Phytoremediation is an effective strategy for saline land restoration. In the Western Songnen Plain, northeast China, soil fungal community recovery for saline phytoremediation has not been well documented among different cropping patterns. In this study, we tested how rotation, mixture, and monoculture cropping patterns impact fungal communities in saline-alkali soils to assess the variability between cropping patterns.
The fungal communities of the soils of the different cropping types were determined using Illumina Miseq sequencing.
Mixture and rotation promoted an increase in operational taxonomic unit (OTU) richness, and OTU richness in the mixture system decreased with increasing soil depth. A principal coordinate analysis (PCoA) showed that cropping patterns and soil depths influenced the structure of fungal communities, which may be due to the impact of soil chemistry. This was reflected by soil total nitrogen (TN) and electrical conductivity (EC) being the key factors driving OTU richness, while soil available potassium (AK) and total phosphorus (TP) were significantly correlated with the relative abundance of fungal dominant genus. The relative abundance of
Overall, mixture is superior to crop rotation and monocultures in restoring fungal communities of the saline-alkali soils of the Western Songnen Plain, northeast China.