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In terms of the number and diversity of living units, the prokaryotic empire 
is the most represented form of life on Earth, and yet it is still to a significant 
degree shrouded in darkness. This microbial “dark matter” hides a great deal of 
potential in terms of phylogenetically or metabolically diverse microorganisms, 
and thus it is important to acquire them in pure culture. However, do we know 
what microorganisms really need for their growth, and what the obstacles are 
to the cultivation of previously unidentified taxa? Here we  review common 
and sometimes unexpected requirements of environmental microorganisms, 
especially soil-harbored bacteria, needed for their replication and cultivation. 
These requirements include resuscitation stimuli, physical and chemical factors 
aiding cultivation, growth factors, and co-cultivation in a laboratory and natural 
microbial neighborhood.
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Introduction

The planet we know today is largely the result of the microbial activity in the biosphere. 
Earth’s smallest and simplest organisms created the conditions for the development of the vast 
number of life forms we all know. The microscopic world is even vaster, and its diversity is 
stunning, but it is very difficult to reach. Even though its existence has been acknowledged for 
several centuries, it has been very challenging to study its roles. A crucial advance in the study 
of “the unreachables” arose in the days of Robert Koch at the end of the 19th century. 
He established a causative relationship between a microbe and its impact on a host (disease). 
Koch’s postulates demanded the presence of a microorganism in pure culture, isolated from the 
host, to confirm the link between the pathogen and the disease. From this point on, microbes 
were no longer considered scientific curiosities, but rather modelers of our bodies and Earth’s 
ecosystems (Turnbaugh et al., 2007; Graham et al., 2016; Gilbert et al., 2018). Much more efforts 
have been taken over the following decades to study microorganisms: these progressed from the 
description of and fight against the most critical human and plant pathogens, which dramatically 
improved our quality of life, to the later investigations on the community composition of 
different environments, the most advanced of which used marker gene or metagenome 
sequencing (Lane et al., 1985; Lynch et al., 2012). In recent years, sequencing technologies have 
addressed many environmental and human health-associated issues, such as the analysis of 
microbial responses to contamination (Hemme et al., 2010), the discovery of novel taxa to 
be used for bioremediation, the discovery of novel producers of antibiotics (Ling et al., 2015), 
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or revealing the co-occurrence of antibiotic resistance genes in 
different environments (Li et al., 2015), to name a few.

Microorganisms live in virtually any environment, including 
those considered extreme due to their high temperature, pH, salinity, 
or concentration of pollutants (Mirzaie et al., 2015; Mehetre et al., 
2018; Panda et al., 2018; Power et al., 2018; Maza et al., 2019). The 
physiological and biochemical potential of microbes living within 
these extreme environments is enormous. Thriving at the limits of life, 
extremophilic and extremotolerant microorganisms can provide 
enzymes such as the widely used Taq polymerase isolated from 
Thermus aquaticus (Brock, 1967; Brock and Freeze, 1969); or 
uncommon metabolites, such as previously unknown lipids 
(Schneider et al., 2019), unusual polyunsaturated fatty acids (Řezanka 
et al., 2019), antioxidants, pigments (Asker et al., 2012), bioactive 
natural compounds and other secondary metabolites with a wide 
range of applications (Lewis et al., 2010; Manivasagan et al., 2014). 
Microbes can also offer improved bioremediation possibilities 
(Pascoal et al., 2020), can assimilate unusual substrates (Xu R. et al., 
2018) including toxic compounds, or resist and detoxify several 
antibiotics (Rettedal et al., 2014; McLain et al., 2016).

In order to fully describe these microorganisms and reveal their 
vast potential, it is necessary to obtain them in pure culture. Moreover, 
cultivation provides context to the metagenomic data (Nichols, 2007) 
and helps us verify metagenome-based conclusions on microbial 
interactions (microbe-microbe, microbe-plant, microbe-
environment). However, bringing environmental microbes to pure 
culture under standard laboratory conditions has proven to be a very 
challenging task. Cultivation can be  labor-intensive, tiring, time-
consuming, and may not ensure success; but it can be rewarding if all 
the factors required for microbial growth are included (Figure 1). Here 
we  discuss some generalities that elucidate the phenomenon of 
unculturability, with special attention paid to soil, being a habitat that 
harbors the greatest diversity of microorganisms, to build a foundation 
upon which to review some of the recent strategies to better reach 
“the unreachables.”

Why do you not grow?

If it is alive, no microorganism is unreachable: we  just do not 
know how to recreate their natural environment in order to obtain a 
pure culture (Watve et al., 2000; Stewart, 2012). With this in mind, the 
key step toward successful cultivation would be to replicate essential 
aspects of the microorganism’s natural existence as thoroughly as 
possible (Figure 1). Some of the environmental variables are easily 
discovered and can be  readily incorporated into cultivation 
methodologies, but many other factors that influence growth are 
much more obscure, and including them in cultivation strategies is 
not as straightforward.

The environment in which microorganisms exist is usually 
different from the one we  create for them in the laboratory. 
Microorganisms live under what Koch (1971) called a “feast and 
famine existence.” As a consequence, the growth dynamic observed 
under nutrient-rich laboratory conditions does not necessarily exist 
in nature, where environmental changes are common and poor 
nutritional conditions need to be withstood for longer periods of time 
(Koch, 2001; Pinto et al., 2015). Microorganisms can be categorized 
by their resource intake characteristics either as oligotrophs or 

copiotrophs (Meyer, 1994; Fierer et al., 2010). The main distinguishing 
parameters between these categories, as Ho et al. (2017) states, are 
their growth kinetics, substrate affinity, and efficiency at substrate 
utilization. Copiotrophs have higher Michaelis–Menten kinetics and 
maximal growth rate. Conversely, oligotrophs are slow-growing but 
have higher substrate utilization efficiency, and thus higher biomass 
yields per substrate molecule utilized. Oligotrophs thrive in 
environments with low nutrient flows, but not in substrate-rich/
diverse environments. Copiotrophs, on the other hand, can utilize 
highly concentrated substrates rapidly and react promptly to substrate 
changes; they nevertheless lack the necessary regulatory mechanism 
of starvation, and are thus generally unable to grow in nutrient-poor 
sites (Ho et al., 2017).

The proportion of copiotrophs to oligotrophs in the environment, 
as well as under laboratory conditions, is governed by a dynamic 
process called succession (Fierer et al., 2010). Microbial communities 
change over time after they colonize a certain environment. For 
heterotrophic bacteria, organic carbon can be constantly supplied, i.e., 
exogenous succession, or present all at once at the initial colonization 
point, i.e., endogenous succession (Fierer et al., 2010). In the initial 
stage of endogenous succession, when nutrients are plentiful, 
copiotrophs are more abundant in the community; oligotrophs 
become dominant when highly concentrated substrates are depleted 
(Song et al., 2016). Both the changing environmental conditions in 
nature and an inappropriate choice of growth conditions in the 
laboratory hinder the ability of microorganisms to replicate and could 
thus render them dormant and seemingly unculturable.

Do not wake up until it is beautiful 
outside

The low number of microbes cultivated in the laboratory 
compared with the total number of microorganisms observed under 
the microscope hinted at the existence of other states in which 
microorganisms may exist in nature, apart from being alive 
(replicating) or “dead” (non-replicating). This discrepancy, known as 
the “great plate count anomaly,” is a large difference, by several orders 
of magnitude, between the viable plate counts and the total direct 
microscopic counts (Staley and Konopka, 1985). This phenomenon 
reveals our failure to isolate all cells from a particular environment in 
pure cultures. Just as cells wait in a quiescent state for environmental 
conditions to be favorable again and start replicating (Kaprelyants 
et al., 1994), they can be waiting for these optimal conditions when 
deposited in the laboratory environment. Grandly said, microbes can 
be unreachable because they are “sleeping” (Xu et al., 1982).

The term “sleeping cells” encompasses several dormancy or 
quiescence phenomena that can cause unculturability under 
laboratory conditions. Dormancy is “any rest period or reversible 
interruption of the phenotypic development of an organism” 
(Sussman and Halvorson, 1966), or simply a state of metabolic 
inactivity as defined by Kell et  al. (1998): cells exhibit negligible 
metabolic activity but can later transit to a growing state. This 
inactivity can be caused by the advent of unfavorable conditions, for 
example, the famine period in the dual feast-famine existence. Several 
dormancy phenomena have been identified, which suggests the 
existence of a “dormancy continuum,” where some states of dormancy 
can be  deeper than others (Ayrapetyan et  al., 2015). The most 
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well-known state of dormancy is sporulation (Morrison and Rettger, 
1930; Keep et al., 2006), in which some bacterial and fungal cells form 
spores as a survival strategy and outlast deleterious conditions. 
Spores then germinate when environmental conditions become 
favorable again.

Another dormancy-related phenomenon is that of “persistent 
cells,” first coined by Bigger (1944). This phenotype was already 
described in a study by Hobby et al. (1942), who observed that after 
exposing an infection-causing community to penicillin, 1% of the 
cells persisted. Persistent cells are non-growing phenotypic variants, 
completely dormant cells or cells inactivating genes selectively, 
frequently occurring in bacterial and fungal biofilms as small 
subpopulations (Harriott, 2019). They usually appear during the 

stationary phase or rarely in the exponential phase, and exhibit high 
tolerance to antibiotics (Wood et al., 2013). They avoid the antibiotic’s 
effects without undergoing genetic changes, so they play a significant 
role in population survival and biofilm re-creation (Lewis, 2010). In 
environmental biofilms, they create a subpopulation that supports 
biofilm survival against stress conditions such as starvation or other 
factors causing dormancy (Balaban, 2011; Carvalho et al., 2018).

Another common dormancy phenomenon is the viable but 
non-culturable (VBNC) state, believed to be widespread throughout 
gram-negative bacteria (Giagnoni et al., 2018). VBNC is a survival 
strategy that is similar to sporulation but present in non-sporulating 
cells (Mukamolova et al., 2003). It can be triggered by deleterious 
environmental changes, such as oxygen or substrate concentration 

FIGURE 1

Different activity states of cells in the environment. 1: Active community or population. 2: In the presence of substances such as pollutants and 
antibiotics, a portion of the population dies and some cells can persist. These latter cells can then divide again when the substance is removed. 3: Cells 
in the viable but non-culturable state (VBNC). If a cell stochastically awakens in growth-permissive conditions (section number 2), the population starts 
replicating. If not, the cells die off (section number 4). 4: Cells in the VBNC state. Cells can resuscitate if environmental conditions become growth-
permissive again (section number 1). This represents the resuscitation mediated by present environmental queues. Created with BioRender.com.
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changes or pH changes (Du et al., 2007). The inoculation of cells from 
their environment into artificial media can potentially trigger such a 
state. For example, when cultivating oligotrophs, the usage of a 
nutrient-rich medium can lead to cellular death; this may be a result 
of a depletion of energy for balanced growth or by osmotic shock 
caused by the sudden intake of non-metabolic complex substrates 
(Ho et al., 2017). In the VBNC state, cells do not replicate but remain 
viable after being exposed to stressful conditions (Xu et al., 1982). 
VBNC cells are also different from metabolically active and dividing 
cells, since they perform respiration and gene expression at low rates 
(del Mar et al., 2000; Shleeva et al., 2004; Li et al., 2014). They are also 
able to change their adhesion properties and virulence potential 
(Rahman et  al., 1994; Du et  al., 2007). Furthermore, their lower 
metabolic rate, strengthened cell wall and higher peptidoglycan 
cross-linking confer them better physical and chemical resistance, as 
opposed to normally dividing cells (Signoretto et al., 2000). When 
activity rates are reduced, VBNC cells also reduce their size (Biosca 
et al., 1996), increase their surface-to-volume ratio (Li et al., 2014), 
and, as a consequence, their nutrient intake increases (Baker et al., 
1983). This size reduction was observed in Burkholderia pseudomallei 
and Vibrio cholerae cells when changing from rods during exponential 
growth to cocci in the VBNC state (Inglis and Sagripanti, 2006; Senoh 
et al., 2010).

Dormancy can be one of the many reasons for unculturability, 
which biases the picture of the community observed via culturing 
methods. Fortunately, dormant cells are not totally unculturable but 
can be  more challenging to culture because not only must their 
growth conditions be  elucidated but also their resuscitation 
mechanisms. Two different mechanisms are thought to resuscitate 
microorganisms from dormant stages: either they depend on some 
environmental queue to do so or they do not, the latter situation 
being called the scout hypothesis (Epstein, 2009; Buerger et al., 2012). 
This stochastic reactivation of growth is the consequence of 
phenotypic variation within the dormant population (Sturm and 
Dworkin, 2015), which resembles the idea of the “dormancy 
continuum” previously mentioned. In both cases, knowing which 
factors are present in the environments where microorganisms dwell 
can teach us what is necessary for their effective culturing in the 
laboratory (Figure 2). If they wake up stochastically, they still need 
environment-resembling conditions where they can thrive after 
awakening. If they need environmental stimuli, then these would 
need to be included in in vitro cultivations for microorganisms to 
resuscitate and grow (Figure 2).

The stimuli needed to resuscitate microorganisms from 
dormancy include physical and chemical stimuli, which can 
be  provided by the environment or by organisms to which 
yet-unculturable microbes are associated (Zhang et al., 2021). In this 
sense, the conditions needed to support growth in the laboratory 
medium can overlap with those to resuscitate microbes from 
dormancy but both phenomena correspond to different physiological 
processes, namely the exit from a reduced metabolic existence, after 
which comes the ability to replicate. Zhang et al. (2021) reviewed the 
factors that play a role in the resuscitation of VBNC organisms such 
as the addition of metabolites to minimize oxidative stress, quorum 
sensing autoinducers or temperature changes. In the present 
manuscript, the focus will be on those factors aiding the growth of 
microorganisms in the laboratory environment and what cultivation 
implies for modern microbiology.

A helping hand from the environment 
– Physical and chemical factors

Temperature, pH, osmotic pressure, and oxygen and nutrient 
concentrations are ever-changing factors in the environment (Puspita 
et al., 2012). These changing conditions are stress factors that shape 
the composition of microbial communities as well as the environments 
in which they live. Soil pH has a major impact since it influences soil 
chemistry, including the availability of organic matter, redox 
conditions, and oxygen availability (Anderson et al., 2018). Energy-
yielding metabolisms such as microbial respiration (Jin and Kirk, 
2018) and the hydroxylated lipid membrane composition (Wang et al., 
2016) also respond strongly to pH changes. The impact of pH on soil 
chemistry even shapes the assembly of microbial communities on a 
global scale (Feng et al., 2014; Tripathi et al., 2018). In this regard, 
according to a cross-continental phylogenetic survey of over eighty 
soils representing a wide range of ecosystems, soil pH was significantly 
correlated with the overall bacterial community composition (Lauber 
et al., 2009). The pH has been shown to significantly influence the 
community structure of other environments such as lakes (Ren et al., 
2015), permafrost (Ren et al., 2018), and animal microbiomes (Sylvain 
et al., 2016). Even small changes in this variable can thwart growth on 
an artificial medium since some microorganisms have a very narrow 
zone of pH tolerance (Rousk et al., 2010). Adamberg et al. (2003) used 
a pH-auxostat to study the growth rate decrease of different lactic acid 
bacterial strains. A pH decrease from 6 to 4.3 was enough to slow 
down the bacterial growth rate, and ATP production was also lowered. 
However, microbial growth is not only affected by drastic changes in 
pH disabling microbial growth, but also by suboptimal pH, at which 
cell growth is detectable but the growth rate is significantly decreased, 
as was shown in the cultivation study of Bacillus termoamylovorans 
when pH changes by ~1.5 from the optimal pH for its growth caused 
a significant reduction in the growth rate and thus caused a reduction 
in energy yield per glucose molecule consumed (Combet-Blanc et al., 
1995). However, there are cases when the microbes themselves, 
intentionally and unintentionally, are able to adjust the pH of their 
near environment, even by excreting basic metabolites or enzymes, 
and thus shape the microbial community and subsequently determine 
the interactions between individual species of the consortium (Ratzke 
and Gore, 2018).

Oxygen concentration also shapes the composition of entire 
microbial niches: whether it is oxygen-requiring algae, microaerophilic 
or facultatively anaerobic purple non-sulfur photoheterotrophs, 
anaerobic green-sulfur bacteria, or any chemotrophs, the development 
of individual subpopulations is impacted based on their relationship 
to oxygen. Not just the simple dichotomy of aerobic and anaerobic 
conditions is important, but also small, specific changes in oxygen 
concentration matter. For instance, Coxiella burnetii, the intracellular 
pathogenic agent of Q-fever, infects mammalian cells at a microaerobic 
concentration of O2 ~ 3%. Omsland et al. (2009) successfully cultivated 
an axenic culture of Coxiella burnetii on an improved acidified citrate 
cysteine medium under an oxygen tension of 2.5%–5%. Because of its 
ability to grow at lower oxygen levels, the hitherto uncultured Coxiella 
burnetii was able to utilize up to 17 different substrates and form 
visible colonies in the absence of host cells. Recently, C. burnetii was 
cultured in a modular hypoxic chamber that maintains the required 
O2 concentration (2.5%) without constant airflow, which greatly 
reduces the evaporation of the medium (Miller et al., 2020).
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Oxygen concentration also induces oxidative stress caused by 
reactive oxygen species. Generally, the ideal oxygen conditions depend 
on oxidative stress sensitivity and the need for a reduced form of a 
nutrient (Vallejo Esquerra et al., 2017). Since reactive oxygen species 
often have a lethal effect on cells, it is desirable to reduce their 
concentration to a minimum. Oxidative stress during cultivation can 
be  reduced by procedures such as autoclaving the agar and the 
phosphates separately (Tanaka et al., 2014; Kato et al., 2018, 2020) or 
by adding catalase or pyruvate to media (Bogosian et al., 2000; Tanaka 
et al., 2014).

Another decisive factor that enhances cultivation success is the 
choice of substrates and notably their concentration. Differing carbon 
concentrations create niches that are occupied by different bacteria 
(Eichorst et  al., 2011; Wu et  al., 2020). In environments prone to 
drastic environmental changes such as soil or water, selective pressure 
favors cells with a low metabolic cost existence (Mukamolova et al., 
2003). Diluted, low-carbon media favor slow-growers and increase the 
overall diversity, thus increasing the chances of culturing unknown 
taxa. Low-carbon media have successfully increased the culturing of 
microorganisms coming from a wide range of environments, such as 
sea sponges (Karimi et  al., 2019; Gutleben et  al., 2020), aquatic 
environments (Imazaki and Kobori, 2010; Sun et al., 2019), or soils 
(Janssen et al., 2002; Molina-Menor et al., 2021). Aquatic environments 
offer the advantage of using the water directly from the source as part 
of the cultivation media. Applying this strategy, Kapinusova et al. 

(2022) isolated over 100 bacterial species, including several novel 
species of Alphaproteobacteria, Betaproteobacteria, Flavobacteriia, and 
even a member of a novel genus of Thermoleophilia (Kapinusova et al., 
2022). A similar strategy combined with a prolonged incubation time 
was used for the culturomics of the world-renowed thermal springs of 
Karlovy Vary (Smrhova et al., 2022) and led to the acquisition of 
several thermotolerant strains of the Bacillota phylum and isolation of 
novel microorganisms of Bacilli, Gammaproteobacteria, and 
Actinomycetia classes. The dilution-to-extinction technique, based on 
the cultivation of soil oligotrophic microorganisms on media 
containing 100-fold diluted nutrients, resulted in the isolation of a 
wide spectrum of the most abundant soil representatives, and also of 
members of two previously undescribed actinobacterial lineages 
(Bartelme et  al., 2020). The combination of the above-mentioned 
factors into one modified cultivation procedure, namely an adjusted 
N2/CO2 atmosphere (80:20), low substrate concentrations, the 
temperature corresponding to the original environment, etc., led to 
the successful isolation of members belonging to the OP5 phylum 
(Mori et al., 2008), first described by the 16S rRNA gene analysis in a 
hot spring in Yellowstone National Park (Hugenholtz et al., 1998).

Since many unreachables are slow-growers, prolonged incubation 
times can lead to their successful cultivation. Prolonged cultivations, 
usually coupled with culturing diluted cell suspensions, have proved 
to be  useful in many studies (Eilers et  al., 2001; Connon and 
Giovannoni, 2002; Rappé et al., 2002; Kakumanu and Williams, 2012; 

FIGURE 2

The list of factors affecting microorganisms in their environment (inner circle), and strategic approaches reflecting these factors in the cultivation (outer 
circle). Created with BioRender.com.
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Adam et al., 2018; Bender et al., 2020). In a study by Davis et  al. 
(2005), autochthonous soil cells, as well as non-native cells from 
constructed consortia, were counted on six different media at 7-day 
intervals. Cell counts increased even after 12 weeks of incubation. 
Another successful example of prolonged cultivation, and an 
important microbiological milestone, was the isolation of the 
previously uncultured archaeon Candidatus Prometheoarchaeum 
syntrophicum MK-D1 (Imachi et  al., 2020). This extremely slow-
growing Asgard archaeon, related to the Lokiarchaeota, was isolated 
from a 2,533 m deep-water sediment in the Nankai trough, Japan. 
Aiming to achieve deep-sea microbial cultivation, Imachi et al. (2020) 
set up a methane-fed-continuous bioreactor in which the enrichment 
cultivation ran for 2,000 days, resulting in the isolation of this archaeon 
from a symbiotic culture. The growth of some organisms from cold 
and oligotrophic environments, such as those isolated from Antarctica, 
can only be seen in culture after prolonged incubation times (Pulschen 
et al., 2017; Tahon and Willems, 2017). These organisms form very 
small colonies which often have to be observed under a microscope 
(Pulschen et al., 2017).

Longer incubations in a Petri dish or batch liquid medium can 
be  problematic because the composition of the medium tends to 
change over time, either because of the action of the organism’s 
metabolism or other processes, such as water evaporation. Even 
though microbial species with apparently long cultivation times can 
have these incubations shortened upon subculturing (Buerger et al., 
2012), their initial isolation from the natural environment could fail if 
they are cultured together with a faster-growing species. Slow-growing 
microorganisms can be disadvantaged mainly when microorganisms 
from complex consortia are attempted to be  cultured together. 
Physically separating or sorting the microorganisms before their 
culturing is a helping strategy to overcome this problem and it is 
discussed further in the text.

Periodically varying conditions exist in nature, from the feast and 
famine cycles (Koch, 1971) to alternating oxic and anoxic periods 
(Dorofeev et al., 2019) and seasonality (Steiner et al., 2020), all of 
which can affect microbial communities. Besides culturing in 
continuous cultures (open systems) or batch cultures (closed systems), 
cyclic cultivation can be useful for microorganisms with a cyclic type 
of metabolism. This metabolism is divided into two phases: first, 
energy and carbon sources are accumulated, which are then used in 
the second phase to biosynthesize biomass (Dorofeev et al., 2014). Any 
of the above-mentioned culture parameters (e.g., temperature, oxygen, 
or substrate concentration) can be the cycling factor in the cultivation 
strategy (Dorofeev et al., 2014).

Some growth-influencing factors can be more enigmatic. One 
such factor is acoustic vibration, which is useful as a cultivation 
enhancement in several biotechnological studies (Bochu et al., 2003; 
Avhad and Rathod, 2015; Huang et al., 2017). By causing (i) cavitation 
and repairable damage in microbial cells, (ii) loosening of microbial 
aggregates in liquid cultures, and (iii) an increase in cell membrane 
permeability, ultrasonic low-intensity waves (∼20 kHz) can increase 
the substrate intake in microbial cells and subsequently enhance 
microbial proliferation (Huang et al., 2017, 2021), and thus can help 
in the cultivation of the unreachables.

Similarly, all the aforementioned culturing parameters can 
be combined in a high-throughput fashion to describe as much of the 
community composition as possible using cultivation, with each 
condition used being “a different aspect of the community’s picture.” 

This approach is referred to as culturomics (Greub, 2012). Bacteria 
obtained in culture are massively characterized using MALDI 
TOF-MS, or 16S rRNA gene sequencing (Strejcek et  al., 2018; 
Nowrotek et al., 2019).

A helping hand from the surroundings 
– Carrier particles

Many prokaryotes prefer to live attached to surfaces rather than 
in a dispersed, single-celled planktonic state (Mills, 2003; Flemming 
and Wingender, 2010; Hemkemeyer et al., 2018). In soils, different 
particle size fractions (PSFs) have a different impact on the 
concentration, chemical composition, and availability of organic 
matter (Christensen, 1992; Hemkemeyer et al., 2018). Organic matter 
is associated with fine-sized particles such as silt and clay; nevertheless, 
the sand fraction contains most of the free particulate organic matter 
(POM; Christensen, 2001), and therefore represents the fraction with 
the highest availability of substrates. The reported reduction in 
diversity among larger-sized fractions can be caused by low nutrient 
availability, protozoan grazing, and competition with fungi (Sessitsch 
et al., 2001). Hence, Hemkemeyer et al. (2018) observed the suitability 
of different PSFs and their associated POM to harbor microbial 
communities differing in their structure, functional potential, and 
sensitivity to environmental conditions. Genetic fingerprinting 
showed very strong preferences of the observed bacterial communities 
(up to 56% OTUs) for specific PSFs, while the archaeal populations 
did not exhibit significant preferences. Members of Bacteroidota and 
Alphaproteobacteria preferred the sand-sized fraction with POM, 
while Actinomycetota and Betaproteobacteria preferred fine silt, 
Planctomycetales clay, and Gemmatimonadales coarse silt 
(Hemkemeyer et al., 2018).

If cells prefer living in close contact with surfaces, it can result in 
it being difficult for them to grow in liquid media. Surfaces composed 
of different materials such as glass, steel, or synthetic polymeric 
substances such as polyurethane foams can enhance the cultivation of 
biofilm-forming bacteria from different natural environments 
(Yasumoto-Hirose et al., 2006; Gich et al., 2012; Dellagnezze et al., 
2016). Liquid media provide many advantages compared to solid 
media: they guarantee a homogenous distribution of nutrients and 
oxygen, while also facilitating the manipulation of cultures. Aiming to 
combine the benefits of liquid media while meeting the requirements 
of microorganisms that live attached to surfaces, liquid media can 
be improved by adding a small amount of gelling agents such as gellan 
gum, xanthan gum, or carrageenan (Das et al., 2015), glass beads 
(Nguyen et al., 2005; Droce et al., 2013), or sand (Suman et al., 2019). 
Adding these supplementary solid agents can help the microorganisms 
to attach to the surface but still live and divide in the liquid or 
semiliquid medium.

A helping hand from your neighbors 
– Growth factors

Trace elements from the environment, apart from the carbon 
source, are necessary to guarantee growth in vitro. To give a simple 
example, genera of the slow-growing Acidobacteriota living in 
manganese-enriched environments benefit from the addition of this 
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element into their growth medium (Costa et al., 2020). Complex 
matrices, such as soil, harbor many phylogenetically diverse 
microorganisms (Bahram et al., 2018) that not only participate in 
important biogeochemical cycles (Louca et al., 2019), but also create 
conditions that enable the growth of other microorganisms by 
sharing metabolites and essential growth substances (Schink, 2002). 
These molecules include those that play a role in quorum sensing, 
biofilm community cooperation, or in the mutualism between plants 
and plant-growth promoting organisms (Jacoby et al., 2017), such as 
rhizobacteria and endophytes (Papik et al., 2020). If a metabolite is 
available in the environment, microorganisms can lose the metabolic 
capability of producing it and thus become metabolically dependent 
on their neighborhood (Pande and Kost, 2017). The absence of 
neighbors in pure culture, and consequently the absence of the 
necessary metabolites, is then one of the reasons behind 
unculturability (Pande and Kost, 2017). Bacteria living in certain 
environments, such as endophytes, benefit from the use of highly 
specialized growth medium containing the environment’s original 
metabolites (Gerna et al., 2022).

With the above said, some bacteria can only grow in a pure 
medium when in co-culture with another community member, also 
called a helper strain, which can be  a phylogenetically different 
bacterium or even a different organism such as an amoeba (Boilattabi 
et al., 2021). Co-culturing can be achieved either by direct culturing 
of the helper strain together with the bacterium of interest or by using 
spent supernatants as a proxy for the helper strain (Stewart, 2012). 
Spent supernatants are the media where the helper strain grew, so the 
supernatants contain the metabolites that are potentially essential for 
other members of the community. Microbes can also be cultured 
together with the host from their natural environments (Knobloch 
et al., 2019; Lopez Marin et al., 2021). High-throughput co-culture is 
also now possible with devices such as microscale microbial 
incubators (Ge et al., 2016), micro-petri dishes (Ingham et al., 2007), 
microfluidic devices (Frimat et al., 2011; Burmeister et al., 2019), or 
agarose-based microwell chips (Zhang et al., 2019), where hundreds 
of single cells can grow in parallel in individual compartments, 
sharing metabolites and necessary substances for growth. The latter 
approach has proved very helpful in culturing bacteria directly 
related to human health, such as antibiotic-resistant pathogens from 
the human gut (Versluis et al., 2019).

Metabolites from associated bacteria can provide nutrients or 
trigger other stimuli necessary for growth. As was previously 
mentioned, when water and nutrients are on the wane and the 
surrounding conditions are unfavorable, some cells can enter 
dormancy. Dormant cells can be resuscitated by different resuscitation 
stimuli (Pinto et al., 2015). There can be many sources of such stimuli, 
but they often include substances such as amino acids and peptides 
(Nichols et al., 2008; Pinto et al., 2011), metabolites such as N-acyl 
homoserine lactones (Batchelor et  al., 1997), or resuscitation 
promoting factors (Mukamolova et al., 2006; Pinto et al., 2013; Lopez 
Marin et al., 2021). For example, in a study by Bruns et al. (2002), the 
signaling molecules cAMP and N-(butyryl)-DL-homoserine lactone 
(BHL) increased total bacterial counts in highly diluted inocula from 
aquatic environments by several orders of magnitude. Thanks to this 
effort, the previously uncultured bacterial clone G100, Citreicella 
manganoxidans, belonging to the Rhodobacteraceae family, was 
cultured (Bruns et  al., 2002; Wirth and Whitman, 2018). Less 
ambitious but still hopeful results were provided by the follow-up 

studies of Bruns, where the addition of cAMP led to a 10% increase 
in MPN values (Bruns et al., 2003). Yet, in several studies where 
signaling compounds were used for increasing cultivation yields, the 
influence of cAMP on culturability has been disproven (Pernthaler 
et al., 2003; Sangwan et al., 2005).

The resuscitation promoting factor (Rpf) produced by 
Micrococcus luteus promotes bacterial resuscitation and growth in 
the same producing organism (Mukamolova et al., 2006), but can 
influence taxa distributed along several other phyla, such as 
Pseudomonadota and Bacteroidota (Su et  al., 2018; Lopez Marin 
et al., 2021; Su et al., 2021). This small protein (16–17 kDa) with a 
lysozyme-like structure (Cohen-Gonsaud et  al., 2005) promotes 
bacterial cell growth even at picomolar concentrations (Mukamolova 
et  al., 1998; Sexton et  al., 2015). Rpf-like encoding genes are 
distributed among other prokaryotic genomes, especially in G + C 
rich gram-positive Actinomycetota (Nikitushkin et al., 2016), but 
Rpf-like proteins extend to other bacterial phyla, such as Bacillota 
(Shah and Dworkin, 2010) and Pseudomonadota (Li et al., 2020). The 
addition of Rpf during cultivation has resulted in the isolation of 
novel bacteria, such as organisms of the genera Rhodococcus and 
Arthrobacter, or of the family Alcaligenaceae (Su et al., 2013, 2015, 
2018, 2021). Lopez Marin (Lopez Marin et al., 2021) isolated 51 
novel bacterial species belonging mainly to the phyla Actinomycetota, 
Pseudomonadota, and Bacteroidota on reasoner’s 2A (R2A) agar and 
an agar made from the soil’s water-soluble fraction after 
supplementing Micrococcus luteus Rpf-containing supernatant to 
soils. Some of these species were members of novel genera, such as 
Pedomonas mirosovicensis of the family Sphingosinicellaceae, or 
Solicola gregarius of the family Nocardioidaceae (Lopez Marin et al., 
2022, 2023). Spent supernatants containing growth factors have also 
aided the cultivation of Chloroflexota strains (Xian et al., 2020) or 
Leucobacter, the growth of which was supported through the action 
of zincmethylphyrins and coproporphyrins produced by 
Sphingopyxis sp. (Bhuiyan et al., 2016).

Do you want to stay in your 
neighborhood?

The identification of specific substances promoting cell growth is 
not an easy task. To bypass the search for crucial growth factors, 
microorganisms can be  co-cultured with growth-promoting 
microorganisms or can be cultivated in situ in the environments they 
come from Bollmann et al. (2007) and Remenár et al. (2015). In situ 
cultivation allows for the isolation of microorganisms that are more 
adapted to the original environment than those originating from the 
same habitat but obtained on standard agar media (Jung et al., 2016). 
Several innovative devices have been envisioned to deal with in situ 
cultivation. In an early attempt, Kaeberlein et al. (2002) developed a 
diffusion chamber that allowed the nutrients from the natural 
environment to migrate to the site where bacteria were inoculated. 
Seawater solidified with agar was sandwiched between two 
polycarbonate membranes, which allowed the flow of nutrients from 
the natural environment to the agar while at the same time isolating 
the inoculum from the natural environment (Kaeberlein et al., 2002). 
Diffusion chambers have since increased the diversity of culturable 
bacteria (Bollmann et al., 2007), including those that are difficult to 
culture, such as members of the phylum Verrucomicrobiota (Pascual 
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et al., 2017) or bacteria highly resistant to heavy metals (Remenár 
et al., 2015).

A similar device to the diffusion chamber is the soil substrate 
membrane system (SSMS), which allows the growth of colonies over 
a membrane (made of materials such as polycarbonate), through 
which the nutrients and growth factors of the natural environment 
permeate and reach these colonies (Ferrari et al., 2005). Using the 
SSMS, Ferrari et al. (2005) isolated previously uncultured members 
of the genera Aminomonas, Nocardia, Pseudomonas, and Enterobacter. 
This membrane system has also been used to recover hydrocarbon-
degrading bacteria from diesel-spiked polar soils (van Dorst et al., 
2016) and was proven to recover rarer bacterial taxa from ice-free 
polar desert compared to conventional cultivation approaches 
(Pudasaini et al., 2017).

Later modifications of the diffusion chamber have been designed 
to culture microorganisms in the natural environment but using 
liquid media instead. One such early device was the hollow-fiber 
membrane chamber developed by Aoi et al. (2009). It is composed of 
hollow polyvinylidene tubes where microbes are inoculated and 
grown. The tubes are porous, so they allow the transport of molecules 
from the natural environment to the inside of the tube. In comparison 
with standard petri dish methods, the hollow-fiber membrane 
chamber technique yielded a higher ratio of novel phylotypes, mostly 
of Pseudomonadota, Actinomycetota, Bacteroidota, and Spirochaetota, 
and also resulted in an overall higher diversity of the recovered 
isolates (Aoi et al., 2009). Another liquid medium-based diffusion 
chamber is a bioreactor separated from the surrounding environment 
by a polycarbonate membrane (Chaudhary et al., 2019; Chaudhary 
and Kim, 2019). With this device, 35 previously uncultured bacteria 
belonging to the phyla Pseudomonadota, Bacillota, Bacteroidota, and 
Actinomycetota were isolated; the largest number of novel isolates was 
obtained when soil extract was used for the preparation of the 
medium (Chaudhary et al., 2019). Diffusion chambers have been 
manufactured in 3D printers, which increases their customization 
possibilities for their use in different applications (Wilson et al., 2019).

Diffusion chamber devices have been subject to further 
modifications. One such example is the so-called microbial trap, 
which consists of two semipermeable membranes with agar or gellan 
gum “sandwiched” between them (Gavrish et al., 2008). Filamentous 
Actinomycetota can access the medium from the outside through the 
semipermeable membranes. A similar trap was designed by Jung 
et  al. (2013), with the difference that the trap’s access size can 
be  modified. This latter trap has been used to culture various 
microorganisms from extreme environments, such as saline lakes 
(Jung et al., 2013) and hot springs (Jung et al., 2018). Yet another 
modification to the microbial trap uses sub-micrometer constrictions, 
where microorganisms compete to reach a chamber with nutrients 
going through a thin opening that allows only one bacterium to 
access and form a pure culture (Tandogan et al., 2014). Both groups 
of devices, diffusion chambers and microbial traps, have been shown 
to help reduce cultivation bias by culturing bacterial representatives 
which metagenomics approaches identified as the main 
representatives in a specific community (Pathak et al., 2020).

A successful high-throughput modification of the diffusion 
chamber technique is a system of multiple diffusion chambers called 
the isolation chip (iChip), first coined by Nichols et al. (2010). It 
consists of an assembly of three flat plates, a central one, and two 
symmetrical external plates. The external polyoxymethylene plates 

are provided with a set of 384 holes, since every chamber in the 
central plate is designed to capture, ideally, just one cell. The 
inoculated central plate is covered, as with Bollman’s device 
(Bollmann et al., 2007), with a standard polycarbonate membrane, 
which permits the flow of nutrients from the environment and at the 
same time keeps the cells inside the chambers. The external plates 
prevent the cells from migrating in and out, and also keep them 
literally trapped inside their chambers. This chip can then be placed 
in the natural environment to serve as a cultivation chamber in situ 
(Berdy et  al., 2017). Among others, the Antarctic bacterium 
Aequorivita sp., possessing antimicrobial and anthelmintic activity, 
was isolated using the iChip system (Esposito et al., 2018; Liu et al., 
2021). The iChip has also aided in the cultivation of antibiotic-
producing bacteria, such as the bacterium Eleftheria terrae, which 
produces the antibiotic teixobactin (Ling et al., 2015).

Devices similar to the iChip have been used recently to culture 
fastidious bacteria. The diffusion sandwich system, a device based on 
the iChip, led to a successful culturing of Pseudomonas soli which can 
produce xantholysin congeners (Pascual et al., 2014) or the gellan 
gum-degrading bacterium Luteolibacter gellanilyticus (Pascual et al., 
2017). Acuna (Acuna et al., 2020) used microwell chambers, devices 
similar to the iChip in design, to culture rhizobacterial populations. 
Rhizosphere microorganisms were also cultured in situ using the 
Rhizochip, an acrylic device with holes, in which microorganisms are 
randomly and not evenly inoculated, and placed into a plant 
rhizosphere (Gurusinghe et al., 2019). All these examples show that 
when the unreachables stay in their environments, we are more likely 
to reach them in cultures.

Want to be sorted or isolated before 
cultivation?

Because of the enormous number of microorganisms awaiting 
cultivation, it is natural to assume that automation and high-
throughput culturability will be more and more common. Organisms 
in a community can be  individually sorted and cultured under a 
broad range of conditions. Among these sorting approaches are the 
preselection of cells by their size, shape, or by any other characteristic. 
This results in the division of the total microbial community into 
several subpopulations consisting of similar microorganisms. Such a 
separation requires equipment such as optical tweezers, flow 
cytometry coupled with sorting cell assays, or the integration of both 
methods (Tewari Kumar et al., 2020).

In 2002, Zengler and his team presented a method involving 
microdroplets of solidified agarose for encapsulating single bacterial 
cells. The encapsulated cells were then grown in a column with low 
nutrient media, and thus were able to grow “together but apart” 
(Zengler et  al., 2002). This high-throughput cultivation method 
resulted in the growth and successful isolation of newly identified 
Planctomycetales and Alphaproteobacteria (Zengler et al., 2002). An 
advantage of this microdroplet cultivation is the broad range of 
environments to which the technology can be applied. Later, in 2005, 
Zengler presented an improved version of the method, Diversa’s 
high-throughput cultivation using microcapsules, by which it is 
possible to obtain more than 10,000 bacterial and fungal isolates from 
a matrix (Zengler et al., 2005). More recently, alginate microbeads 
have been successfully used for the high-throughput culturing of 
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bacteria that usually resist cultivation such as Verrucomicrobiota and 
Epsilonproteobacteria (Ji et al., 2012), and also to cultivate anaerobes 
(Börner et al., 2013). Analogously to the co-culture strategy, bacteria 
grow in the presence of other members of the community, just 
separated from each other in individual capsules or drops. 
Encapsulated microorganisms can then be sorted, for example by 
using fluorescence-activated cell sorting, according to their 
phenotype of interest (Eun et  al., 2011) or other distinguishing 
properties such as the presence or absence of growth in each droplet 
(Zang et al., 2013; Ota et al., 2019), their growth rate (Akselband 
et al., 2006; Ota et al., 2019), chemotactic motility (Dong et al., 2016), 
or their metabolic activity (Espina, 2020).

Focusing on slow-growing microorganisms after sorting can 
result in the cultivation of rare taxa (Watterson et al., 2020). Jian and 
coworkers developed a microbial microdroplet culture system, where 
cells are cultured in water-in-oil droplets placed in Teflon tubes. This 
system uses up to 200 droplets with a volume of 2 μL, in which 
microbes are cultured in a high-throughput fashion (Jian et al., 2020). 
The droplets can be  manipulated to meet the needs of different 
experimental designs. Microbe-harboring beads or droplets (or, in 
general, sorted cells) can also be  cultured in their natural 
environments, which can be achieved by encapsulating the beads 
inside an extra polysulfonate membrane to isolate the encapsulated 
cells from the environment (Ben-Dov et al., 2009) or, more recently, 
using devices such as the Microbe Domestication Pod (Alkayyali 
et al., 2021). The pod, which holds agarose microbeads containing 
encapsulated cells, is placed in the environment, allowing the 
encapsulated microorganisms to be  cultured individually but 
guaranteeing cell-to-cell communication and the presence of 
important environmental necessities.

Sorted droplets can also be placed in microwell slides in order to 
facilitate downstream cultivation and analysis (Bai et al., 2014). The 
sorting of cells in compartments can also be exploited to research 
cell-to-cell interactions among encapsulated bacteria (Ohan et al., 
2019) and biofilm formation or growth (Chang et al., 2015; Jin et al., 
2018). The elucidated interactions can cast light upon each cell’s 
needs for growth, and thus on its effective cultivation. Devices such 
as the SlipChip, composed of two conjoined plates, allow the 
duplication of a microbial colony so that half of it can be further 
preserved or cultured, while the other half can be used for destructive 
analyses (Ma et al., 2014).

Another way to sort the unreachables is to separate them 
while growing on a petri dish. Cultures can be  sprayed onto 
medium plates instead of being spread with a hockey stick. This 
procedure effectively compartmentalizes microorganisms in 
droplets, hence the aggregation of cells and interspecies 
competition, once they land on the medium, is significantly 
reduced (Huang et al., 2021). Gao and co-workers developed a 
microbe observation and cultivation array (MOCA) that allows 
the recovery of microbes on a small scale and does not require any 
complex equipment (Gao et al., 2013). MOCA involves a petri 
dish with arrays of oil-covered droplets of cells. The oil covering 
provides a separation between cells and thus enables the 
cultivation of multiple separated droplets of cells (Gao et  al., 
2013). Several marine microorganisms were isolated using this 
technique, including Pseudoalteromonas spp. and previously 
uncultured members of the genera Shewanella and Colwellia (Gao 
et al., 2013). Compared to conventional approaches, MOCA offers 

an easy system for compact, parallel cultivation and multiple 
variations of different media on a relatively small scale.

“Streaking pen” developed by Jiang and his group is a robust, 
high-throughput method based on a simple streaking and picking 
strategy to achieve single-cell cultivation on microfluidic streak 
plates. Using this technique, a previously unknown fluoranthene-
degrading Blastococcus species was isolated (Jiang et al., 2016), and 
so were novel species of bacteria from a marine sediment (Xu B. et al., 
2018; Hu et al., 2020). This method has also been used to culture 
termite-associated bacteria of the genera Burkholderia, Micrococcus, 
and Dysgonomonas (Zhou et al., 2019). In general, cell sorting enables 
the design of complex experiments using just a few plates, and thus 
represents a great experimental simplification that allows for a better 
examination of individual subpopulations and, as a result, increases 
the chances of culturing novel taxa.

Let us seek information about the 
cultivation of the unreachables in the 
(meta)genome

Successful cultivation of just a few novel taxa while adding 
“vital” molecules to the media, trying different media and 
cultivation conditions, or the combination of all the above, is a 
lengthy and material-consuming way to find the requirements for 
microbial growth of specific taxa, given the vast diversity of the 
unreachables. Nowadays, the metagenome has become a promising 
source of information on cultivation needs, since it reveals “who is 
there and what their roles are” (Remenár et al., 2015; Nowrotek 
et al., 2019). In other words, why try dozens of media or condition 
combinations, when each cell’s growth requirements can be found 
in its genome?

As was mentioned earlier, a common phenomenon in a 
community is the loss of the ability to metabolize certain compounds 
if these are provided by other organisms (Pande and Kost, 2017). 
Such a gene loss can be ultimately seen in the genome (Carini et al., 
2013). Reconstruction of the metabolic pathways through genomic 
information reveals the bacterium’s deficiencies or needs, which can 
be  provided in the medium (Liu et  al., 2022). For example, the 
nutritional requirements of Pelagibacter ubique, most likely the most 
abundant bacterium on Earth, were determined in part by its absence 
of genes for assimilatory sulfate reduction and its need for reduced 
sulfur compounds for growth (Carini et al., 2013). Karnachuk et al. 
(2020) isolated a thermophilic spirochete thanks to information from 
a metagenome-assembled genome which suggested the presence of 
12 alpha-amylase hydrolases. This bacterium was then cultured using 
a medium composed mainly of starch (Karnachuk et al., 2020).

Metagenomic data can also be  used to create co-occurrence 
network approaches based on network inference techniques in order 
to model the abundance or roles of specific community members in 
an environment (Faust and Raes, 2012). These relationships can 
be exploited in co-culture approaches, which can represent these 
relationships, e.g., by using spent media from other culturable 
bacteria in the community (Xian et al., 2020). Information contained 
in an RNA sequence (metatranscriptome) can be even more useful 
because it reflects the necessary genes being expressed in a given 
environment and time. For instance, the metatranscriptome of the 
leech Hirudo verbana was characterized, revealing the expression of 
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genes coding for sulfated-mucin desulfatases and sialidases (Bomar 
et  al., 2011). A medium with added mucin then allowed the 
cultivation of a Rickenella-like leech symbiont in vitro (Bomar 
et al., 2011).

A metagenome is a very complex collection of information, so 
discerning specific, individual genomes out of this mixture is often a 
difficult task, and techniques that provide a link between identity and 
function can help to discern which specific organisms carry which 
metabolic activity. One such technique is stable isotope probing 
(SIP), a method that links certain metabolic capabilities to individual 
community members. Upon probing with stable isotopes, the 
metagenome of these community members can be separated and 
sequenced to reveal their identity (Uhlik et al., 2013). SIP in tandem 
with metagenomics helped culture different bacteria with, for 
example, biodegradative functions. The bacterium Polaromonas 
naphthalenivorans was isolated in a pure culture after its role in the 
degradation of naphthalene was determined by SIP (Jeon et al., 2003, 
2004). A similar approach was followed for isolating novel 
phenanthrene- and biphenyl-degrading Ralstonia populations (Li 
et al., 2019), novel isoprenedegrading bacteria belonging to different 
genera (Larke-Mejía et al., 2019), or hydrocarbon-degrading bacteria 
from the sea basin (Mishamandani et al., 2014; Gutierrez et al., 2015) 
or oil spills (Gutierrez et al., 2013). In these examples, the stable 
isotope-labeled, or “heavy” molecule used for the biodegradation 
analysis was also included in the cultivation efforts, but “heavy” 
genomes could also highlight other requirements that the degrading 
bacteria may need.

Finally, metabolic needs can be  elucidated by single-cell 
genomics (Wurch et al., 2016), which can be boosted with the cell-
sorting approaches described earlier. Single-cell genomic 
information has enabled metabolic reconstruction and aided the 
isolation of difficult-to-culture organisms such as symbiotic archaea 
(Wurch et al., 2016). Additionally, Cross et al. (2019), using single-
cell genomic data, developed a method to capture specific 
microorganisms using antibody engineering. These antibodies are 
designed based on membrane-associated proteins, whose sequences 
can be  found in the genome. The antibodies are labeled with a 
fluorescent dye, and thus the cells to which the antibody binds can 
be sorted by flow cytometry and cultivated in different media (Cross 
et al., 2019).

Conclusion and future perspectives

In recent years, a large number of microbes have been cultured 
employing the procedures discussed here in. Over the last two 
decades, in particular, a great deal of effort has been spent to 
improve culturing work, and many new taxa have been described; 
in fact, more bacteria have been cultured and described in the first 
20 years of the 21st century than in all previous years of 
microbiological research combined (Figure 3; Parte et al., 2020). 
The high-throughput sequencing revolution that enabled the 
analysis of the metagenome has great potential to aid the 
cultivation progress. There is an unavoidable synergy between 
culture-independent and culture-dependent knowledge: as our 
knowledge of metagenomes increases, so does our knowledge of 
what microbes need to grow. The majority of Earth’s environments 
still harbor mainly hitherto uncultured microorganisms (Lloyd 

et al., 2018). Just as an ebb primarily uncovers areas close to the 
shore, and maybe never reveals the perpetually hidden abyss, so 
the phylogenetically distant cells, or “phylogenetically divergent 
non-cultured cells” as described by Lloyd et al. (2018), may remain 
undiscovered. These unreachables are the real “dark matter” of the 
microbial world and keep on shaping our planet right under 
everyone’s noses. But in theory, nothing is impossible to culture, 
and what we do not successfully culture today can be brought to 
culture tomorrow. Just like the Yellowstone National Park’s 
Obsidian Pool gave us a hint of the then so-called OP5 or OP10 
phylum (Hugenholtz et al., 1998), whose members were isolated 
more than a decade later (Mori et al., 2008; Lee et al., 2011; Tamaki 
et al., 2011), other environments will reveal their secret inhabitants 
via culture-independent, omics-based approaches, after which 
culturing will be applied in search of their objectification. But not 
just simple, low-scale culturing; automatized, high-throughput 
culturomics will be needed. Sorting technologies such as those 
based on microfluidic systems could already be  coupled with 
machine learning systems (Srikanth et al., 2021) so that growth 
needs can be elucidated and a high number of microorganisms can 
be cultured in the shortest time possible. This is the same as with 
many other big questions that still afflict us: it seems that machines 
and algorithms are coming to the rescue. So many microbes will 
be  unreachable no more, and the time for this is already 
being reached.

As mentioned in the previous section, there may be an interest in 
culturing a specific organism from the environment and techniques 
have been proposed to tackle this challenge (Cross et  al., 2019). 
Throughout the course of microbiological research, several taxa have 
been categorized as “most wanted” because of the important roles 
they play, such as in the human microbiome (Almeida et al., 2016) or 
other environments in the biosphere (Steele et al., 2011). At the same 
time, some microorganisms exist as obligate symbionts: their 
genomes have been reduced because of the loss of functional genes, 
and these lost functions can be guaranteed by the host (Moran and 
Bennett, 2014). Entire bacterial phyla such as the Candidate phyla 
radiation are thought to be composed mostly of symbionts (Castelle 
and Banfield, 2018). Should we  force them to try to exist by 
themselves in a pure culture, despite their loss of basic structural 
features such as cell wall components and extremely small genomes 
(<200 Kbp) with maybe no possibility of growing away from their 
host, or should we better make more flexible regulations of what is 
required to propose new prokaryotic species? Cultivation is made 
difficult not only because of the intricacies needed for the growth of 
microorganisms in the laboratory but by placing unreal requirements 
for their study through culturing.

There are calls to reform the one species-one publication 
formula (Rosselló-Móra and Amann, 2015) and, due to the diversity 
of bacteria in the environment, it is not difficult to imagine that it 
may be impossible to describe all bacterial species using the 
polyphasic approach employed today for circumscribing new 
species, even if all microbes were culturable. Recent estimates 
suggest that the number of different bacterial taxa in the biosphere 
(established with a 16S rRNA gene similarity cutoff of 97%) is 
2.2–4.3 million (Louca et al., 2019). New bacterial descriptions are 
also constrained by journal capabilities (Tamames and Rosselló-
Móra, 2012). In order to give an identity to the mass of uncultured 
microorganisms, the availability of a pure culture is maybe not 
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necessary anymore. High-quality genome sequences are being 
proposed as nomenclatural types (instead of viable anexic cultures 
in culture collections), and a new classification system, the 
SeqCode, is being developed to exist (at least temporarily) parallel 
to the International Code of Nomenclature of Prokaryotes (Hedlund 
et  al., 2022; Whitman et  al., 2022). The requirements of a pure 
axenic culture of the ICNP as the only type material possible for 
naming new microbial species has been criticized as self-limiting, 
hindering microbiological research and raising the costs associated 
with naming new taxa (Palmer et  al., 2022). If the “dream of a 
phylogenetic system” was materialized upon the bases of genomics 
(Woese, 1992), the development of a reliable system based on 
genomics must be pursued and supported.

These recent developments in prokaryotic systematics will not 
negatively affect the importance of cultivation because microbiology 
is a science whose reach extends far beyond taxonomy and the basic 
knowledge of microbes. It is expected that, by 2024, the economic 
value of the global microbes and the microbial market will exceed 
USD 675.2 billion (Estevinho et al., 2020). These figures are reached 
by allocating organisms in high-value biotechnological industries 
which produce the goods previously mentioned in the introduction. 
The “dark matter of life” conceals not only the answer to “who is 
there,” but also “what are they doing.” This second question is still 
what may be most relevant contributing to the advancement of 
technology. The future of cultivation is one that begins with its 
strengths: the ability to select and culture microorganisms relevant 
to their functions and technological potential. But we must be open-
minded enough to not limit our horizons with just apparent and 
obvious applications: a world of possibilities can be opened with 
each microorganism isolated and studied.
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Glossary

bacterial persisters microorganisms that survive exposure to a given antibiotic/action that limits their cellular division, and have the capacity to 

replicate once it is removed (Zhang, 2014)

community a multi-species group of organisms, living together in a shared environment and interacting with each other (Konopka, 2009)

copiotrophs organisms adapted to utilize available resources promptly when available; usually associated with nutrient-rich environments (Koch, 

2001). They have higher Michaelis–Menten kinetics and maximal growth rates

co-culture biological systems (cultivation strategy) where two or more different microbial populations coexist with some degree of contact 

between them (Goers et al., 2014; Rosero-Chasoy et al., 2021)

culturomics high-throughput, cultivation-dependent methods describing an environment’s microbial community (Lagier et al., 2018)

dormancy a survival strategy characterized by a reduction in metabolic activity, usually undetectable under laboratory conditions (Dworkin 

and Shah, 2010)

iChip an isolation chip consisting of a customizable set of chambers, where environmental cells are kept separately and subsequently 

cultivated in situ (Nichols et al., 2010)

in situ incubation a cultivation method leading to the facilitated growth of cells that are difficult to cultivate ex situ, usually performed in the 

environment that the cell originated from Nichols et al. (2010) and Epstein (2013)

metabolomics a metabolic profiling that links genotype and phenotype based on the targeting of small molecules (peptides, amino acids, nucleic 

acids, etc.; Zhang et al., 2012)

metagenomics a study of the collective genomes of all microorganisms found in a given site/sample (Handelsman et al., 1998)

metatranscriptomics a culture-independent microbial profiling based on their gene expression (Filiatrault, 2011)

microbial succession change in the composition of microbial communities over time after the colonization of a new environment (Fierer et al., 2010)

microbiome an entire habitat, including the microorganisms, their genomes, and the surrounding environmental conditions (Marchesi and 

Ravel, 2015)

mixotrophs organisms relying on both heterotrophy and autotrophy (Crane and Grover, 2010)

oligotrophs organisms capable of growing in low-nutrient environment/media (0.5–15 mg of C/L) and, conversely, unable to grow on substrate-

rich media immediately after removal from their natural environment (Cho and Giovannoni, 2004)

microbial population a collection of cells of one species living in the same environment and interacting with each other (Thompson, 2020; Behera et al., 

2022)

resuscitation-promoting factors factors enabling the cell division or resuscitation of dormant cells (Hett et al., 2008), usually referring to a protein/proteins of various 

gram-positive bacteria (Mycobacterium and Micrococcus genus; Mukamolova et al., 2002, 2006)

single-cell-sorting a sorting device based on the compartmentalization of a heterogeneous mixture of particles/cells of different types (one or more), 

into different volumes (Seeger et al., 1991; Grover et al., 2001)

viable but non-culturable (VBNC) a cellular survival strategy (Giagnoni et al., 2018) in which cells retain indicators of metabolic activity while being incapable of 

sustaining cellular division on media that normally support the growth of the microorganism (Rice et al., 2000)
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