DNA 
yield than chaotropic salt DNA extractions (Gerasimidis et al., 2016).

Based on the above studies, the QIAamp DNA Stool and Stool Mini 
Kits would be  obvious choices for DNA extraction kits (See 
Supplementary Table 2). However, Bahl et al. (2012) found that the 
PowerSoil DNA Isolation Kit (now owned by QIAGEN) resulted in 
higher DNA yield than the QIAamp DNA Stool Kit. Furthermore, Panek 
et al. (2018) found that the MP Biomedicals Fast DNA Spin kit for feces 
outperformed both the QIAamp DNA Stool Mini Kit and PowerSoil 
DNA Isolation Kit in terms of DNA yield and purity. A third study, 
comparing five commercial kits, highlighted the QIAsymphony Virus/
Bacteria Midi Kit as producing the highest quality DNA, and along with 
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the Zymo ZR Fecal DNA MiniPrep Kit, produced the highest DNA 
yields and bacterial diversity (Claassen et al., 2013). The PowerSoil DNA 
Isolation Kit, however, has been found to be more effective than the 
QIAamp DNA Stool Kit for low bacterial biomass samples (Velásquez-
Mejía et al., 2018) and was the kit selected for research conducted by the 
Human Microbiome Project (Huttenhower et al., 2012) as well as the 
Earth Microbiome Project (Thompson et al., 2017; Caporaso et al., 2018).

Another consideration is that estimates of relative abundance for 
microbial taxa may be biased by DNA extraction method (Yuan et al., 
2012; Wesolowska-Andersen et al., 2014; Brooks et al., 2015; Velásquez-
Mejía et  al., 2018). For example, use of the MoBio PowerSoil DNA 
Isolation Kit resulted in an increased number of Firmicutes and 
Actinobacteria and a decrease in Bacteroidetes compared to samples 
extracted using a QIAamp DNA Stool mini Kit (Velásquez-Mejía et al., 
2018). The choice of extraction kit may also be influenced by the target 
microorganism(s). Menu et al. (2018) showed that the EZ1 (Qiagen) kit 
yielded higher concentrations on nucleic acids and lower levels of 
contaminants than the QIAamp DNA Stool Mini Kit, for pathogenic 
eukaryotes (5 protozoa and 1 microsporidium).

One drawback for all sequence-based assessments of microbial 
communities is that the data are inherently compositional and very 
often highly sparse, which can lead to spurious correlations between 
taxon abundances and metrics of interest or between taxon abundances 
themselves, when using traditional statistical methods. Others have 
provided an overview of the various tools for dealing with both the 
compositional and sparse nature of microbiome data (Tsilimigras and 
Fodor, 2016; Gloor et al., 2017). Beyond statistical tools, researchers may 
want to quantify absolute counts of bacterial cells/genomes to properly 
scale counts from sequencing. Again, there are a number of options for 
researchers including various microscopy, flow cytometry, and 
PCR-based methods for targeting all cells, only live cells (at the time of 
sample collection), or even specific taxa that may be of relevance to the 
study system (Jespers et al., 2012; Wang et al., 2021).

In summary, we recommend mechanical lysis if this is not already 
integrated into the kit protocol to maximize microbial diversity 
recovered from samples and minimize taxa-specific biases during DNA 
extraction. It is difficult to identify a single optimal DNA extraction 
method, as some studies claim that the choice of kit significantly impacts 
the resulting microbial profiles (Maukonen et al., 2012), whereas others 
report that the ability to isolate bacteria was reproducible across all kits 
tested (Claassen et  al., 2013; Greathouse et  al., 2019). Additionally, 
we stress that a single method of DNA extraction should be executed for 
all samples within a given study to negate inter-sample biases.

4. Mock communities

Sources of error and bias can occur at any stage of the microbiome 
investigation, including technical variation inadvertently introduced by 
the researcher. One way to assess this bias is to include mock microbial 
communities in the research design. Mock communities are a defined 
set of cells, genomes, or amplicons with known ratios that are used as 
controls to account for stochastic variations that occur during the 
various preparatory steps of microbiome studies (Yeh et  al., 2018). 
Additionally, mock communities used at the onset of a study can help 
detect primer bias toward important and abundant clades (Parada et al., 
2016). Mock communities help to ensure that “normal” sequencing 
occurs and not “aberrant,” meaning that sequences may be  up to 
two-fold greater or lower than they would be  in a “normal” run 

indicating a loss of precision. In these “aberrant” runs taxa abundance 
may be greatly misrepresented and sequences of rarer taxa may be lost 
completely (Yeh et al., 2018). When selecting a mock community to use, 
the researcher is given three choices for mock community type and can 
create their own or purchase a commercially available one.

Mock communities may be: 16S sequence copies, genomic, or whole 
cell. 16S and genomic communities can be  used somewhat 
interchangeably provided the researcher is cognizant that the number of 
16S copies per genome is variable between taxa, even between those that 
are closely related (Stoddard et al., 2015). On the other hand, a researcher 
may elect to use whole cell mock communities to additionally control 
for DNA extraction variability. Mock communities should be included 
in analyses along with other samples. For genetic material, mock 
communities can be included from the PCR step, whereas whole cell 
mock communities should be used from the DNA extraction step. Once 
the decision between genetic material versus whole cell mock 
communities has been made, there are then two options to source the 
mock community. Mock communities can be made de novo by the 
researcher or a pre-made mock community may be purchased from 
several suppliers including American Type Culture Collection (ATCC) 
and Zymo Research. When choosing which mock community to use, 
the most important consideration is that it contains the clades with 
characteristics of interest for the purposes of the study (i.e., gram-
positives, gram-negatives, gammaproteobacteria, fungi, archaea, GC 
rich sequences, etc.). Preliminary data on the microbiome in question 
may be needed to determine which taxa should be included in the mock 
community. Additionally, mock communities can be  selected or 
constructed to contain genetically distinct 16S rRNA genes which can 
be filtered out during data analysis to prevent contamination of samples 
with sequences from the mock community. We recommend using mock 
communities that contain sequences related to the most abundant, 
significant, and ubiquitous organisms in the microbiome community of 
interest, as well as any organisms that are of interest to the researcher, 
such as low abundance but omnipresent organisms.

5. Batch effects

Bias resulting from technical variation introduced by the researcher 
is practically unavoidable in microbiome studies. Such unwanted 
variation will be referred to here as “batch effects.” In an ideal situation, 
researchers would account for possible effects with experimental and 
protocol design from the start of a study. Where possible, biological 
variation of interest should not be conflated with sampling regimes, 
differences in protocol, or, when dealing with large numbers of samples, 
sub-setting of samples for processing. Researchers should try to ensure 
that factors such as age/sex/genetics of their samples, sampling location/
time, kit type/processing time, etc. (Wang and Lê Cao, 2020) do not 
overlap to large degrees with the actual biological variation they are 
testing in their experiments. If, however, such conflation is unavoidable 
due to the nature of the study system, there are a number of post hoc 
statistical computational methods that have been developed for dealing 
with such batch effects, specifically for microbiome data (Gibbons et al., 
2018; Ma et al., 2020; Wang and Lê Cao, 2020).

Regardless of the study system, batch effects from sample processing 
can and should be accounted for by all researchers, and minimized 
where possible (Chen et  al., 2019). When sub-setting samples for 
processing, it is important to include roughly equal proportions of 
samples representing the biological variation of interest in each 
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subsample and to randomize the samples across plates or racks of tubes. 
Processing samples in this way can not only reduce the general batch 
effects that might arise from accidental technical variations between 
subsets but can help minimize the impact of both well-to-well and 
background contamination, which are known problems with both plate 
and tube-based methods of microbiome sample processing (Minich 
et al., 2019).

6. Hypervariable region selection

In 16S rRNA gene studies, following DNA extraction, specific 
subregions of interest within the 16S rRNA gene need to be amplified 
using the polymerase chain reaction (PCR). Although high throughput 
DNA sequencing has allowed us to produce 107–108 sequences per run, 
the technical limitations of the most commonly applied sequencing 
platforms result in short length reads (100–400 bp; Schloss, 2010) of the 
16S gene, which is approximately 1,500 bp in length. Within this gene 
there are nine so-called hypervariable regions (V1-V9) that manifest 
relatively higher mutation rates, flanked by relatively conserved regions 
of DNA. These hypervariable regions are useful to sequence because 
they provide resolved insight into the divergence between relatively 
closely related microbial taxa, while the conserved sequences flanking 
these hypervariable regions make for useful PCR priming sites to 
amplify 16S genes of diverse taxa (Baker et  al., 2003). However, an 
important question is often raised: which hypervariable region(s) should 
be  targeted in a 16S rRNA gene sequence survey? In this section, 
we discuss how the selection of different hypervariable regions influence 
downstream microbiome analysis results (summarized in 
Supplementary Table 3). However, we note that the growing trend of 
long-read sequencing and shotgun metagenomics may mitigate the need 
to prioritize specific hypervariable regions in the near future 
(Sharpton, 2014).

Rates of nucleotide conservation and hypervariable region length 
vary, consequently dictating the efficacy of each region to differentiate 
between taxa. Researchers have extensively considered how the use of 
DNA sequences from the different hypervariable regions impact study 
outcomes, such as phylogeny-based measurements, taxonomic 
classification rates, and community diversity metrics. Phylogenies 
reconstructed using V4-V6 region sequences (Yang et al., 2016) and V3/
V4 sequences (Ragan-Kelley et al., 2013) are most representative of full-
length 16S phylogenies while V2, V8 (Yang et al., 2016) and V9 (Ragan-
Kelley et al., 2013) were found least similar to the full-length phylogenies 
(see Supplementary Table 3). Bukin et al. (2019) found the V2-V3 region 
to be preferable to the V3-V4 region in terms of classification for lower 
ranked taxa (genus and species) using samples from an aquatic 
environment. However, across sampling environments, the V4 region 
sequences, on average, have been shown to be  best at annotating 
sequences with genus level taxonomic labels (Soergel et al., 2012) and 
the most accurate when using simulation and mock community data 
(Liu et al., 2020).

β-diversity metrics applied to 16S data have been shown to be robust 
to primer and sequencing platform selection (Tremblay et al., 2015). Of 
those tested (V4, V6-V8, and V7-V8), the V4 hypervariable region 
sequences most closely resembled community profiles obtained using 
shotgun sequencing (sequencing of random DNA strands; Tremblay 
et  al., 2015). Similarly, in another study, simulated V4, V5-V6, and 
V6-V7 hypervariable region fragments most closely estimated full-
length 16S sequence species richness (Youssef et al., 2009).

In addition to the particular variable region of interest sequenced, 
the primer sequence itself can lead to biases during amplification. For 
example, the Earth Microbiome Project 16S Illumina Amplicon 
Protocol1 specifically modifies the V4 515F – 806R primer pair 
(Caporaso et al., 2011) to enable longer amplicon (e.g., the V4 V5 region 
using 515F-926R; Quince et al., 2011; Parada et al., 2016) as well as 
addition of degeneracy to forward and reverse primers to decrease bias 
against particular microbial lineages (Apprill et al., 2014; Parada et al., 
2016). Use of the original primer pairs resulted in decreased detection 
ability of particular microbial lineages such as Crenarachaeota and 
Alphaproteobacterial clades (e.g., SAR11). Similarly, Chen et al. (2019) 
found an inability of the degenerate primer 27f-YM to detect the 
majority of Bifidobacteriales, and other studies have demonstrated how 
primer choice can influence relative abundance estimations (Tremblay 
et al., 2015; Liu et al., 2020).

7. Polymerase chain reaction based 
library preparation

In many microbiome studies (and metabarcoding in general), PCR 
serves a dual purpose: it amplifies a genomic locus of interest to ensure 
there is a sufficient amount of DNA to sequence and it prepares the 
DNA for sequencing on a DNA sequencing platform (i.e., library 
preparation). However, errors can be introduced during PCR that affect 
downstream analyses. These errors are often difficult to detect (Goodrich 
et al., 2014) and can be compounded with each additional amplification 
cycle. This section highlights techniques employed to reduce potential 
errors during PCR.

Potential PCR errors could arise from poor DNA polymerase 
fidelity, resulting in substitutions, insertions, and deletions of base pairs, 
as well as off-target primer binding. Consequently, these errors could 
potentially produce chimeras arising from incompletely extended 
sequences annealing to another sequence. Such errors can significantly 
impact estimation of microbial community diversity and composition.

Further sources of error potentially affecting the efficacy of the PCR 
reaction could result from the choice of PCR reagents, such as the 
specific Taq enzyme used, or could relate to the properties of the samples 
themselves, which will vary in the amount of PCR inhibitors present and 
carried through downstream DNA extraction reactions. One solution 
to this would be to fine-tune the amount of DNA utilized in the reaction, 
such as reducing the concentration of a DNA aliquot that contains large 
amounts of PCR inhibitors or increasing the concentration of DNA if 
initial reactions fail. To account for these complications, researchers can 
follow established reputable protocols, such as the Earth Microbiome 
Project 16S Illumina amplicon protocol (Caporaso et al., 2018), which 
includes the use of DNA extraction kits known to both effectively 
remove PCR inhibitors while applying seemingly robust reagents that 
reliably amplify the specified amount of DNA.

Minimizing the number of PCR cycles and using high fidelity DNA 
polymerases (such as KAPA) has been shown to help alleviate the 
formation of chimeras, nucleotide polymorphisms, and compositional 
biases in microbial communities (Gohl et al., 2016; Sze and Schloss, 
2019). Using mock communities, Sze and Schloss (2019) demonstrated 
that the number of PCR cycles is of primary importance, with 

1 https://earthmicrobiome.org/protocols-and-standards/16s/
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polymerase choice being secondary. When comparing the efficacy of 
various polymerases, after clustering sequences to reduce noise and with 
30 cycles of PCR amplification, KAPA polymerase had the lowest error 
rate followed by Phusion, Q5, Accuprime, and Platinum, although 
Accuprime generated the fewest chimeras (Sze and Schloss, 2019). As 
additional cycles of PCR were conducted, Shannon diversity index 
generally increased and bacterial communities became more even (Sze 
and Schloss, 2019). For this reason, Sze and Schloss (2019) caution 
against comparing data created under differing PCR conditions. 
Another study found that beyond 20 cycles of PCR, KAPA polymerase 
outperformed Q5 and Taq both in having the lowest nucleotide error 
rate and least number of chimeric sequences (Gohl et  al., 2016). 
Additionally, reducing the amount of starting material (to between 10 
and 50 mg wet weight fecal samples) used in PCR increases DNA yield 
(Ariefdjohan et al., 2010), and decreases the percentage of chimeric 
reads detected after DNA sequencing (D’Amore et al., 2016). Sample 
biomass has also been shown to be  the most important factor in 
determining representative microbial composition (Villette et al., 2021). 
We recommend using high fidelity DNA polymerases and minimizing 
the number of PCR cycles and amount of starting DNA used to mitigate 
any potential errors arising from the PCR process.

Previous best practice also suggested that, to minimize bias, it is 
advisable to conduct triplicate PCRs per sample (Goodrich et al., 2014). 
In a recent study spanning hundreds of samples from different 
environments, results from single PCR reactions were found similar to 
pooled results from triplicate runs (Marotz et al., 2019). This suggests 
that owing to the improved processivity and fidelity of DNA 
polymerases, the need for triplicate runs may be obsolete, substantially 
reducing costs (Marotz et al., 2019). The authors do add a caveat to this 
claim, however, stating that prior tests should be run for the specific 
sample environment prior to abandoning conventional wisdom (Marotz 
et al., 2019).

8. Sequencing technology

Following DNA extraction and amplification, the genes present in 
each sample need to be sequenced. Next generation sequencing (NGS) 
employs parallel sequencing technology and as the technology evolves, 
so too does the number of commercially available NGS platforms. In 
this section, we explore the current options available to researchers and 
the advantages and disadvantages associated with each.

DNA sequencing has evolved from the original 2D gel 
electrophoresis (1975), Sanger sequencing (1977), and more recently 
Roche 454 (2004–2012). Illumina’s (~2007) HiSeq and MiSeq 
sequencing platforms have quickly become the sequencing standard, 
producing a higher quantity and quality of reads than Roche 454 
(Caporaso et al., 2012). The two Illumina sequencers (HiSeq and MiSeq) 
can be distinguished from each other by scale of operation, cost, and 
read length. MiSeq machines deliver rapid smaller scale sequencing 
while the HiSeq reduces the cost per sample by enabling higher 
parallelization at the expense of time and sequence length (Caporaso 
et al., 2012). MiSeq and HiSeq have both been shown to produce low 
variability across lanes in a single run and similar quality reads 
(Caporaso et al., 2012). Taking advantage of the higher quantity of reads, 
dual-index paired-end primers have enabled MiSeq reads to attain 
similar error rates to Roche 454 GS-FLX Titanium while increasing 
read-depth by 10-fold (Kozich et al., 2013). Unfortunately, MiSeq is 
currently limited to short read sequencing of roughly 300 nucleotides. 

Attempts to increase read length of MiSeq generally resulted in reduced 
overlap between read pairs (Schloss et al., 2016).

While Illumina’s HiSeq/MiSeq platforms limited researchers to 
short hypervariable regions of the 16S gene, emerging long-read 
sequencing technologies such as PacBio and Oxford Nanopore hold the 
potential to transform 16S investigations by offering access to full-length 
16S gene sequence reads. When applied to 16S rRNA gene amplicon 
sequencing, these platforms resolve circular consensus sequences (CCS) 
and unique molecular identifiers (UMI; Callahan et al., 2019; Karst et al., 
2021), which are relatively long 16S sequences than typically obtained 
by Illumina platforms. These longer read 16S sequences provide more 
information about the genomic composition of each sequenced 
molecule and are more likely to receive better resolved taxonomic 
annotations to the level of genus or species (Schloss et  al., 2016; 
Pootakham et al., 2017) and produce phylogenies more similar to those 
reconstructed using full-length genes (Ragan-Kelley et al., 2013). One 
limitation of long-read sequencing technologies that has reduced their 
adoption is concern surrounding their higher sequencing error rates 
compared to short read technologies. Rapid improvements to these 
technologies, however, are leading to the development of new informatic 
solutions targeted at reducing long-read errors. For example, after 
conducting read filtering and quality control, PacBio (P6-C4 chemistry) 
can produce sequences with error rates of around 0.03% (Schloss et al., 
2016; Wagner et  al., 2016). Another potential effect of long-read 
sequencing is on the improved accuracy of estimates of species richness 
(Jeong et al., 2021). One study found that MiSeq V1-V2 sequences have 
elevated species richness estimates compared to PacBio full-length 
sequences from the same sample (Wagner et al., 2016). However, when 
the full-length PacBio sequences were truncated to simulate V1-V2 
reads, there was an increase in species diversity indicating that short 
read sequencing may result in an overestimation of species diversity 
(Wagner et  al., 2016). In addition, the use of full length sequences 
including all hypervariable regions, improved classification of the 
majority of sequences at the species level (Johnson et al., 2019; Jeong 
et al., 2021).

As new sequencing platforms are developed and chemistries 
improve, the per nucleotide error rates resulting from sequencing error 
will likely decrease. Currently, a large factor in platform selection resides 
in cost, wherein HiSeq is often the cheapest in per sample cost, followed 
by MiSeq and then PacBio. Unfortunately, read length and read quality 
are proportional to cost (Amir et al., 2017). Longer read platforms tend 
to sequence a smaller number of molecules from the community, and as 
a result tend to require higher costs to characterize the diversity of the 
overall community as compared to short read (but high volume) 
platforms. These long read approaches hold great potential for advancing 
16S analyses, but our recommendation is to focus their application 
toward specific questions (e.g., phylogenetic inference of the abundant 
taxa across communities) unless comprehensive characterization of a 
community is not a critical priority. Therefore, the selection of a 
sequencing platform should be  based on experimental need. The 
following sections which discuss downstream bioinformatic analyses 
may provide additional insight into which sequencing platform should 
be utilized.

9. Bioinformatics

DNA sequencers produce “raw” reads which must be subject to 
computational quality control prior to analysis. During this 
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bioinformatic cleanup process, there exist numerous software options, 
each designed to produce optimal results for differing scenarios. To 
guide wildlife investigators with their selection of bioinformatic 
analyses, this section provides an overview of important steps in 16S 
gene sequence processing pipelines, and highlights examples of stand-
alone and popular all-inclusive methods (See Supplementary Table 4).

First, sequencing adaptors must be removed from raw amplicon 
reads [using for example, cutadapt (Martin, 2011), trimmomatic (Bolger 
et  al., 2014) or Skewer (Jiang et  al., 2014)]. Reads are then quality 
trimmed [e.g., Cutadapt (Martin, 2011) or TRIMMOMATIC (Bolger 
et al., 2014)], to filter or truncate error-prone read sequences prior to 
analysis. Following this, reads are typically subject to paired-end 
assembly [e.g., PANDAseq (Masella et al., 2012)], which merges mate 
pairs into longer 16S rRNA gene contigs. Chimeras are then identified 
and removed from the set of reads [e.g., UCHIME (Edgar et al., 2011), 
DECIPHER (Wright et al., 2012), or the chimera removal functions in 
DADA2 (Callahan et al., 2016)].

After these quality filtering steps, sequences can be assigned into 
operational taxonomic units (OTUs), which are clusters of sequences 
that are thought to be closely related. This can occur in two general ways: 
de novo (e.g., similarity-based and model-based) and reference-based 
(e.g., open-reference and closed-reference). Although OTUs can 
be created in different ways, studies have demonstrated that de novo 
methods, which do not rely on information from a database, outperform 
reference-based clustering that leverages database-dependent taxonomy 
binning (Schloss and Westcott, 2011; Westcott and Schloss, 2015; 
Schloss, 2016). Furthermore, for comparisons between different de novo 
based methods that use sequence similarity to cluster sequences into 
OTUs, average neighbor clustering – which averages the differences 
between pairs of sequences – was found to be the most robust method 
(Schloss and Westcott, 2011; Schloss, 2016). Additionally, when OTU 
clustering was applied to human twin gut microbiomes, de novo 
clustering identified a higher number of heritable OTUs between twin 
pairs than other approaches (Jackson et al., 2016), which improved the 
power of the analysis.

DADA2 (Callahan et  al., 2016) and Deblur (Amir et  al., 2017) 
provide an alternative de novo clustering approach that does not rely on 
sequence similarity to assign sequences to OTUs. Rather, these 
approaches resolve differences between reads that result from 
sequencing error to resolve the total set distinct biological sequence 
variants observed in the data. In so doing, these approaches identify 
specific amplicon sequence variants (ASVs) that preserve fine-scale 
variation between sequences, which may be  lost during sequence 
similarity based OTU clustering. However, this approach may be subject 
to sensitivities that obscure detection of singleton OTUs (i.e., those with 
only one representative sequence in the data set; Callahan et al., 2016). 
In an analysis incorporating three denoising pipelines (DADA2, Deblur 
and UNOISE3), Nearing et al. (2018) showed with mock community 
data, that the number of ASVs produced varied considerably across the 
pipelines, with DADA2 finding the most ASVs when using real datasets. 
These discrepancies could have a significant effect on α-diversity 
metrics. However, the three packages gave consistent per-sample 
microbial compositions, a result echoed by Glassman and Martiny 
(2018) who found β-diversity patterns to be  robust to the OTU 
clustering procedure implemented. Despite the differences in ASV 
count, researchers should also evaluate the financial costs and time 
constraints associated with the choice of denoising software. DADA2 
and Deblur are both open-source and freely available, whereas 
UNOISE3 is closed-source, but is by far the fastest in terms of analysis 

run time (1,200 times and 15 times the speed of DADA2 and Deblur, 
respectively; Nearing et al., 2018).

It is also worth mentioning that UNOISE3 and DADA2 produce 
ASV output that depends on the input given pool of samples as 
compared to Deblur, which using a denoising algorithm based on a 
reference set (Amir et al., 2017). This ensures that all sequences from 
different samples are denoised independently when considering all other 
samples in the run. In contrast UNOISE3 and DADA2, denoise based 
on the current sample pool, and therefore denoise profiles are also a 
function of the samples that are present (Amir et al., 2017).

Once ASVs or OTU-clustered representative sequences have been 
produced, they are aligned to enable comparisons between the 
sequences, assign taxonomy, or construct phylogenetic trees. Three 
primary algorithms that are commonly used in nucleotide alignments: 
de novo pairwise, de novo multiple sequence, and profile-based 
alignments each offer differing levels of speed and accuracy (Schloss, 
2009). Before or after alignment, sequences can be  taxonomically 
annotated using SILVA (Yarza et al., 2008), Greengenes (DeSantis et al., 
2006), or Ribosomal Database Project (RDP, Cole et al., 2009) 16S rRNA 
gene sequence databases. Each 16S database contains sequences with 
varying levels of alignment quality and phylogenetic diversity (Schloss, 
2010) that result in environment-specific taxonomic classification 
accuracy. For example, SILVA-based taxonomic classification classifies 
human fecal microbiomes and soil samples with greater accuracy than 
Greengenes or RDP while RDP-based taxonomic classification better 
classifies mouse feces (Schloss et al., 2016).

As noted above, it is increasingly appreciated that the nature of 
microbiome data is compositional (Gloor et al., 2017; Silverman et al., 
2017; Weiss et  al., 2017) with most studies comparing the relative 
abundances of taxa (Silverman et  al., 2017). Traditional statistical 
methods assume that the nature of sequencing data is ecological (Gloor 
et al., 2017), with reads/sample being comparable to biological sampling 
effort (Weiss et al., 2017; Pannoni et al., 2022). Within one sequencing 
run, the library size total number of reads per sample can vary by orders 
of magnitude (McMurdie and Holmes, 2014; Weiss et al., 2017) and 
often contain many zeros (Weiss et  al., 2017). As such, numerous 
methods to normalize microbiome data have been developed to reduce 
statistical artifacts produced during analysis and address the 
compositional nature of the data. Some normalization techniques are 
mentioned below, but this is not discussed extensively in this review, as 
this area of microbiome research is constantly evolving and currently 
there is no consensus as to the best method for library normalization 
(Pannoni et al., 2022).

Two widely used well-known methods include normalizing using 
proportions and rarefaction (McKnight et al., 2019). Normalizing using 
proportions involves dividing the reads in each individual OTU or ASV 
by the total number of reads in the sample, whereas rarefaction 
randomly subsamples each sample to the lowest read depth of all 
samples (McKnight et al., 2019). These methods are seemingly losing 
favor. For example, rarefaction, leads to the loss of available valid data 
(McMurdie and Holmes, 2014) and purportedly has a high false 
discovery rate (Lin and Peddada, 2020). Normalizing using proportions 
has been criticized as it does not account for heteroskedasticity in the 
data (Weiss et al., 2017; McKnight et al., 2019). However, rarefaction, 
compared to other methods based on presence or absence, has been 
shown to better cluster samples based on biological origin (Weiss et al., 
2017). Similarly, McKnight et al. (2019) showed in a study investigating 
the best normalization methods for microbiome data from an ecological 
viewpoint, that both normalization of proportions and rarefaction were 
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useful for producing more accurate comparisons among communities, 
with normalization by proportions found to be the best method overall. 
Other methods, such as Compositional Data Analysis [CoDA; See 
Tsilimigras and Fodor (2016) for a review of some CoDA methods], 
variance stabilization transformation (VST; McMurdie and Holmes, 
2014) and more recently, Analysis of Compositions of Microbiomes with 
Bias Correction (ANCOM-BC; Lin and Peddada, 2020) all have certain 
analytical advantages and disadvantages (Pannoni et al., 2022). It is 
important that investigators follow the current literature to determine 
the potential advantages and pitfalls of newly developed methodologies 
to ascertain the best solution for their data analysis.

While bioinformaticians can implement these procedures through 
custom software pipelines to string together these vital informatic 
processes, there exist several software packages that expedite these steps 
and bring added uniformity between studies. Of the most commonly used 
software suites, QIIME (Caporaso et  al., 2010) is OTU-based, while 
DADA2 (Callahan et al., 2016) and most recently QIIME 2 (Bolyen et al., 
2019) produce ASVs. Mothur (Schloss et al., 2009) allows the user to 
choose either an OTU-clustering or ASV approach, depending on 
preference. A recent review of 6 different pipelines, three OTU-based 
(QIIME-uClust, mothur & USEARCH-UPARSE) and three ASV-based 
(DADA2, QIIME2-Deblur & USEARCH-UNOISE3), showed that the 
ASV-based pipelines had higher specificity (low production of spurious 
results) than OTU-based pipelines (Prodan et  al., 2020). Within the 
ASV-based pipelines tested, USEARCH-UNOISE3 performed best overall 
with both high sensitivity (ability to accurately detect true OTUs/ASVs) 
and good specificity. DADA2 was recommended for studies on closely 
related strains owing to its high sensitivity and best resolution. Conversely, 
the QIIME-uclust pipeline was not recommended owing to there being 
many spurious OTUs and inflated α-diversity values (Prodan et al., 2020). 
In the end, regardless of the sequencing technology and software selection, 
inclusion of quality trimming, error correction and read assembly can 
significantly reduce substitution errors (Schirmer et al., 2015).

The output from these pipelines or software platforms is a matrix 
relating features (taxa or genes) to the samples (Knight et al., 2018). 
Generally, microbial community diversity can be  measured 
quantitatively (assessing how relative abundance of taxa is associated 
with changes in the microbial community) or qualitatively (e.g., 
presence / absence). We have not delved into higher level analyses (such 
as α- and β-diversity, PERMANOVA, unweighted and weighted Unifrac) 
in this review. For a succinct review and more information on these 
analyses, please consult Knight et al. (2018). As many of these analyses 
require a phylogenetic tree, we have reviewed phylogenetics and the 
construction of phylogenetic trees.

10. Phylogenetics and 
ecophylogenetics

Once sequences are processed, filtered, and clustered into OTUs or 
ASVs, phylogenies can be  reconstructed from alignments of 
representative sequences of each OTU or ASV, providing additional 
insights into microbial communities. Microbial phylogenetic trees allow 
for the calculation of evolutionarily informed measures of microbial 
β-diversity (Lozupone and Knight, 2005), and identification of 
phylogenetic signal (Gaulke et al., 2018). If considering a diverse set of 
hosts, combination of microbial and host phylogeny can be used to test 
for co-phylogenetic signals, as well as for modeling of host traits 
(Washburne et al., 2017). Microbial phylogenetic trees have been shown 

to vary based on gene, region, sequence length, alignment, diversity, and 
reconstruction method. To draw meaningful conclusions from these 
tools which rely on phylogenies, researchers must be  aware of the 
methodological sources of phylogenetic error that may impact 
their results.

Phylogenetic reconstruction using different hypervariable regions 
of the 16S gene will yield differing levels of taxonomic resolution which 
vary by taxonomic lineage. For example, the 16S rRNA gene is known 
to be unable to differentiate between species within Bacteroidaceae and 
Bifidobacteriaceae (Moeller et al., 2016) and no hypervariable region 
was able to recapture the same set of diversity when compared to the full 
length 16S rRNA gene (Johnson et al., 2019). Thus, alternative markers 
should be used when taxa of biological interest are known to have poor 
separation with 16S gene sequences. Longer sequences are better able to 
recapitulate full-length genetic variation (Schloss, 2010), increase the 
proportion of correct trees (Graybeal, 1998), improve branch-length 
calculations (Rosenberg and Kumar, 2003), and more accurately 
represent the phylogenetic distance of full-length phylogenies (Ragan-
Kelley et al., 2013). However, due to potentially uninformative stretches 
within genes, analyzing the appropriate region(s) of a gene that yield 
discriminatory power between taxa has a greater effect on phylogenetic 
inferences than increasing sequence length (Martin et al., 1995). In 
addition, and to increase phylogenetic accuracy, it is critical to trim 
sequences to the same starting and ending regions, as different regions 
of genes do not mutate at uniform rates (Schloss, 2010). The ability of 
different 16S hypervariable regions to compute community diversity 
metrics is discussed in a prior section.

Other limitations of phylogenetic reconstruction using the 16S gene 
include limitations of using the 16S marker rRNA gene itself. For example, 
it has been shown that while very rare, it is possible for the 16S gene to 
be horizontally transmitted between species (Wang and Zhang, 2000; 
Acinas et al., 2004; Kitahara and Miyazaki, 2013; Tian et al., 2015). There 
is also evidence to suggest heterotachy (lineage-specific evolutionary 
rates) within the 16S gene, resulting in complications of phylogenetic 
interpretation. Despite these limitations, however, the 16S rRNA gene has 
been used for over 30 years to define phylogenetic relationships of 
microorganisms (Woese, 1987). In the future longer read technologies 
may allow for phylogenetic reconstruction using full length sequences or 
sets of core housekeeping genes shared across many genomes.

There are two main flavors of phylogenetic tree construction: (1) 
sequence placement approaches onto a phylogenetic reference tree, and 
(2) de-novo phylogenetic tree construction. Sequence placement 
approaches effectively use a reference phylogenetic tree to “place” 
sequences into phylogenetic context with some measure of certainty. 
Various algorithms exist which utilize different underlying statistical 
frameworks to map sequences to reference trees such as maximum 
likelihood [e.g., Evolutionary Placement Algorithm (Berger et al., 2011) 
and pplacer (Matsen et al., 2010)] or Hidden Markov Models [e.g., SATé-
enabled phylogenetic placement (Janssen et  al., 2018)]. De-novo 
phylogenetic tree approaches build a novel tree from sequences using a 
variety of phylogenetic reconstruction methods to model evolutionary 
relationships from sequences. The relatively short sequence obtained 
upon resolving ASV or OTU (e.g., 150 nucleotides) fragments in 
combination with the fact that the 16S gene is relatively highly conserved 
across microbes, present the problem that they may not contain sufficient 
phylogenetic signal to reproduce an accurate phylogenetic tree. Various 
strategies, such as inclusion of full-length reference sequences, have been 
shown to allow for more accurate phylogenetic tree construction despite 
this limitation (O’Dwyer et al., 2015; Gaulke et al., 2018).
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There are four primary types of denovo phylogenetic reconstruction 
methods that model evolutionary relationships from aligned sequences: 
distance, parsimony, maximum likelihood, and Bayesian inference. 
Distance-based methods such as neighbor joining (Saitou and Nei, 
1987) or minimum-evolution (Rzhetsky and Nei, 1992) rely on a 
distance matrix composed of all taxa, whereas maximum parsimony 
methods minimize the number of evolutionary events predicted in the 
final phylogeny (Felsenstein, 2004). Both maximum likelihood and 
Bayesian inference employ probability-based statistical approaches to 
determine the optimal tree. Maximum likelihood methods determine 
the tree that has the highest probability of depicting evolutionary history 
based on the likelihood function, while Bayesian inference uses 
posterior probabilities to optimize topology (Svennblad et al., 2006).

The accuracy of the reconstruction method depends on substitution 
rate, number of sites, and number of taxa (Rosenberg and Kumar, 2001, 
2003). Of note within phylogenetic construction of sequences is that it 
is essential to ensure that artificial sequences (e.g., adaptors used for 
sequencing, amplicon primer regions) are removed prior to phylogenetic 
tree assembly since inclusion can lead to spurious associations between 
sequences (Arnold et al., 2022; Davis et al., 2022). Generally, maximum 
likelihood and Bayesian methods reconstruct phylogenies most 
accurately, followed by maximum parsimony and neighbor-joining, 
respectively (Rosenberg and Kumar, 2001; Ogden and Rosenberg, 2006; 
Price et al., 2010). Currently, some of the most popular software used in 
microbiome studies for phylogenetic tree reconstruction are FastTree2 
(Price et al., 2010) RaxML (Stamatakis et al., 2012; Stamatakis, 2014) 
using maximum likelihood methods, and BEAST (Drummond and 
Rambaut, 2007) for Bayesian-based tree construction. Recently released 
RaxML-NG (Kozlov et al., 2019) and IQ-TREE2 (Minh et al., 2020) 
appear promising as they boast a number of improvements including 
the accuracy of maximum likelihood with greatly reduced computational 
time compared to prior options.

While different methods of phylogenetic tree reconstruction will 
provide varying levels of accuracy, phylogenies in general are highly 
dependent on the quality of sequence alignment. Morrison and Ellis 
(1997) found that sequence alignments accounted for more phylogenetic 
variation than choice of tree-building method. Schloss (2009, 2010) has 
conducted extensive studies that demonstrate differences in alignment 
quality between full-length 16S databases that are commonly used for 
reference-based alignment and found that poor quality alignments 
inflate phylogenetic diversity. As a result, the lower quality variable 
region alignments in the Greengenes database predict higher genetic 
diversity, richness, and phylogenetic diversity than alignments using the 
SILVA and RDP databases (Schloss, 2010). Errors in topology from poor 
alignments also become magnified in phylogenies with shallow diversity 
(Ogden and Rosenberg, 2006) and both sequence diversity and the 
number of lineages have been shown to impact phylogenetic accuracy 
[reviewed in Hillis et al., 2003 and Nabhan and Sarkar, 2012].

With the exception of common community level β-diversity 
metrics (e.g., unifrac), typical microbial analyses remain largely 
phylogenetically unaware. A consequence of phylogenetic-agnostic 
approaches is that meaningful patterns between microbial 
communities and ecological covariates are lost. Ecophylogenetics is a 
burgeoning field seeking a unified analytical framework of microbial 
evolutionary history (i.e., phylogeny) and ecological community 
patterns. In combination, ecophylogenetics is able to link evolutionary 
related groups of microbes to ecosystem services of interest (Mouquet 
et al., 2012; Gaulke et al., 2018). Ecology and evolution are inherently 
linked with one another; evolution results in diversification of 
monophyletic microbial lineages, or clades, within a community which 

interact with ecological ecosystem parameters. In turn, ecological 
parameters create selection of microbial lineages, influencing 
microbial community composition and providing opportunity for 
microbial functional specialization and speciation events.

Vast opportunity exists to apply microbial ecophylogenetic methods 
within a wildlife and disease ecology setting to (1) determine how 
microbial clades are selected for based on host (e.g., host immune status, 
parasitic burden) and environmental parameters (e.g., population 
fragmentation, anthropogenic factors) and (2) understand how radiation 
of microbial clades within a host impacts community assembly and host 
fitness (e.g., host energy balance, disease susceptibility; Prosser et al., 
2007). Monophyletic clades, clades which contain descendants all from 
a common ancestor, that are highly prevalent across individuals 
represent lineages which may hold conserved traits key to microbial 
actions on host physiology. Conserved microbial traits within the 
lineage may also facilitate the clade’s distribution across hosts. For 
example, identification of a microbial clade strongly associated with host 
fitness provides novel hypotheses about conserved microbial traits 
which influence host success within a particular environment. 
Conserved clades may be important candidate lineages to pinpoint for 
conservation management monitoring and preservation strategies.

The ClaaTU workflow is an open-source tool that has been 
developed to aid microbiome researchers in ecophylogenetic analysis to 
identify Cladal Taxonomic Units, which collectively manifest an 
association with ecological parameters of interest (Gaulke et al., 2018; 
Couch et  al., 2020; Sharpton et  al., 2021). ClaaTU is a brute-force 
algorithm that conducts a root-to-tip traversal of a phylogenetic tree 
assembled from microbial sequences derived from a set of microbial 
communities (e.g., the OTU output table from DADA2). ClaaTU 
considers every lineage within a phylogeny to identify the ecological 
distribution of monophyletic groups of taxa within the samples of 
interest. Finally, a phylogenetically informed permutation test 
determines if a given clade is more prevalent than expected by chance 
across a set of samples, indicating ecological conservation.

Overall, maximizing the accuracy of phylogenetic analyses is 
complex and requires researchers to understand how each decision in 
their analyses may affect potential conclusions. Generally, to improve 
phylogenetic accuracy the most important considerations are the gene 
region of interest and the alignment algorithm. Secondarily, tree 
reconstruction method, sequence length, number of lineages, and 
diversity between lineages influence phylogenetic accuracy. Additional 
considerations must be made if conducting clade-based analyses due to 
their dependence on rooted phylogenies.

11. Conclusion

The incorporation of the 16S rRNA gene into the analytical 
repertoire of wildlife investigators has provided powerful, inexpensive 
insights into gut microbial communities and expanded our 
understanding of their role in wildlife ecology, health and potentially 
even population dynamics. However, the procurement of samples in the 
field can be costly, often including travel to remote sensitive areas or the 
capture and handling of animals (Cattet et al., 2008), in some cases 
threatened species. Thus, it is imperative that wildlife veterinarians and 
researchers wishing to embark on a study that includes 16S rRNA gene 
analyses have a thorough understanding of the numerous sources of 
error that can compromise studies, the various options available to avoid 
these errors, and how different choices affect research outcomes. While 
studies are calling for a standardized protocol to aid comparisons across 
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microbiome research (Greathouse et  al., 2019), to the best of our 
knowledge, there is currently no universal consensus regarding the best 
methodological approach for microbiome analyses, possibly due to the 
fact that different studies manifest different goals and constraints. 
We can regardless look at the research summarized here to zero-in on 
major points for consideration and derive recommendations of practice.

For a wildlife researcher, perhaps the most critical element in a 
microbiome study is the use of as-sterile-as-possible sample collection 
techniques in the field, thereby reducing the risk of cross-contamination 
of samples. Extracting DNA from fresh fecal samples circumvents 
potential storage and preservation effects, although in the event of 
delayed sample processing, cold storage or cryopreservation at −80°C 
without a buffer is considered the gold standard at reducing potential 
changes to the microbial community composition (Vandeputte et al., 
2017; Carruthers et al., 2019; Moossavi et al., 2019; Marotz et al., 2021). 
In cases where freezing may not be an option, such as if samples need to 
be  transported internationally where preservation methods require 
buffer solutions, it is important to know the limitations of supplies and 
sample storage conditions. Many of the buffer solutions have only been 
tested in temperature-controlled laboratories and may fare differently in 
more extreme environments. Furthermore, choice of buffer solution 
should consider the long-term storage of samples should transport 
between sample collection site and storage destination be delayed, such 
as could happen if samples are delayed at customs or during shipping. 
These recommended sample collection and storage methods do not 
inherently consider their potential effect on other uses of the samples. 
For example, to study the transcriptome or metabolome it is critical to 
either snap freeze or preserve samples in a suitable buffer that maintains 
the integrity of the RNA (Camacho-Sanchez et al., 2013). Thus, when 
designing a gut microbiome study, and sample collection and storage 
protocols, the potential future uses for samples should be considered.

When extracting DNA from samples, the use of kit-based DNA 
extraction methods may be preferable to researchers new to the field, as 
owing to their consistency of approach, they can reduce variability and 
improve cross-study comparisons. To account for potential sources of 
experimental contamination, we suggest the inclusion of negative controls 
with all sample sets that are ultimately subjected to DNA sequencing and 
analysis, especially when processing low biomass communities. Moreover, 
the use of mock communities can serve as a strong quality control to 
identify error-driven outliers within samples (Bender et al., 2018) and to 
quantify kit or batch effects. We also stress that mechanical lysis should 
be integrated to ensure that maximum diversity within the community is 
captured. Following DNA extraction, optimal primer selection may 
be microbial community specific, but our review of current best practice 
suggests that reads that include portions of the V4 hypervariable region 
appear to frequently provide improved discriminatory power.

Finally, during bioinformatic processing, we  suggest careful 
attention be paid during the various pre-processing steps (see Figure 1). 
While excellent bioinformatic pipelines exist to help streamline 
bioinformatic analyses of these data, we recommend that researchers 
new to the field collaborate with bioinformaticians that can help ensure 
that these pipelines are appropriately applied to their data of interest. It 
would also be prudent for researchers to work through these pipelines 
using standardized data sets, such as those in the Earth Microbiome 
Project (Caporaso et  al., 2018) or the Microbiome Quality Control 
Protocols (Sinha et al., 2017), to assist with understanding the techniques 
and interpretation of the results (Knight et al., 2018). Should researchers 
wish to embark on a meta-analysis, it is imperative that they are 
cognizant of and analytically correct for study-effects that may diminish 

cross-study comparisons (Armour et al., 2019). Ultimately, we stress that 
methodological consistency between samples within a study is of 
paramount importance to reduce sample-specific effects.

In this paper, we have outlined several broad recommendations and 
key considerations to assist wildlife researchers in designing suitable gut 
microbiome studies. Although this is not a definitive guide, owing to the 
constant improvement of techniques and software available, we hope 
that this paper will prove a useful resource to wildlife researchers hoping 
to incorporate microbiome analyses into their research design.
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