
Frontiers in Microbiology 01 frontiersin.org

Therapeutic efficacy of liraglutide 
versus metformin in modulating the 
gut microbiota for treating type 2 
diabetes mellitus complicated with 
nonalcoholic fatty liver disease
Xing Ying 1, Zheng Rongjiong 2, Mayila Kahaer 1, Jiang Chunhui 1 and 
Muhuyati Wulasihan 3*
1 Department of Comprehensive Internal Medicine Department 4, The First Affiliated Hospital of Xinjiang 
Medical University, Urumqi, China, 2 Department of Infectious Disease, The First Affiliated Hospital of 
Xinjiang Medical University, Urumqi, China, 3 Department of Cardiology, The First Affiliated Hospital of 
Xinjiang Medical University, Urumqi, China

Metformin and liraglutide are used in the treatment of type 2 diabetes mellitus 
(T2DM) complicated with nonalcoholic fatty liver disease (NAFLD). Although these 
drugs can alter the intestinal microbiome, clinical data are required to explore their 
mechanisms of action. Using 16S sequencing technology, we analyzed and compared 
the intestinal bacterial community structure and function between patients before 
and after treatment (12 weeks) with the two drugs (metformin or liraglutide, n = 15) and 
healthy controls (n = 15). Moreover, combined with 19 clinical indices, the potential 
therapeutic mechanisms of the two drugs were compared. The studied clinical indices 
included those associated with islet β-cell function (FPG, FINS, HbA1c, and HOMA-
IR), inflammation (TNF-α, IL-6, and APN), lipid metabolism (TC, TG, and LDL-C), and 
liver function (ALT, AST, and GGT); the values of all indices changed significantly after 
treatment (p < 0.01). In addition, the effect of the two drugs on the intestinal bacterial 
community varied. Liraglutide treatment significantly increased the diversity and 
richness of the intestinal bacterial community (p < 0.05); it significantly increased the 
relative abundances of Bacteroidetes, Proteobacteria, and Bacilli, whereas metformin 
treatment significantly increased the relative abundance of Fusobacteria and 
Actinobacteria (p < 0.05). Metformin treatment increased the complexity and stability 
of the intestinal bacterial network. However, liraglutide treatment had a weaker effect 
on the intestinal bacterial network, and the network after treatment was similar to 
that in healthy controls. Correlation matrix analysis between dominant genera and 
clinical indicators showed that the correlation between the bacterial community and 
islet β-cell function was stronger after liraglutide treatment, whereas the correlation 
between the bacterial community and inflammation-related factors was stronger 
after metformin treatment. Functional prediction showed that liraglutide could 
significantly affect the abundance of functional genes related to T2DM and NAFLD 
(p < 0.05), but the effect of metformin was not significant. This study is the first to 
report the changes in the intestinal bacterial community in patients treated with 
metformin or liraglutide and the differences between the mechanisms of action of 
metformin and liraglutide. Metformin or liraglutide has a therapeutic value in T2DM 
complicated with NAFLD, with liraglutide having a weaker effect on the intestinal 
bacterial community but a better therapeutic efficacy.
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Introduction

Nonalcoholic fatty liver disease (NAFLD) is defined as the hepatic 
manifestation of metabolic syndrome, which is characterized by 
excessive ectopic lipid accumulation in the hepatocytes (Canfora et al., 
2019; De Meyts and Delzenne, 2021). The prevalence of NAFLD in 
developed countries is approximately 25–30% and is increasing rapidly 
(Shabalala et  al., 2020; Powell et  al., 2021). Nonalcoholic fatty liver 
disease significantly increases the risk of type 2 diabetes mellitus 
(T2DM), and the prevalence of NAFLD is 70% in patients with T2DM 
(Bril and Cusi, 2017; Geng et al., 2021). Insulin resistance is the main 
driver of the interaction between NAFLD and T2DM; therefore, 
hypoglycemic agents have been used to treat T2DM complicated with 
NAFLD (Pacifico et al., 2020).

The gut microbiome plays a key role in the human body and 
produces specific metabolites, thereby forming complex interconnected 
networks with many organ systems (Leung et al., 2022). Therefore, the 
gut microbiome has attracted much attention as a potential target of 
metabolic diseases (Zhang et  al., 2021). The dysfunction of the 
intestinal–hepatic axis, such as the structural disorder of the intestinal 
microbial community, the explosion of the microbial population, and 
the increase in intestinal permeability, can directly destroy the symbiotic 
relationship between the intestinal microbial community and host, 
leading to the host immune response dysfunction, which plays a key role 
in the occurrence and development of NAFLD (Saltzman et al., 2018; 
Yao et al., 2022).

Metformin has been the most widely prescribed prescription drug 
for T2DM for more than 60 years and has shown superior safety and 
better curative effect (Lee et al., 2021). Metformin is usually preferred to 
treat overweight patients with T2DM because of its weight loss benefits 
(Gnesin et al., 2020). It can reduce the glucose output of peripheral 
tissues and regulate hepatic lipid metabolism by activating 
AMP-activated protein kinase (Rena et  al., 2013; Wu et  al., 2017). 
Liraglutide is an analog with 97% homology to human glucagon-like 
peptide (GLP-1), which is another pharmaceutical approach to treat 
T2DM by enhancing GLP-1 function (Rabiei et al., 2021). This GLP-1 
agonist binds to the receptor of the endogenous intestinal hormone 
GLP-1 to enhance insulin secretion and inhibit glucagon production, 
thereby inhibiting the development of fatty liver in patients with T2DM 
(Wang et al., 2017; Moreira et al., 2018).

Wang et al. (2017) were the first to compare and report the difference 
in the influence of commonly used hypoglycemic drugs metformin and 
liraglutide on intestinal flora structure. Many studies have shown that 
the regulation of the intestinal microbiome is a potentially important 
component of the mechanisms of action of metformin and liraglutide 
(Zhang et  al., 2020; Nauck et  al., 2021). However, research on the 
correlation between clinical treatment indexes and changes of intestinal 
flora structure before and after treatment with the two drugs is lacking. 
Therefore, on the basis of previous research, we not only compared the 
intestinal microbial community structure and predictive function before 
and after liraglutide or metformin treatment in patients with T2DM 
complicated with NAFLD but also performed an in-depth analysis based 
on the changes in the clinical parameters of patients. In addition, 
different from many related studies, we included healthy controls in this 
study. Therefore, we compared the therapeutic effects and potential 
mechanisms of action of the two drugs. This clinical trial aims to provide 
concrete evidence for the novel effects of liraglutide and metformin on 
the human intestinal microbiome as well as a reference for the choice of 
suitable clinical treatment plan for patients.

Materials and methods

Patient selection

From August 2018 to August 2019, 30 patients with T2DM 
complicated with NAFLD who were treated at the First Affiliated 
Hospital of Xinjiang Medical University were recruited. The research 
protocol was approved by the Ethics Committee of the First Affiliated 
Hospital of Xinjiang Medical University (Xinjiang Uygur Autonomous 
Region, China; No. 20181129-13). Patient selection criteria were as 
follows: (1) patients fulfilling the 1999 World Health Organization 
criteria for the diagnosis and typing of diabetes (Lipsky et al., 2020); (2) 
patients fulfilling the 2010 Chinese Medical Association criteria for the 
diagnosis of NAFLD, confirmed using B-mode ultrasound (Zhou et al., 
2010); (3) those aged 18–70 years; and (4) those who provided written 
informed consent. Patient exclusion criteria were as follows: patients 
who had (1) a long-term history of alcoholism; (2) NAFLD-related 
diseases such as viral hepatitis and drug-induced liver disease; (3) a 
history of malignant hypertension, severe hyperlipidemia, or 
autoimmune diseases; (4) organic intestinal diseases; and (5) a history 
of abdominal surgery, as well as patients who were (6) pregnant or 
lactating; (7) intolerant to metformin; and (8) intolerant to liraglutide.

Grouping and treatment

All patients received unified dietary guidance and exercise 
education. The patients were randomly divided into two groups (Met 
group, n = 15, and Lira group, n = 15). The Met group dosage was 
1,500 mg/day, whereas the Lira group dosage was 1.8 mg/day (Lingvay 
et al., 2016; Tamborlane et al., 2019; Budoff et al., 2021). Both groups 
were given treatment for 12 weeks. The MetA and LiraA groups 
constituted the before-treatment groups, and the MetB and LiraB groups 
constituted the after-treatment groups. Fifteen healthy volunteers were 
recruited as healthy controls (HC group).

Laboratory evaluation

Data on the sex, age, disease course (in patients), height, and weight 
of all participants were collected. Body mass index (BMI) was calculated 
as weight/height squared (kg/m2). Venous blood was collected from 
patients who fasted for 12 h, and the levels of fasting plasma glucose 
(FPG), hemoglobin A1c (HbA1c), total cholesterol (TC), triglyceride 
(TG), high-density lipoprotein-cholesterol (HDL-C), low-density 
lipoprotein-cholesterol (LDL-C), alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), gamma-glutamyl transpeptidase 
(GGT), and alkaline phosphatase (ALP) were determined using a Cobas 
8000 automatic biochemical analyzer (Roche, Germany). Tumor necrosis 
factor-α (TNF-α), interleukin 6 (IL-6), and adiponectin (APN) levels 
were determined using an RT-6100 enzyme immunoassay workstation 
(RAYTO, United states). Fasting insulin (FINS) was measured using an 
ARCHITECT i2000SR immunoassay analyzer (Abbott, United states; 
Feng et al., 2017). The homeostasis model assessment of insulin resistance 
(HOMA-IR) was calculated as FPG × FINS/22.5. All participants were 
examined using an ACUSON S2000 ultrasound diagnostic system 
(Siemens, Germany) on an empty stomach. Liver stiffness measurement 
(LSM) and controlled attenuation parameter (CAP) were measured using 
a FibroTouch ultrasound diagnostic instrument (Echosens, France; 
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Shimizu et al., 2019). All measurements were performed by independent 
medical technicians who were blinded to the study protocol.

Biochemical analysis

Fresh fecal samples were collected with a sterile spoon from patients 
in each group. The collected samples were transferred into a prelabelled 
tube containing 8 ml of Stool DNA Stabilizer, mixed by shaking and then 
immediately stored in an ultralow temperature storage (Alphavita, 
China) at −80°C until DNA extraction. Before DNA extraction, stool 
consistency was evaluated by trained laboratory technicians. Total 
bacterial DNA was extracted from the samples using the PowerSoil 
DNA Isolation Kit (MO BIO, United states). Using NanoDrop™ One 
(Thermo Fisher, United states) and BioPhotometer D30 (Eppendorf, 
Germany), the quality and quantity of the extracted DNA were 
determined. The V3–V4 region of the bacterial 16S rRNA gene was 
amplified using a primer pair (338F, 806R). The sequencing and 
bioinformatics services of all the samples were completed on the 
Illumina Hiseq  2,500 platform of BMK Cloud (www.biocloud.net, 
Biomarker Technologies Co. Ltd., Beijing, China; Chen et al., 2021). 
Sequence read archive (SRA) records will be  accessible with the 
following link after the indicated release date: https://www.ncbi.nlm.nih.
gov/sra/PRJNA896892.

Flash (v. 1.2.11) and Trimmomatic (v. 0.33) software were used to 
obtain high-quality reads. UCHIME (v. 8.1) software was used to 
identify and remove the chimeric sequences and obtain the final data. 
USEARCH (v. 10.0) software was used to cluster the reads (at a similarity 
level of 97%) to obtain the operational taxonomic units (OTUs), and the 
OTUs were taxonomically annotated based on the 16S bacterial 
taxonomy database (Silva, release 132). The RDP classifier was used to 
assign taxonomic groups (a minimal confidence estimate of 80%). The 
microbial community diversity was analyzed using mothur (v. 1.30). The 
KEGG database was used to predict the function of the microbial 
community (Chen et al., 2021).

Statistical analyses

All data analysis and drawing were performed using R (v. 4.0.5) and 
the ggplot2 package (v. 3.3.5). Pairing and multiple comparisons were 
performed with the agricolae package (v. 1.3-5) and ggpubr package (v. 
0.4.0). The nonmetric multidimensional scaling (NMDS) analysis was 
performed using the vegan package (v. 2.5-7). Stacked column diagram 
was prepared using the ggalluvial package (v. 0.12.3). The linear 
discriminant analysis effect size (LEfSe) was completed using the 
microeco package (v. 0.7.1). The network analysis was performed using 
the phyloseq package (v. 1.39.1), ggClusterNet package (v. 0.1.0), igraph 
package (v. 1.2.11), and Gephi (v. 0.9.7). Correlation matrix analysis was 
performed using the linkET package (v. 0.0.2.9; Chen et al., 2021).

Results

Effects of metformin on liraglutide on 
clinical indices

After treatment with the two drugs, the values of HDL-C, ALP, and 
LSM did not change significantly (p > 0.05), but other indices changed 

significantly (p < 0.01; Table 1). Unlike in the Met group, the values of 
BMI, HOMA-IR, TC, and LDL-C in the Lira group changed significantly 
(p < 0.001). In addition, the MetB, LiraB, and HC groups were compared. 
The weight, BMI, FPG, HbA1c, TG, ALT, AST, GGT, ALP, CAP, and 
LSM of patients in the Met and Lira groups all decreased after treatment, 
but these values were still significantly higher than those in the HC 
group, and TG, ALT, and AST levels in the Lira group were significantly 
lower than those in the MetB group (p < 0.05). Meanwhile, HOMA-IR, 
IL-6, TC, and LDL-C levels did not differ significantly between the HC 
and LiraB groups, but the highest values were observed in the MetB 
group. In addition, FINS and TNF-α levels in the Met and Lira groups 
decreased significantly (p < 0.001), which showed no significant 
difference with those in the HC group.

Effects of metformin or liraglutide on the 
diversity of the intestinal bacterial 
community

Before treatment, the Shannon diversity index and Chao1 richness 
index of the intestinal bacterial community in the MetA and LiraA 
groups were significantly lower than those in the HC group. After 
treatment, compared with the MetA group, the α-diversity index of the 
intestinal bacterial community in the MetB group increased but not 
significantly, whereas that in the LiraB group was significantly higher 
than that in the LiraA group and close to that in the HC group 
(Figures 1A,B). The NMDS analysis showed that the stress function 
value was 0.0737 (< 0.1), and the sorting model was reasonable. Analysis 
of similarities (ANOSIM; p < 0.001) and Adonis analysis (p < 0.01) 
results were significant. The samples in each group had good 
aggregation, and there were obvious differences among the groups. The 
sample spacing between the MetB, LiraB, and HC groups was small, 
whereas that between the MetA, LiraA, and HC groups was large 
(Figure 1C).

Effects of metformin or liraglutide on the 
intestinal bacterial community structure

At the phylum level, Firmicutes (62.52–72.84%), Bacteroidetes 
(11.44–21.29%), and Proteobacteria (2.92–20.62%) were predominant 
in the intestinal bacterial community (Figure 2A). At the phylum level, 
Firmicutes (62.52–72.84%), Bacteroidetes (11.44–21.29%), and 
Proteobacteria (2.92–20.62%) were predominant in the intestinal 
bacterial community (Figure 2A). The relative abundances of Firmicutes, 
Bacteroidetes, and Actinobacteria in the MetA group were 62.52, 11.44, 
and 1.55%, respectively, which increased to 72.84, 20.61, and 2.62%, 
respectively, in the MetB group. The relative abundances of 
Proteobacteria and Fusobacteria in the MetA group were 20.62 and 
3.05%, respectively, which decreased to 2.92 and 0.14%, respectively, in 
the MetB group. The relative abundances of Firmicutes, Bacteroidetes, 
and Actinobacteria in the LiraA group were 64.24, 12.15, and 2.91%, 
respectively, which increased to 68.46, 18.46, and 6.34%, respectively, in 
the LiraB group. The relative abundances of Proteobacteria and 
Fusobacteria in the LiraA group were 16.86 and 2.95%, respectively, 
which decreased to 4.38 and 0.65%, respectively, in the LiraB group. The 
relative abundance of the main bacteria showed the same trend after 
treatment with the two drugs. The relative abundances of Firmicutes, 
Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria in the 
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HC group were 71.35, 21.29, 4.35, 2.63, and 0.04%, respectively, which 
were similar to the bacterial community structure of the MetB and 
LiraB groups.

Changes in the community structure at the genus level are presented 
in Figure 2B. Faecalibacterium (9.78–23.36%), Bacillus (6.65–9.84%), 
Escherichia–Shigella (0.78–19.51%), and Agaricus (3.97–14.80%) were 

TABLE 1 Changes of clinical indices before and after msetformin or liraglutide treatment and comparison with healthy controls.

MetA MetB p-Value 1 LiraA LiraB p-Value 2 HC

Number (M/F) 15 (7, 8) – 15 (8, 7) – 15 (8, 7)

Disease course 

(year)

4.93 ± 0.35 – 5.33 ± 0.42 – –

Weight (kg) 86.47 ± 1.82 84.58 ± 0.52 a 87.8 ± 2.01 81.34 ± 1.91 a 66.86 ± 1.41 b

BMI (kg/m2) 31.67 ± 0.27 29.26 ± 0.60 a ** 31.42 ± 0.28 28.53 ± 0.44 a *** 22.36 ± 0.41 b

FPG (mmol/L) 9.22 ± 0.42 6.97 ± 0.05 a *** 9.50 ± 0.43 6.79 ± 0.41 a *** 5.52 ± 0.13 b

FINS (mU/L) 59.06 ± 5.19 12.36 ± 0.34 a *** 61.65 ± 6.69 12.88 ± 1.52 a *** 10.25 ± 0.57 a

HbA1c (%) 9.75 ± 0.17 7.56 ± 0.07 a *** 9.78 ± 0.19 7.27 ± 0.15 a *** 5.68 ± 0.11 b

HOMA-IR 9.03 ± 1.02 5.14 ± 0.06 a ** 8.38 ± 0.89 3.65 ± 0.30 b *** 3.76 ± 0.01 b

TNF-α (ng/ml) 61.72 ± 1.81 46.29 ± 0.45 a *** 62.46 ± 1.80 46.86 ± 1.72 a *** 44.16 ± 0.27 a

IL-6 (pg/ml) 51.63 ± 1.60 38.84 ± 0.28 a *** 50.54 ± 1.80 36.93 ± 0.97 b *** 35.66 ± 0.46 b

APN (mg/L) 6.84 ± 0.12 8.05 ± 0.04 b *** 6.92 ± 0.17 8.10 ± 0.18 b *** 11.8 ± 0.59 a

TC (mmol/L) 5.34 ± 0.15 4.84 ± 0.05 a ** 5.27 ± 0.14 4.47 ± 0.13 b *** 4.45 ± 0.04 b

TG (mmol/L) 4.09 ± 0.28 3.21 ± 0.05 a ** 3.99 ± 0.34 2.49 ± 0.23 b ** 1.51 ± 0.03 c

HDL-C 

(mmol/L)

0.95 ± 0.01 0.96 ± 0.00 b 0.96 ± 0.02 0.97 ± 0.02 b 1.25 ± 0.02 a

LDL-C (mmol/L) 4.13 ± 0.10 3.77 ± 0.03 a ** 4.11 ± 0.11 2.81 ± 0.08 b *** 2.82 ± 0.05 b

ALT (U/L) 66.65 ± 1.77 51.81 ± 0.85 a *** 63.81 ± 2.16 47.73 ± 1.10 b *** 24.76 ± 0.08 c

AST (U/L) 85.64 ± 1.33 61.72 ± 0.73 a *** 83.33 ± 1.83 57.82 ± 0.87 b *** 24.2 ± 0.06 c

GGT (U/L) 98.52 ± 1.51 77.04 ± 0.78 a *** 98.99 ± 1.52 75.79 ± 0.74 a *** 39.18 ± 1.74 b

ALP (U/L) 72.87 ± 3.87 69.85 ± 1.03 a 71.96 ± 3.89 67.94 ± 3.82 a 36.4 ± 0.63 b

CAP (db/m) 280.38 ± 3.24 246.38 ± 2.81 a *** 281.21 ± 3.43 245.61 ± 3.22 a *** 217.51 ± 4.37 b

LSM (kPa) 9.97 ± 0.40 9.48 ± 0.15 a 10.37 ± 0.33 9.58 ± 0.40 a 7.06 ± 0.04 b

Mean ± standard error (n = 15). Different letters indicate significant differences between the MetB, LiraB, and HC groups at the level of 0.05. “**” and “***” indicate significant differences at the 
levels of 0.01 and 0.001 before and after a single drug treatment.

A B C

FIGURE 1

(A) Difference in the Shannon diversity index of the intestinal bacterial community between healthy controls and patients before and after metformin or 
liraglutide treatment. (B) Difference in the Chao richness index of the intestinal bacterial community between healthy controls and patients before and after 
metformin or liraglutide treatment. (C) β-diversity of the intestinal bacterial community in healthy controls and patients before and after metformin or 
liraglutide treatment. Different letters indicate significant differences between groups. p value < 0.05 indicates that the differences are significant. “**” and 
“***” indicate significant differences at the levels of 0.01 and 0.001.
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the predominant bacteria in the intestinal bacterial community. The 
relative abundances of Faecalibacterium, Prevotella_9, and Roseburia 
increased to 23.36, 8.23, and 5.13%, respectively, in the MetB group and 
18.02, 6.39, and 6.16%, respectively, in the LiraB group. These values 
were higher than the corresponding values in the HC group (16.00, 7.43 
and 4.92%). The relative abundances of Bacillus, Escherichia–Shigella, 
Blautia, and Megamonas decreased were 9.54, 0.78, 2.34, and 0.23%, 
respectively, in the MetB group and 6.65, 1.24, 2.63, and 0.54%, 
respectively, in the LiraB group. The relative abundance of Agathobacter 
in the dominant genera was significantly different after treatment with 
the two drugs; the values changed from 7.73% (MetA) to 14.80% (MetB) 
and from 6.32% (LiraA) to 3.97% (LiraB). The relative abundance of 
Agathobacter in the HC group was 4.18%. Simultaneously, more 
differences in the changes of some genera with low relative abundances 
were observed. The relative abundance of Dialister in the HC group was 
5.88%, increasing from 0.70% (LiraA) to 3.94% (LiraB) and decreasing 
from 0.45% (MetA) to 0.18% (MetB). The relative abundance of 
Streptococcus (2.83%) in the MetB group was higher, and the relative 
abundances of Alistipes (2.33%), the [Eubacterium]_coprostanoligenes_
group (3.60%), romboutsia (1.81%), and others (21.76%) in the LiraB 
group were higher.

We observed differences in the bacterial groups at the phylum to 
species levels by LEfSe analysis (LDA = 4.0; Figure 3). Comparing the 
pre-treatment (MetA and LiraA) and HC groups, 4 phyla 
(Proteobacteria, Bacteroidetes, Firmicutes, and Fusobacteria), 4 classes, 
4 orders, 6 families, 14 genera (including Escherichia–Shigella, 
Prevotella_9, and Megamonas), and 13 species were present. Comparing 
the HC group with the MetA and MetB groups, 4 phyla (Proteobacteria, 
Bacteroidetes, Firmicutes, and Fusobacteria), 4 classes, 4 orders, 6 
families, 14 genera (including Escherichia–Shigella, Agathobacter, and 
Faecalibacterium), and 13 species were present. Significant differences 
were observed among the groups. Comparing the HC group with the 
LiraA and LiraB groups, 2 phyla (Actinobacteria and Fusobacteria), 2 
classes, 2 orders, 4 families, and 9 genera (including Escherichia–Shigella, 
Prevotella_9, and Coprococcus_2) were present, and significant 
differences were observed among ten species (p < 0.05). Differences were 

observed in the effects of the two drugs on intestinal bacterial groups at 
various levels, especially at genus and species levels.

Effects of metformin or liraglutide on the 
intestinal bacterial network

For the intestinal bacterial community network analysis, 
we screened 300 OTUs with the highest abundance (Figure 4). The 
network of the MetB group was denser and more complex than that of 
the MetA group (Figures 4A,C). Interestingly, compared with the LiraA 
group, the bacterial network of the LiraB group was similar to that of the 
HC group (Figures  4B,D,E). By comparing the parameters of the 
bacterial community networks of the MetB and LiraB groups, we found 
that positive edges, negative edges, and vertices, were increased in both 
groups, and the edges of the MetB group were 2.25 times those of the 
MetA group (Table 2). The treatment with the two drugs increased the 
connectivity and average degree of the network but decreased the 
diameter and average path length. Furthermore, the clusters and the 
mean clustering coefficient of the MetB group network were reduced 
compared with those of the MetA group. However, the LiraB group 
network clusters were not decreased, and the mean clustering coefficient 
increased after drug treatment. Moreover, the number of keystone nodes 
in the LiraB group increased from 17 (MetA group) to 31, whereas that 
in the MetB group only increased from 9 (MetA group) to 11. These 
results showed that both treatments increased the complexity of the 
network, and the bacterial network in the Met group was aggregated and 
complicated. Though the network structure of the Lira group changed 
slightly, its keystone nodes were increased. In addition, we analyzed the 
stability of the network. The analysis of robust network composition 
stability after removing any proportion of species showed that 
metformin affected the stability of the intestinal bacterial community 
composition more strongly than liraglutide did (Figures 5A,B). The 
network vulnerability results showed that the vulnerability of the MetB 
group network was reduced (Figure 5C), verifying that the MetB group 
network was aggregated.

A B

FIGURE 2

(A) Differences in the intestinal bacterial community structure (phylum level) between healthy controls and patients before and after metformin or 
liraglutide treatment. (B) Differences in the intestinal bacterial community structure at the genus level between healthy controls and patients before and 
after metformin or liraglutide treatment.
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Correlation analysis of clinical indicators and 
intestinal bacterial community after 
metformin or liraglutide treatment

The results of the autocorrelation analysis of changes in the physical 
and chemical properties after drug treatment showed that the four 
sub-communities (sub1, 2, 3, and 4) of the intestinal bacterial 
community in the Met group were significantly autocorrelated 
(Figure 6A). However, only one subcommunity (sub5) of the intestinal 
bacterial community in the Lira group showed significant 
autocorrelation (p < 0.05), which was similar to the bacterial group 
contained in sub4 of the Met group (Figure 6B).

We further analyzed the correlation between changes in the physical 
and chemical properties and the intestinal bacterial community after 

drug treatment. The correlation analysis showed that the correlation 
between the β-cell function index and intestinal bacterial community in 
the Lira group (44) was significantly stronger than that in the Met group 
(29; Figures 6A,B). The number of bacterial groups significantly related 
to FPG, FINS, HbA1c, and HOMA-IR was 8, 10, 7, and 4, respectively, 
in the Met group, and 8, 10, 13, and 13, respectively, in the Lira group 
(p < 0.05). Interestingly, in the Met group, only 4 of the 10 bacterial 
groups that were significantly related to FINS (Blautia, Fusicatenibacter, 
Ruminococcus_1, and [Eubacterium]_hallii_group) also appeared in the 
Lira group. In the Lira group, only 4 of the 13 bacterial groups that were 
significantly related to HbA1c (Blautia, Escherichia–Shigella, 
Faecalibacterium, and Prevotella_9) also appeared in the Met group.

The correlation analysis between inflammatory factors and the 
intestinal bacterial community showed that the correlation of the Met 

A

B

C

FIGURE 3

(A) Linear discriminant analysis effect size (LEfSe) of the intestinal bacterial community structure in healthy controls and patients before treatment (MetA & 
LiraA groups). (B) LEfSe of the intestinal bacterial community structure of patients before and after metformin treatment and healthy controls. (C) LEfSe of 
the intestinal bacterial community structure of patients before and after liraglutide treatment and healthy controls.
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group (35 lines) was significantly stronger than that of the Lira group 
(21 lines; Figures 6C,D). Mainly, 14 and 6 bacterial groups in the Met 
and Lira groups, respectively, were significantly related to APN, IL-6, 
and TNF-α. In the Met group, only 3 of the 6 bacterial groups that were 
significantly related to APN (Blautia, Coprocccus _ 2, and 
Faecalibacterium) also appeared in the Lira group. In the Met group, 
only 4 of the 10 bacterial groups that were significantly related to IL-6 

(Blautia, Prevotella_9, Streptococcus, [Ruminococcus]_torques_group) 
also appeared in the Lira group. In contrast, a significant positive 
correlation was observed between Streptococcus and IL-6 in the Met 
group (r ≥ 0, p < 0.01), whereas a significant negative correlation between 
them was observed in the Lira group (r < 0, p < 0.05).

The correlation between the lipid metabolism index and intestinal 
bacterial community in the Met group (25 lines) was significantly 

A B
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D

FIGURE 4

(A) Network analysis of the intestinal bacterial community in patients before metformin treatment. (B) Network analysis of the intestinal bacterial 
community in patients before liraglutide treatment. (C) Network analysis of the intestinal bacterial community in patients after metformin treatment. 
(D) Network analysis of the intestinal bacterial community in patients after liraglutide treatment. (E) Network Analysis of the intestinal bacterial community 
in healthy controls.
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stronger than that of the Lira group (21 lines; Figures 6E,F). The number 
of bacterial groups significantly related to HDL-C, LDL-C, TC, and TG 
was 4, 9, 10, and 2, respectively, in the Met group and 1, 11, 4, and 5, 
respectively, in the Lira group. Comparatively, changes in the intestinal 
bacterial community in the Met group were more closely related to 

changes in HDL-C and TC than those in the Lira group. However, 
change in the intestinal bacterial community in the Lira group was not 
closely related to HDL-C but was more closely related to TG than that 
in the Met group.

Changes in liver function indices in the Met (38 lines) and Lira 
groups (37 lines) were closely related to changes in the intestinal 
bacterial community (Figures 6G,H). The number of bacterial groups 
significantly related to ALT, AST, GGT, and ALP was 9, 14, 15, and 0, 
respectively, in the Met group and 7, 13, 12, and 5, respectively, in the 
Lira group. The bacterial groups significantly related to ALT and AST 
differed between the Met and Lira groups. However, the bacterial groups 
significantly related to GGT were the same in the Met and Lira groups. 
Interestingly, 5 bacterial groups (r ≥ 0, p < 0.05) were found in the Lira 
group, which were not present in the Met group. To summarize, based 
on the correlation analysis between the physical and chemical properties 
and intestinal bacteria after drug treatment, obvious differences were 
observed between the two drug groups.

Effects of metformin or liraglutide on 
intestinal bacterial community functions in 
patients

The results of functional prediction showed that after treatment with 
the two drugs, the abundances of various functional genes in the 
intestinal bacterial community differed between the groups (Figure 7). 
Regarding carbohydrate metabolism, the expression abundance of 
propanoate metabolism-related genes in the MetA and LiraA groups 
was higher than that in the HC group, which was further increased after 
drug treatment. The expression of butanoate metabolism-related genes 

TABLE 2 Topological characteristics of intestinal bacterial community 
network before and after metformin or liraglutide treatment and in healthy 
controls.

Network 
characteristics

MetA MetB LiraA LiraB HC

num.edges (L) 1,157 2,604 1,006 1,695 1,536

num.pos.edges 869 1744 848 1,489 1,174

num. Neg. edges 288 860 158 206 362

num.nodes (n) 252 265 244 257 265

Connectance 

(edge_density)

0.037 0.074 0.034 0.052 0.044

average.degree 

(Average K)

9.183 19.653 8.246 13.191 11.592

average.path.length 4.158 2.879 4.496 3.636 3.795

diameter 9.251 7.338 12.383 8.352 9.904

no.clusters 15 10 15 15 23

mean.clustering.

coefficient 

(Average. CC)

0.527 0.488 0.453 0.502 0.503

the.number.of.

keystone.nodes

9 11 17 31 11

A B

C

FIGURE 5

(A) Network robustness after exclusion of a proportion of species before and after metformin or liraglutide treatment. (B) Network community stability 
before and after metformin or liraglutide treatment. (C) Network vulnerability before and after metformin or liraglutide treatment.
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in the LiraB group was significantly higher than that in the LiraA group 
(p < 0.05), whereas the expression of these genes in the MetB group was 
lower than that in the MetA group. Regarding endocrine and metabolic 
diseases, the expression of related functional genes in the HC group was 
low. The expression of functional genes of type 2 diabetes mellitus 
(T2DM) and insulin resistance decreased in the MetB and LiraB groups, 
whereas the expression of T2DM-related functional genes in the LiraB 
group was significantly lower than that in the LiraA group (p < 0.05). A 

similar trend of gene expression changes was observed in the genes 
associated with the endocrine system (insulin signaling and glucagon 
signaling pathways), lipid metabolism (primary and secondary bile acid 
biosynthesis), endocrine and metabolic diseases, and nonalcoholic fatty 
liver disease (NAFLD). Furthermore, the expressions of genes associated 
with the insulin signaling pathway, secondary bile acid biosynthesis, and 
NAFLD in the LiraB group were significantly lower than those in the 
LiraA group (p < 0.05).

A B

C D

E F

G H

FIGURE 6

(A) Correlation analysis of islet β cell indices and intestinal bacterial community after metformin treatment. (B) Correlation analysis of islet β cell indices and 
intestinal bacterial community after liraglutide treatment. (C) Correlation analysis of inflammation-related factors and intestinal bacterial community after 
metformin treatment. (D) Correlation analysis of inflammation-related factors and intestinal bacterial community after liraglutide treatment. (E) Correlation 
analysis of lipid metabolism indices and intestinal bacterial community after metformin treatment. (F) Correlation analysis of lipid metabolism indices and 
intestinal bacterial community after liraglutide treatment. (G) Correlation analysis of liver function indices and intestinal bacterial community after 
metformin treatment. (H) Correlation analysis of liver function indices and intestinal bacterial community after liraglutide treatment.
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Discussion

Nonalcoholic fatty liver disease pathogenesis and prevention 
strategies have become the research focus globally. Many studies have 
confirmed the therapeutic efficacy of hypoglycemic agents in T2DM 
complicated with NAFLD (Ferguson and Finck, 2021). Based on islet 
β-cell function, Tian et  al. (2018) found that the FPG, HbA1c, and 
HOMA-IR levels in patients with T2DM complicated with NAFLD 
decreased after treatment with liraglutide and metformin for 12 weeks, 
and liraglutide had a better therapeutic effect than metformin. 
Liraglutide can promote insulin secretion, inhibit glucagon release, and 
significantly improve patient metabolism. In this study, after treatment 
with metformin and liraglutide, the FPG, FINS, HbA1c, and HOMA-IR 
levels in patients were significantly decreased (p < 0.01), and the 
therapeutic effect of liraglutide in terms of FINS and HOMA-IR levels 
was significantly better than that of metformin, consistent with previous 
research results (Tian et al., 2018). Related studies have reported that 
metformin can be used to reduce the weight and fat distribution in 
patients; however, some studies have shown that the effect is not 
significant (Legro et al., 2013). Liraglutide can reduce liver fat and TG 
contents and thus help in treating obesity (Kuchay et al., 2020). Studies 
based on animal models have also confirmed that liraglutide can reduce 

liver lipid content and treat NAFLD (Moreira et al., 2018). According to 
the results of the present study, both drugs can reduce the body weight 
and BMI of patients, with the effect of liraglutide being superior to that 
of metformin. Regarding lipid metabolism, both drugs significantly 
reduced TC, TG, and LDL-C levels in patients (p < 0.01), and no 
significant difference in the TC and LDL-C levels were observed 
between patients treated with liraglutide and HC (p > 0.05). These results 
show that liraglutide is superior to metformin in improving lipid 
metabolism in patients. We, thus, infer that the two drugs have no 
significant effect on the HDL-C levels (p > 0.05), consistent with the 
results of Feng et al. (2017). However, Seif El-Din et al. (2021) showed 
that metformin significantly reduced HDL-C levels in mice, and the 
discrepancy in the result might be  attributed to different subjects 
considered in both studies. Insulin resistance plays an vital role in 
NAFLD pathogenesis, and various inflammatory factors such as IL-6 
and TNF-α can promote insulin resistance, leading to NAFLD 
occurrence and development (Tanase et  al., 2020). APN activation 
induces the AMP-activated protein kinase pathway, reduces 
proinflammatory cytokines and gluconeogenesis, prevents insulin 
resistance, and inhibits liver inflammation (Ahmad et al., 2019). In this 
study, based on inflammatory factors, liraglutide was more beneficial to 
the liver function of the patients as it significantly decreased the IL-6 

FIGURE 7

Differences in intestinal bacterial community function between healthy controls and patients before and after metformin or liraglutide treatment. “*” 
indicates significant differences at 0.05 level between the groups.

https://doi.org/10.3389/fmicb.2023.1088187
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ying et al. 10.3389/fmicb.2023.1088187

Frontiers in Microbiology 11 frontiersin.org

level in patients. To determine the liver functions, Feng et al. (2017) 
reported that after the treatment of patients with metformin or 
liraglutide, the level of liver injury markers, namely ALT and AST, 
decreased by 23.06/44.86% and 33.59/44.25%, respectively. In this study, 
after treatment with metformin and liraglutide, the levels of ALT, AST, 
and GGT significantly decreased by 22.27%/25.20, 27.93%/30.61, and 
21.80%/23.44%, respectively, (p < 0.01). The results of this study are 
consistent with those of a previous study (Feng et al., 2017), and the 
difference in the amplitude of change can be ascribed to the different 
dosages of drugs. Moreover, we detected and compared the CAP and 
LSM of the patients. After treatment with the two drugs, the CAP and 
LSM of the patients decreased, which confirmed that both drugs can 
improve elasticity and fat content of the liver of the patients. To 
summarize, both metformin and liraglutide can significantly improve 
the general health of patients with NAFLD, regulate their glucose and 
lipid metabolism, decrease the levels of inflammatory indicators, and 
improve liver functions and fat content. The therapeutic effect of 
liraglutide is better than that of metformin. However, systematic 
research combining clinical data with the intestinal microbiome is 
still lacking.

While monitoring the clinical data of patients, we also observed the 
changes in the intestinal bacterial community. The results showed that 
both drugs improved the α diversity of the community, and liraglutide 
significantly increased the diversity and richness of the bacterial 
community (p < 0.05), which were close to those in the HC 
(Figures 1A,B). The change of intestinal flora diversity is consistent with 
previous research results (Wang et al., 2017; Tong et al., 2018). The 
results of β diversity also distinctly showed the efficacy of the two drugs 
in restoring it to the normal level (Figure 1C). Notably, both drugs 
showed distinct effects on the intestinal bacterial community of the 
patients. At the phylum level, the relative abundance of Bacteroidetes in 
patients treated with metformin increased significantly, whereas 
liraglutide significantly affected the relative abundance of Actinobacteria. 
Bacteroidetes can carry leptin, and the increase in its abundance can 
reduce energy intake, which can affect carbohydrate fermentation and 
lipopolysaccharide metabolism (Sharpton et al., 2018). Previous studies 
have shown that the increase in the Firmicutes/Bacteroidetes ratio 
decreases the production of short-chain fatty acids (SCFA) and increases 
energy intake, which promotes NAFLD progression (Leung et al., 2016; 
Yao et al., 2022). The difference is that the abundance of Actinobacteria 
(mainly Bifidobacterium) can increase the production of antibiotics and 
block the specific binding sites of pathogenic bacteria and toxins (Li 
et al., 2012). In addition, it can enhance the ability of carbohydrate 
degradation, increase the production of SCFAs, reduce fat accumulation, 
and relieve NAFLD-related pathological phenotype (Ni et al., 2020; 
Oliver et  al., 2021). In this study, liraglutide and metformin both 
increased the relative abundance of Firmicutes, Bacteroidetes, and 
Actinobacteria, whereas the relative abundance of Proteobacteria 
containing many pathogenic bacteria decreased. The ratios of 
Firmicutes/Bacteroidetes decreased from 5.47 (MetA) and 5.29 (LiraA) 
to 3.53 (MetB) and 3.71 (LiraB), respectively. The increase in SCFA 
production can improve the lipid metabolism in patients as reported in 
previous studies (Aron-Wisnewsky et al., 2012; Carmody et al., 2015).

At the genus level, the effect of the two drugs on the structure of the 
intestinal bacterial community of patients is well-known. Studies have 
shown that Escherichia–Shigella species can increase endotoxemia, 
produce endogenous ethanol, trigger strong inflammatory reactions, 
and cause insulin resistance (Frost et  al., 2021; Zhang et  al., 2022). 
Megamonas is closely associated with inflammatory bowel disease, 

colorectal cancer, and obesity (Chiu et al., 2014; Yachida et al., 2019). In 
our study, Escherichia–Shigella, Megamonas, and Bacillus were 
considered typical proinflammatory bacteria (Martens et  al., 2018; 
Girinathan et al., 2021), and their relative abundance decreased after the 
treatment with both drugs, which is consistent with the results of Wang 
et al. (2017). At the same time, Faecalibacterium and Bifidobacterium, as 
traditional probiotics (Yao et  al., 2022), showed increased relative 
abundance after treatment with the two drugs. The difference between 
the two treatments was that metformin distinctly increased the relative 
abundance of probiotic Agathobacter and liraglutide significantly 
increased the relative abundance of Bifidobacterium, Dialister, and 
Alistipes. These results showed that although both drugs can improve the 
structure of the intestinal flora of the patients, their effects can differ. In 
addition, LEfSe could more distinctly show that there are obvious 
differences between the effect of the two drugs at multiple classification 
levels. The network analysis further showed the effect of the two drugs 
on the intestinal bacterial network of the patients. Unexpectedly, after 
metformin treatment, the bacterial network in the intestines of the 
patients gathered, the proportion of negative correlation edges increased, 
and the network stability and complexity increased. This indicated that 
metformin treatment can “compulsorily” unify the bacterial community 
in the intestines of the patients. Liraglutide has a relatively weaker effect 
on the intestinal bacterial network of patients, which is similar to that of 
the healthy group. In terms of therapeutic efficacy, liraglutide is superior 
to metformin. At the same time, it is milder and more efficient in 
improving the intestinal community structure of patients.

The present study highlights the clinical data of patients before and 
after the treatment with the two drugs and determined the changes in 
the intestinal bacterial community structure. The results showed that the 
degree of correlations among the β-cell function index, levels of 
inflammation-related factors, lipid metabolism index, liver function 
index, and bacterial community (subcommunity) differed significantly 
after the treatment with the two drugs. For instance, after metformin 
treatment, HOMA-IR was significantly positively correlated with sub-3, 
whereas IL-6 was significantly positively correlated with sub-3. However, 
after liraglutide treatment, HOMA-IR was negatively correlated with 
sub5, and IL-6 was negatively correlated with sub5. Notably, no 
significant correlation was observed between HOMA-IR and IL-6 and 
sub4 (similar to sub5) after metformin treatment. Moreover, for lipid 
metabolism, the correlation between intestinal bacteria and LDL-C was 
more significantly positive after metformin treatment, which was 
contrary to the results of liraglutide treatment. A similar pattern was 
observed for indicators such as HbA1c, FINS, and ALP. Moreover, based 
on the matrix correlation analysis, we confirmed the mechanism of 
metformin and liraglutide treatments on the correlation between 
intestinal bacterial community and clinical indicators differ significantly, 
which is consistent with the results of Wang et al. (2017).

Several metabolites of intestinal flora can alter intestinal 
homeostasis, which can directly or indirectly affect the metabolic 
processes of bile acids, improve insulin resistance, and produce 
SCFAs, leading to the occurrence and development of NAFLD 
(Verhaar et al., 2020; Martin-Gallausiaux et al., 2021). Bile acid and 
its metabolites help maintain the steady state of TC and TG (Li 
et al., 2020). Clinical studies have shown that bile acids regulate 
glucose and lipid metabolism and the production of inflammatory 
factors, such as IL-6 and TNF-α, in the liver and other tissues 
through signaling pathways such as farnesol X receptor (Chen et al., 
2019; Sinha et al., 2020). In this study, both drugs decreased the 
abundance of the functional genes of bile acid (Figure 7), which is 
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consistent with the results of previous studies (Smits et al., 2016; 
Sun et al., 2018; Garzel et al., 2020; Lei et al., 2022). At the same 
time, our results showed that both drugs increased the abundance 
of propanoate metabolism functional genes. The difference was that 
butanoate metabolism increased significantly after liraglutide 
treatment but decreased after metformin treatment. Studies have 
shown that the increase in propionic acid contents can promote 
gluconeogenesis in the liver and intestine, which can be helpful for 
the treatment of obesity and insulin resistance (Ziętek et al., 2021). 
Butyric acid plays a crucial role in maintaining intestinal integrity 
by upregulating the expression of tight junction protein and mucin, 
which can improve intestinal barrier function and prevent toxic 
compounds (such as proinflammatory molecules) from migrating 
to the liver and inhibiting cholesterol synthesis, thereby decreasing 
liver fat accumulation and regulating the development of NAFLD 
(Pirola and Sookoian, 2021; Sun et  al., 2021). In addition, the 
treatment with the two drugs decreased the incidence of type 1 
diabetes mellitus, T2DM, insulin resistance, glucagon signaling 
pathway, and nonalcoholic fatty liver disease (NAFLD; Figure 7). 
This showed the potential role of liraglutide and metformin in the 
treatment of T2DM complicated with NAFLD based on the 
intestinal bacterial community.

Conclusion

Both metformin and liraglutide can be used for the treatment of 
patients with NAFLD having T2DM, and liraglutide plays a role in 
decreasing weight, lowering blood sugar level, regulating lipid 
metabolism, decreasing inflammation, and improving liver function. 
Both drugs can improve the diversity and richness of the intestinal 
bacterial community but have distinct effects on the structure of the 
intestinal bacterial community at multiple classification levels; however, 
the effect of liraglutide is relatively weak. Metformin or liraglutide 
treatment exhibits distinct differences in the correlation between 
intestinal bacterial community and clinical indicators and the effective 
role of functional gene abundance. However, this study has a limitation 
of a small sample size, which led to slightly insufficient representation. 
Studies with a larger sample size are needed to verify and further explore 
the mechanisms via metabonomics.
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