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Candida albicans enriched in
orthodontic derived white spot
lesions and shaped focal
supragingival bacteriome
Hao Yang†, Yansong Ma*†, Xianju Xie, Hongmei Wang, Xiaowei Li,
Dongyu Fang and Yuxing Bai*

Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China

White spot lesions (WSLs) are common enamel infectious diseases in fixed

orthodontic treatment, which might attribute to the dysbiosis of oral microbiome.

However, the correlation of Candida albicans with oral bacteriome in WSLs still

remains unrevealed. This study investigated the carriage of C. albicans and how

it shaped the bacterial community in disease or healthy supragingival plaque, to

explore the potential role of interkingdom interaction in orthodontic WSLs. In this

study, 31 patients with WSLs (WSLs) and 23 healthy patients (Health) undergoing fixed

orthodontic treatment were enrolled. The supragingival microbiota in both groups

were determined using 16S rRNA gene sequencing. Colonization and abundance of

C. albicans in the plaque were determined via culture-dependent and -independent

methods. Among WSLs patients, the correlation of C. albicans and bacteriome was

analyzed under QIIME2-based bioinformatics and Spearman’s correlation coefficient.

The raw reads were deposited into the NCBI Sequence Read Archive (SRA) database

(Accession Number: SRP404186). Significant differences in microbial diversity as

well as composition were observed between WSLs and Health groups. Leptotrichia

remarkably enriched in the WSLs group, while Neisseria and Cardiobacterium

significantly enriched in the Health group. In addition, 45% of WSLs patients were

C. albicans carriers but none in patients without WSLs. Among all WSLs patients,

beta diversity and microbial composition were distinguished between C. albicans

carriers and non-carriers. In C. albicans carriers, Corynebacterium matruchotii and

Streptococcus mutans significantly enriched whereas Saccharibacteria_TM7_G-1

significantly depleted. The abundance of C. albicans was positively associated with

bacteria such as Streptococcus mutans, while the negative correlation was detected

between C. albicans and several bacteria such as Cardiobacterium hominis and

Streptococcus sanguinis. Our study elucidated the distinguished supragingival plaque

microbiome between orthodontic patients with and without WSLs. C. albicans

frequently existed and enriched in orthodontic derived WSLs. The carriage of

C. albicans shape plaque bacterial community in demineralized lesions and might

play roles in WSLs pathogenesis.
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1. Introduction

White spot lesions (WSLs) are milky white opaque areas around
brackets on the labial surface of teeth in fixed orthodontics.
These lesions are caused by subsurface porosity from enamel
demineralization, which has a greater risk of progressing to severe
cavities than sound enamel (Enaia et al., 2011). As a frequently
diagnosed side-effect, WSLs have a considerably high incidence in
orthodontic treatment, even reported to occur in up to 60.9% of
patients (Zheng et al., 2016). It is generally believed that lesions will
recover by natural remineralization after bracket removal. However,
mineral re-uptake on the surface layer through saliva has little
improvement on the aesthetic and structural properties of enamel.
Therefore, WSLs seriously jeopardize the dental hard tissue and
negatively affect patient satisfaction (Travess et al., 2004).

Multiple factors attribute to the development of WSLs, such as
microorganisms, diet, and local micro-environment. Among them,
microorganisms play the most important role (Tang et al., 2022).
With the placement of orthodontic appliances, biofilms can easily
accumulate around brackets, particularly in patients with poor oral
hygiene (Badea et al., 2019). An imbalanced bacterial community
can be derived from a high-carbohydrate diet, thus leading to
the enrichment of acidogenic and aciduric bacteria (Valm, 2019;
Da Costa Rosa et al., 2021). Cariogenic bacteria like Streptococcus
mutans (S. mutans) and Leptotrichia wadei could be isolated and
cultivated from the enamel lesions of WSLs patients in previous
studies (Andrucioli et al., 2017; KarabekİRoĞLu et al., 2017; Lee et al.,
2021).

In recent years, the profile of oral microbiome and its change
in fixed orthodontics have attracted more attention due to the
advancement of high-throughput techniques (Sadeq et al., 2015;
Sun et al., 2018). Through microbiological analysis of saliva and
supragingival plaque samples, previous studies proposed that the oral
microbiota was changed during the process of orthodontic treatment,
and the plaque accumulation was boosted by the orthodontic
appliance (Guo et al., 2021). With the progress of treatment, some
caries-related bacteria increased, but the genus generally associated
with a healthy status, such as Rothia, was decreased (Koopman
et al., 2015). However, most studies mainly observed the microbiome
change from the start of orthodontic treatment but rarely mentioned
how the microbiome changed from healthy to the occurrence
of typical WSLs. The difference in microbiome characteristics in
supragingival plaque from orthodontic patients with or without
WSLs has not been well reported. Hence, exploring the supragingival
microbiome between healthy and disease status may attribute to a
better understanding of the pathogenesis of WSLs.

In addition to bacteria, fungi were much less abundant but a
non-negligible kingdom in the oral microbiome, which have been
widely reported in multiple oral diseases (Dağistan et al., 2009;
Peleg et al., 2010; Xu et al., 2013). Candida albicans (C. albicans)
could be isolated in dental caries diseases such as early childhood
caries (ECC) and root caries (Valm, 2019; Chen Y. et al., 2021). In
these caries lesions, C. albicans had active interkingdom interactions
with bacteria like S. mutans, which synergistically contribute to the
development of dental caries (Valm, 2019; Ev et al., 2020). It was
reported that C. albicans had a positive correlation with S. mutans
in ECC-related biofilm (Bachtiar and Bachtiar, 2018). S. mutans-
secreted GTFB binds to the mannan layer of C. albicans to promote
extracellular matrix formation and their co-existence within biofilms

in children with ECC (Hwang et al., 2017). Previous studies have
investigated the correlation between C. albicans and oral bacteriome
in ECC, results also showed that C. albicans had the strongest positive
correlation with S. mutans (Yang et al., 2022). Besides S. mutans, the
presence of oral C. albicans was associated with a highly acidogenic
and acid-tolerant bacterial community in ECC, with an increased
abundance of the genera such as Streptococcus, Lactobacillus, and
Scardovia (Xiao et al., 2018). In addition, C. albicans was positively
correlated with several caries-associated species, such as Actinomyces
sp. ICM58, Actinomyces sp. oral taxon 172, and Scardovia wiggsiae
(Baraniya et al., 2020). However, to date there was no study reporting
whether C. albicans would be enriched in orthodontic WSLs. How
C. albicans shape bacterial communities and interact with bacteriome
in the WSLs disease sites was also unrevealed.

Therefore, both C. albicans and bacterial communities were
investigated in this study. Supragingival bacteriomes were
distinguished in orthodontic on-going patients with or without
WSLs. In addition, the prevalence of C. albicans and its association
with oral bacteria was studied. Three null hypotheses were proposed:
(1) there were no significant differences in supragingival plaque
microbiome between orthodontic patients with and without WSLs;
(2) C. albicans would not enrich in patients with WSLs; and (3) The
existence of C. albicans could not shape the bacterial composition
and correlation in local supragingival plaque community.

2. Materials and methods

2.1. Patient recruitment

This study was approved by the Ethical Committee of Beijing
Stomatological Hospital (No. CMUSH-IRB-KJ-PJ-2022-11). The
patients provided their written informed consent to participate in this
study. A total of 54 patients (aged 14.25± 1.92 years) who underwent
fixed orthodontic treatment within 6–12 months were recruited
from the department of orthodontics, Beijing stomatological hospital.
Patients who had WSLs in anterior teeth or premolars area evaluated
by averaged enamel decalcification index (EDI) >0.12 (Robertson
et al., 2011) were allocated to the “WSLs group” (n = 31). Otherwise,
patients without detectable WSLs were assigned to the “Health
group” (n = 23). All included subjects were periodontal healthy, with
no attachment loss, probing depth (PD) ≤3 mm, and gingival index
(GI) ≤1. Clinical parameters were recorded by the same well-trained
dentist. Subjects were excluded from this study if they had untreated
caries in the whole dentition, enamel hypoplasia, tetracycline-stained
teeth, dental fluorosis, or other oral and systemic diseases. Subjects
who used antibiotics or any other medications that might affect the
oral microbiota in the past 3 months were also excluded.

2.2. Sample collection

Participants refrained from any type of oral hygiene for 12 h,
as well as diet intake for at least 2 h before sample collection. The
supragingival plaqueswere amplified from the extracted from the
labial surfaces of all anterior teeth and premolars around brackets
were collected by scraping them with a sterilized periodontal curette.
Samples in the WSLs group were collected from the enamel surfaces
with WSLs, while samples grouped as Health were collected from the
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sound enamel sites. Scraped plaque sample was resuspended into a
1.5 mL microcentrifuge tube containing 900 µL sterilized TE buffer
(10 mM Tris–HCl, pH 8.0, 1 mM EDTA) and then immediately
transferred to the lab on ice. Each sample was vortexed for 20 s
and mixed thoroughly by pipetting up and down 10 times, then
divided into 3 equal aliquots for 300 µL per tube. Among the 3
aliquots, one aliquot of the sample was centrifuged and resuspended
in 1 mL sterilized PBS supplemented with 20% glycerol for further
Candida culture and identification. The other two aliquots were
used for further DNA extraction. All three tubes were stored at
−80◦C before use.

2.3. DNA purification, 16S rRNA
sequencing, and processing

For each sample, one aliquot tube resuspended in TE buffer
was processed for DNA extraction and bacterial 16S rRNA
sequencing. After thawing at room temperature, samples were firstly
mechanically disrupted by 0.1 mm glass beads for 2 cycles, 30 s/cycle
(Fastprep-24 5G, MP Biomedical, CA, USA). Total genomic DNA
was then extracted using a commercial bacterial genome DNA
extraction kit following the manufacturer’s instruction (FastDNA R©

Spin Kit for Soil, MP Biomedicals, CA, USA). The quality and
quantity of eluted DNA were measured by a spectrophotometer
(NanoDrop 2000, Thermo Fisher Scientific, MA, USA), then stored
at –80◦C for further use. Bacterial 16S rRNA gene fragments
(V1-V3) were amplified from the extracted DNA using specific
primers 27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 533R (5′-
TTACCGCGGCTGCTGGCAC-3′). The sample DNA library was
finally obtained and constructed by 2 × 300 bp paired-end (PE)
sequencing on the Illumina MiSeq platform using PE300 chemical
at Majorbio Bio-Pharm Technology Co. Ltd. (Majorbio, Shanghai,
China). The raw reads were deposited into the NCBI Sequence Read
Archive (SRA) database (accession number: SRP404186).

After demultiplexing the adapter and primer from the raw data,
the sequences were merged with FLASH (v1.2.11) and quality filtered
with fastp (0.19.6) (Magoc and Salzberg, 2011; Chen et al., 2018).
To obtain high-quality data and improve the accuracy of subsequent
bioinformation analysis, sequences were de-noised using DADA2
plugin in the QIIME2 pipeline with recommended parameters, which
obtained single nucleotide resolution based on error profiles within
samples (Callahan et al., 2016; Bolyen et al., 2019). High-resolution
taxonomic assignment of ASVs yield by DADA2 was performed
using the Naive bayes consensus taxonomy classifier implemented in
QIIME2 and established by alignment to the HOMD database (v15.2)
(Chen et al., 2010).

2.4. Detection of C. albicans

Colonization of C. albicans was checked from all samples in both
WSLs and Health groups. Samples stored in PBS with 20% glycerol
were plated on CHROMagar Candida selective agar plates (Becton
Dickinson & Co., Franklin Lakes, NJ, USA), and incubated at 37◦C
for 72 h (Pusateri et al., 2009; Ali et al., 2017). Colonies cultured
by CHROMagar plate were preliminarily identified according to
the color of the colony (i.e., C. albicans showed green colonies).
Then, colonies were collected with sterilized inoculation loops and

transferred to new tubes for further DNA extraction and rDNA ITS
sequence analyses (Thiyahuddin et al., 2019).

After mechanical disruption with 0.5 mm glass beads, an
Epicenter MasterPure DNA purification kit (Lucigen Corporation,
Middleton, WI, USA) was used to purify the total genomic DNA of
each sample. Identification of yeast species was carried out by PCR
amplification and rDNA ITS sequence analyses. The PCR reactions
were performed using ABI GeneAmp PCR System 9700 (Eppendorf
Mastercycler gradient, HH, DE). A total of 2 × Taq PCR Mastermix
(KT201, Tiangen Biotechnologies, Beijing, China) was used in PCR
amplification, and ITS4/ITS5 primers were used (Supplementary
Table 1; White et al., 1990). Each 50 µL PCR reaction system
contained 17 µL sterile water, 25 µL 2 × Taq PCR Mastermix, 4 µL
template DNA, and 2 µL each of forward and reverse ITS primers.
PCR was performed as the following program: 95◦C for 5 min;
followed by 35 cycles of the following steps: denaturation at 95◦C
for 30 s; annealing at 55◦C for 30 s; extension at 72◦C for 1 min;
and final extension step at 72◦C for 10 min. PCR products were
sent to the Beijing genomics institution for the identification of yeast
species. After the sequences obtained by sequencing were assembled
and corrected, blast software was used to compare the sequences in
the GenBank database, and ITS sequences of related strains with high
similarity were selected. The existence ofC. albicans in the sample was
double confirmed by: (1) the presence of colonies on CHROMagar
plate; and (2) confirmation by ITS sequencing.

2.5. Quantification of C. albicans

To quantify the abundance of C. albicans in the samples, a
droplet digital polymerase chain reaction (ddPCR) was performed.
The total genomic DNA of the other aliquot of the supragingival
plaque sample was extracted and purified as mentioned in section “2.4
Detection of C. albicans.” The SAP gene (Supplementary Table 1) of
C. albicans was amplified and the ddPCR reactions were performed
by the QX200 Droplet Digital PCR system (BioRad, Hercules, CA,
USA). Each 20 µL ddPCR reaction system contained 8.6 µL sterile
water, 10 µL 2 × ddPCR Supermix for EvaGreen, 1 µL template
DNA, and 0.2 µL each of forward and reverse SAP primers. The
mixture and droplet generation oil was added into DG8 Cartridges,
and droplets were generated through the QX200 Droplet Generator
(BioRad, Hercules, CA, USA). Next, the droplets were transferred
to a 96-well PCR plate and sealed with PCR Plate Sealer (PX1,
BioRad, Hercules, CA, USA). ddPCR was performed as the following
program: 95◦C for 10 min, followed by 40 cycles of 95◦C for 30 s and
59.5◦C for 80 s, and 1 cycle of 98◦C for 10 min. Then, the PCR plate
was put into a Droplet Reader to detect fluorescence (QX200, BioRad,
Hercules, CA, USA). Finally, Quantalife Software 1.7.4 were used to
analyze the data.

2.6. Statistical analyses

For microbiome sequencing data, the non-parametric Wilcoxon
rank-sum test was used to identify ASVs in QIIME2. Principal
Coordinate Analysis (PCoA) was applied to compare beta diversity
between groups and the statistical significance was evaluated by the
ADONIS test. Chao1, ACE, Simpson and Shannon indices were used
to compare alpha diversity. Differences in taxonomic composition,
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TABLE 1 Means (standard deviation) of demographic data in this study.

Groups Age Duration
of

treatment
months

EDI GI PD

WSLs
(n = 31)

14.25
(1.62)

9.04 (1.70) 0.42
(0.22)

0.31
(0.15)

1.71
(0.11)

Health
(n = 23)

14.25
(2.26)

9.06 (1.71) 0.00
(0.00)

0.29
(0.14)

1.70
(0.10)

and community function were evaluated using the Wilcoxon rank-
sum test. Metastasis analysis was employed to identify bacteria with
significant differences between groups at different classification levels
based on false discovery rate (FDR). Indicated taxa enriched in
different groups were determined by linear discriminant analysis
(LDA) effect size (LEfSe). The threshold for distinguished logarithmic
LDA score was set to 3.5.

Pearson’s chi-squared test was used to compare the detection rate
of C. albicans between WSLs and the Health group. The Kruskal-
Wallis test was used to compare the absolute abundance of C. albicans
in different groups. Spearman’s correlation coefficient was applied to
examine the correlations of the abundance of C. albicans, bacterial
taxa, and EDI. A value of two-tailed P < 0.05 was considered
statistically significant.

3. Results

3.1. The supragingival microbiome
between WSLs and health were
significantly different

In this research, patients with typical WSLs or without
demineralization were recruited to study their microbial differences

under fixed orthodontic treatment (Table 1). We first compared
the characteristics of the supragingival microbiome between both
groups via amplicon sequencing. A total of 3,779,993 raw reads
were obtained from the 54 samples. By quality filtration, 2,728,802
optimized sequences were got, and the mean sequence length
was 483 bp. After de-noised using the DADA2 plugin in the
QIIME2 pipeline with recommended parameters, finally, a total of
407,413 sequences were obtained. Taxonomically classified ASVs
were associated with 11 phyla, 20 classes, 28 orders, 42 families,
81 genera, and 297 species from all samples. Among all annotated
genera, 63 genera were uniformly shared by both groups. Twelve
genera were uniquely detected in the Health group while 6 genera
were in the WSLs group (Supplementary Figure 1A).

To determine whether differences existed between patients with
or without WSLs, alpha and beta diversity in both groups were
analyzed (Figure 1). Simpson and Shannon indices showed that
significantly higher community diversity in the Health group was
found (P < 0.05). No significant difference was detected in richness
by Chao 1 and ACE indices. In addition, we analyzed the overall
bacterial community composition using PCoA plots. Results showed
a significant difference in beta diversity (P < 0.05), revealing that
most samples obtained from WSLs remarkably clustered away from
those obtained from healthy teeth.

To further identify the distinct microbial composition
between WSLs and healthy niches, relative abundance in
phylum, genera, and species taxonomic levels was focused. In all
phenotypes, the dominant phyla were Firmicutes, Bacteroidetes,
Actinobacteria, Saccharibacteria_TM7, Fusobacteria, and
Proteobacteria (Supplementary Figure 2A). The core genera
(relative abundance >1.0%) in both groups were plotted in
Figure 2A. Among them, the most dominant 10 genera were
Saccharibacteria_TM7_G-1, Streptococcus, Corynebacterium,
Leptotrichia, Capnocytophaga, Actinomyces, Prevotella, Veillonella,
Selenomonas, and Porphyromonas. Compared with the Health group,
Leptotrichia and Prevotella were relatively elevated in the WSLs

FIGURE 1

Comparisons of microbial diversities between WSLs and health group. (A) Alpha diversity was evaluated by indices of ACE, Chao1, Shannon, and
Simpson. Simpson and Shannon indices showed significantly higher diversity in the microbial community of health group (∗P < 0.05). (B) Beta diversity
was calculated via the comparison of principal coordinates analysis (PCoA) of both groups. Each dot represents one sample. The communities in WSLs
group tended to cluster apart from the communities in health group (P < 0.05).
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FIGURE 2

Comparison of microbial composition between WSLs and health group. (A) Relative abundances of the core genera (relative abundance >1.0%) in WSLs
and health groups. “Others” represented all the genera less than 1%. (B) The most significantly different 10 genera in proportion between WSLs and health
group were plotted (ranked by relative abundance). Leptotrichia was dominant in WSLs lesions while the others enriched in health group. (C) The top 20
species showed significant differences between WSLs and health group (ranked by relative abundance). (D) LEfSe analysis was performed between both
groups at genus and species levels. Significantly differentiated distributed genera and species were displayed as the LDA score >3.5 (*P < 0.05,
**P < 0.01, ***P < 0.001).

group. Leptotrichia also showed significance in the WSLs group
based on the analysis of the Wilcoxon rank-sum test and LDA score
(P < 0.05). Besides, compared with the WSLs group, Neisseria,
Cardiobacterium, Bacteroidales G-2, Pseudopropionibacterium, and
Lautropia were significantly enriched in the Health group (P < 0.05)
(Figure 2B).

At the species level, some Streptococcus spp. displayed
prominently difference in abundance (Figures 2C, D), despite

no statistical significance being examined in the genera Streptococcus
between WSLs and Health. As the member of the mitis group (MGS),
Streptococcus sanguinis was abundant in the Health group (P < 0.05).
On the contrary, S. mutans, considered a contributor to the etiology
of dental caries, was more abundant in the WSLs group (P < 0.05)
(Simón-Soro et al., 2014). Moreover, Leptotrichia wadei, Leptotrichia
sp._HMT_417, Actinomyces sp._HMT_448, Prevotella oulorum, and
Leptotrichia sp._HMT_498 were also enriched in the WSLs group
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FIGURE 3

Candida albicans infection in the supragingival plaque. (A) The positive rate of C. albicans in WSLs and health groups. Positive result of C. albicans
infection was determined by inoculation once the colonies emerged on CHROMAgar. Among all WSLs patients, 45% were C. albicans positive, but none
in the health group. CaP: C. albicans positive; CaN: C. albicans negative. (B) Quantification of C. albicans in supragingival plaque among WSLs-CaP,
WSLs-CaN, and health groups. C. albicans (copies/uL) in WSL-CaP group was remarkably higher than WSL-CaN and health groups (NS: no significance,
***P < 0.001).

FIGURE 4

Comparisons of microbial diversities between WSLs-CaP and WSLs-CaN groups. (A) Alpha diversity was evaluated by indices of ACE, Chao1, Shannon,
and Simpson. No significance was detected in all indices. (B) Beta diversity was calculated via the comparison of principal coordinates analysis (PCoA).
Each dot represents one sample. The communities in WSLs-CaP group tended to cluster apart from the communities in WSLs-CaN group (P < 0.05).

(P < 0.05). In addition, Bacteroidales_G-2 bacterium_HMT_274,
Capnocytophaga sputigena, Pseudopropionibacterium propionicum,
Cardiobacterium hominis, Porphyromonas catoniae, Lautropia
mirabilis, Corynebacterium durum, Rothia aeria, Leptotrichia
sp._HMT_215, and Neisseria elongata had a richer abundance in
Health group (P < 0.05).

3.2. C. albicans colonization and load was
remarkably higher in WSLs group

The colonization of C. albicans in the plaque was first examined
by sample inoculation in CHROMagar, and further molecular
identification of colonies that emerged on CHROMagar was carried

out by ITS sequencing. Interestingly, no colony emerged on
CHROMagar in the Health group, while 14 samples showed green
colonies among 31 WSLs samples (Supplementary Figure 3A). In
further species identification by PCR and ITS sequencing, colonies
from 14 samples were all C. albicans. Accordingly, as shown in
Figure 3A, the detection rate of C. albicans in WSLs was significantly
higher than that in the Health group (χ2 = 14.586, P < 0.01). This
result indicated that the colonization of C. albicans was more likely to
occur in demineralization lesions rather than in healthy niches.

Next, samples from the WSLs group were further divided into
two subgroups, namely the C. albicans cultivation positive subgroup
(WSLs-CaP) and the C. albicans cultivation negative subgroup
(WSLs-CaN). The absolute abundance of C. albicans was determined
by ddPCR analysis. All three groups were performed with ddPCR
although most samples didn’t have any colony come up. As shown
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FIGURE 5

Comparison of microbial composition between Candida albicans carriers and non-carriers in WSLs patients. (A) Relative abundances of the core genera
(relative abundance >1.0%) in WSLs-CaP and WSLs-CaN groups. “Others” represented all the genera less than 1%. (B) Significantly differentiated genera
between WSLs-CaP and WSLs-CaN groups. Saccharibacteria_TM7_G-1 was much enriched in plaque without C. albicans infection, while
Corynebacterium, Rothia and Oribacterium were enriched in C. albicans positive group. (C) Significantly different species examined between WSLs-CaP
and WSLs-CaN group were displayed. In C. albicans carriers, Corynebacterium matruchotii and Streptococcus mutans significantly enriched, whereas
several species such as Saccharibacteria_TM7_G-1 bacterium_HMT_346 and Saccharibacteria_TM7_G-1 bacterium_HMT_349 significantly enriched in
C. albicans non-carriers. (D) LEfSe analysis was performed between WSLs-CaP and WSLs-CaN groups at the genus and species levels. Significantly
differentiated distributed genera and species were displayed as the LDA score >3.5 (*P < 0.05, **P < 0.01).

in Figure 3B, the abundance of C. albicans in the WSLs-CaP group
was significantly higher than in WSLs-CaN as well as Health group
(P < 0.01), which verified those samples could be inoculated with
C. albicans colonies indeed had much higher load than colony-free
samples. In addition, no significant difference was found between
WSLs-CaN as well as Health groups (P > 0.05).

3.3. Enrichment of C. albicans affects the
composition of supragingival microbiome
in WSLs

We next proposed whether the enrichment of C. albicans could
affect the bacterial composition in the plaque. Following the results
above, analysis was performed between WSLs-CaP and WSLs-CaN

subgroups in this section. Among all annotated genera, 57 genera
were uniformly shared by both groups. One genus was uniquely
detected in the WSLs-CaP group while 11 genera were in the WSLs-
CaN group (Supplementary Figure 1B). As shown in Figure 4, there
was no significant difference in alpha diversity. For beta diversity,
the PCoA of the two principal components accounted for 36.77 and
14.42% of the total variation, respectively, suggesting the separation
between the two subgroups was significant (R2 = 0.0966, P < 0.05).

In all phenotypes, the dominant phyla were also Firmicutes,
Bacteroidetes, Actinobacteria, Saccharibacteria_TM7, Fusobacteria,
and Proteobacteria (Supplementary Figure 2B). The relative
abundance of core genera (relative abundance >1.0%) were
compared to illustrate whether C. albicans affect the microbial
composition (Figure 5A). Compared to the WSLs-CaN subgroup,
Corynebacterium and Rothia were the predominant genera in the
WSLs-CaP subgroup (P < 0.05). Corynebacterium matruchotii and
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FIGURE 6

Correlation analysis between Candida albicans and bacteria based on Spearman correlation coefficient. The correlation between the quantification of
C. albicans and the top 50 abundant bacteria genera and species in the rank of relative abundance was evaluated. At genus level, bacteria such as
Saccharibacteria_TM7_G-8 negatively associated with C. albicans. At species level, Streptococcus mutans had positive association with the load of
C. albicans. Several species such as Streptococcus sanguinis and Cardiobacterium hominis had depleting trend in C. albicans enriched samples. Blocks in
red showed positive correlation, while blocks in blue showed negative correlation. Color depth implicated the strength of correlation (*P < 0.05,
**P < 0.01, ***P < 0.001).

Streptococcus mutans had much higher abundance in the WSLs-CaP
subgroup (P < 0.05). On the contrary, Saccharibacteria_TM7_G-
1 significantly enriched in the WSLs-CaN group (P < 0.05) with
its two species Saccharibacteria_TM7_G-1 bacterium_HMT_346 and
Saccharibacteria_TM7_G-1 bacterium_HMT_349 showing the same
trend (P < 0.05) (Figures 5B–D). This interesting results suggested
the existence of C. albicans might shape the bacterial community in
WSLs disease condition.

3.4. Correlation between C. albicans,
bacterial and EDI

Although the existence of C. albicans may change the bacterial
community in dental plaque, the correlation between the abundance
of C. albicans and bacterial changes was not clear. We thus performed
Spearman’s rank correlation analysis to specifically examine the
correlation between the abundance of C. albicans and bacterial
taxa (Figure 6). S. mutans, which is the main contributor to
dental caries, was positively correlated with C. albicans. In addition,

bacteria showed significantly higher abundance in patients with
WSLs, such as Leptotrichia wadei, Actinomyces sp._HMT_448, and
Lachnoanaerobaculum saburreum, were also exhibited a positive
correlation with C. albicans.

Interestingly, on the contrary, S. sanguinis, which can release
H2O2 thereby inhibiting the growth of S. mutans and being prone
to be detected on the healthy teeth surface, were negatively correlated
with C. albicans (Kreth et al., 2009). In addition, some other bacteria
showed significantly higher abundance in the Health group, such
as Cardiobacterium, Bacteroidales_G-2, Pseudopropionibacterium,
Lautropia, Gracilibacteria_GN02_G-1, Saccharibacteria_TM7_G-8,
Lachnospiraceae_G-3, and Peptostreptococcaceae_XIG-7 exhibited
a negative correlation with C. albicans. At the species level,
Bacteroidales_G-2 bacterium_HMT_274, Capnocytophaga sputigena,
Pseudopropionibacterium propionicum, Cardiobacterium hominis,
Porphyromonas catoniae, Leptotrichia sp._HMT_225, and Lautropia
mirabilis exhibited a negative correlation with C. albicans as well.

To address whether the C. albicans abundance was correlated
with the severity of EDI, we investigated a Spearman’s
rank correlation between EDI and C. albicans abundance
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(Supplementary Figure 3B). The result showed that no significant
correlation between EDI and C. albicans abundance in the WSLs
group (P = 0.09). In other words, although C. albicans was
significantly enriched in the WSLs group, it did not show a
significant correlation with the severity of WSLs.

4. Discussion

White spot lesions in fixed orthodontics are demineralization
opacities that occur on the enamel surface and induce irreversible
effects on dental hard tissue. The process of demineralization is
closely related to plaque accumulation from which the microbial
structure and metabolism might change accordingly. To deepen the
understanding of microbiological pathogenesis in the development
of WSLs, this study firstly investigated the differences of the
supragingival microbiome in orthodontic patients with or without
visible WSLs. Our results demonstrated that great changes could
be observed between healthy and disease status, and all the three
null-hypotheses were rejected. Compared to patients with healthy
enamel, the WSLs group had significantly lower alpha diversity
and differentiated clustering features in the community, which was
consistent with previous studies (Hurley et al., 2019; Schoilew et al.,
2019). This might be due to the cariogenic microenvironment that
acidogenic bacteria produced acidic metabolites and then decreased
the local pH (Corralo et al., 2021). Inhibition of acid-non-resistant
bacteria and the overgrowth of aciduric bacteria led to lower diversity
in the plaque community.

In terms of the difference in microbial composition, our results
undoubtedly showed that the abundance of S. mutans had a
significant difference between both groups. This demonstrated the
cohorts we selected were comparative and that the samples we
collected were typical (Thompson and Pikis, 2012; Qudeimat et al.,
2021). Leptotrichia was one of the predominant genera in the plaque
from the WSLs niche, which was consistent with the previous
report (Yun et al., 2019). Leptotrichia could actively metabolize
carbohydrates with higher membrane transport capacity (Eribe and
Olsen, 2017; Chen Y. et al., 2021). This plaque-enriched genus was
also reported to be able to produce extracellular polysaccharides
(EPS) through carbohydrate anabolism, as well as multiple cariogenic
organic acids as its end product through catabolism. With such
a higher abundance in supragingival plaque, Leptotrichia was very
likely associated with the development of enamel demineralization
(Eribe and Olsen, 2017). Moreover, two of its main species
Leptotrichia wadei and Leptotrichia sp._HMT_498 were also reported
with increasing abundance in adolescents with active dental caries
(Eriksson et al., 2017). Leptotrichia wadei, with significantly higher
abundance in our patients with demineralization, was also regarded
as one of the predictors for dental caries (Hurley et al., 2019;
Chen J. et al., 2021). This implies that its richness in orthodontic
patients might be a warning indicator of WSLs. Besides, we found
Actinomyces sp._HMT_448 enriched in the WSLs group, despite the
abundance of Actinomyces spp. having almost no difference between
both groups. Actinomyces sp._HMT_448 was reported with vigorous
metabolism of carbohydrates, and producing lactic acid at lower
pH level (Eriksson et al., 2017; Corralo et al., 2021). Therefore, the
accumulation of this species also needs to be paid attention to in
orthodontic WSLs.

Some genera such as Neisseria, Cardiobacterium, Bacteroidales
G-2, Pseudopropionibacterium, and Lautropia were found enriched

on healthy sites but depleted in WSLs. These results were consistent
with the previous studies (Glogauer et al., 2015; Chen Y. et al., 2021),
which indicated these bacteria might be associated with the stability
of a healthy microbiome. Some of these healthy associated members
are enriched may be due to their intrinsic metabolic characteristics.
Lautropia had a higher level of signal transduction, xenobiotic
biodegradation, and metabolism, which was conducive to dental
health (Al-Kamel et al., 2019; Chen Y. et al., 2021). Neisseria could
degrade lactate to acetate and exhibit higher arginine metabolism,
thus neutralizing the acidification of the dental plaque (Rosier et al.,
2020). Patients without dental caries also reportedly had a higher
abundance of Lautropia and Neisseria in their dental plaques, their
predominant abundance could be regarded as beneficial to oral health
(Rosier et al., 2020). Besides, Pseudopropionibacterium propionicum
could actively metabolize amino acid, which might be conducive to
the neutralization of acid in dental plaque (Chen Y. et al., 2021).
In addition, although result showed no significant differences in
the abundance of Corynebacterium in two groups, it was relatively
elevated in the Health group (Figure 2A). Previous study proposed
that Corynebacterium could raise the pH of dental plaque by utilizing
organic acids produced by other microbes (Qudeimat et al., 2021).
Also, it can shape symbiotic supragingival biofilm communities
by having anfractuous interactions with health-associated bacteria
(Treerat et al., 2020). Moreover, we observed completely opposite
trends in the abundance distribution of S. mutans and S. sanguinis
in both groups. As a member of the Mitis Group Streptococcus,
S. sanguinis, enriched in the Health group, can release H2O2 thereby
inhibiting the growth of S. mutans (Kreth et al., 2009).

Candida carriage in patients undergoing orthodontic treatment
has raised the attention of orthodontists (Zheng et al., 2016; Alhamadi
et al., 2017). However, to date, there was no study yet reporting
the association between C. albicans and orthodontic-derived early
caries. In addition to oral bacteria, we studied whether C. albicans
were dissimilarly allocated in both groups. Interestingly, all colonies
emerged on CHROMagar only from the WSLs group, suggesting
patients with WSLs preferably had C. albicans infection. We further
confirmed a much higher load of C. albicans carriage in WSLs sites
by ddPCR quantification. As a technique with high sensitivity and
accuracy, ddPCR can realize the absolute quantification of nucleic
acids (Hindson et al., 2011). ddPCR divides reagents into tens of
thousands of nanoliter or picoliter partitions by a microfluidic chip,
and each droplet contains 0 or 1 DNA template. After polymerase
chain reaction amplification and the detection of fluorescence,
the target nucleic acids were calculated according to the number
of positive droplets (Pinheiro et al., 2012). Furthermore, each
droplet is an independent closed reaction environment, which can
reduce the possibility of contamination between droplets (Wang
et al., 2018). On the other hand, one of the disadvantages is
that the operation of ddPCR is relatively complex. The ddPCR
results also proved that C. albicans would be more possible to
occur and accumulate in orthodontic patients who had enamel
demineralization. Furthermore, we found that the enrichment of
C. albicans could affect the bacterial composition in the supragingival
dental plaque. Analysis between Candida carriers and non-carriers
among WSLs patients showed the difference in beta-diversity was
significant (P < 0.05), revealing that the microbial community
obtained from Candida carriers remarkably clustered away from
non-carriers.

The existence of Candida could affect the bacteriome
composition, which has been reported in different habitats
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(Du et al., 2021). Intriguingly, in our study S. mutans was more
predominant in C. albicans carriers rather than non-carriers among
all WSLs patients. This result supported these two interkingdom
species having close interactions and positive correlations. Their
co-existence has been widely reported in caries disease models
like ECC and root caries (Xiao et al., 2016). Moreover, their
cariogenic co-pathogenesis has also been extensively investigated.
Coaggregation of C. albicans and S. mutans was very important
for their co-localization and biofilm formation on tooth surfaces
(Metwalli et al., 2013; Xu et al., 2014). C. albicans could grow better
in C. albicans-S. mutans dual-species biofilm than its mono-species
biofilm under the stimulation of S. mutans (Arzmi et al., 2016).
When pioneer colonizers (e.g., S. mutans) initially adhered to
the teeth, the activation of glucosyltransferases (GTFs) increased,
especially the gtfB gene. Among GTFs, GTF-I was encoded by
the gtfB gene and used sucrose as a substrate to synthesize water-
insoluble glucan, which could participate in sucrose-dependent
adhesion between bacteria and enamel surface (Bowen and Koo,
2011; Gregoire et al., 2011). These further became the binding
sites for subsequent colonizers like C. albicans (Gregoire et al.,
2011). Conversely, the Candida-derived mannan, and β-glucan also
provided binding sites for GTFB, and the structure of EPS could
be affected by β-1,3-glucans as well (Falsetta et al., 2014; Xu et al.,
2014). Our results showed this interkingdom interaction might also
exist in orthodontic derived initial enamel caries, that is particularly
noteworthy in fixed orthodontic treatment. However, their potential
role in the development of orthodontic WSLs still required long-term
observation of microbial change to confirm.

In this study, other bacteria such as C. hominis, S. sanguinis,
and L. mirabilis showed negative correlation with C. albicans.
Among them, C. albicans showed lower virulence in interaction
with S. sanguinis (Do Rosário Palma et al., 2019). The adhesion
ability and Young’s modulus of C. albicans also decreased after
being antagonized by S. sanguinis bacteriocin (Ma et al., 2017).
The intracellular protein of S. sanguinis has a significant inhibitory
effect on C. albicans and its biofilm. In addition, the growth curve
and morphology of C. albicans changed as well, leading to discoid
depressions on the surface of fungal spores and mycelia (Ma et al.,
2014). Besides S. sanguinis, however, other bacteria which were
negatively related to C. albicans in this study were rarely reported in
previous research, so further studies are needed.

Besides, the result showed that there was no significant
correlation between the abundance of C. albicans and the severity
of EDI in the WSLs group. It was known that obvious WSLs can
occur within 6 months of orthodontic treatment (Lucchese and
Gherlone, 2012). Patients undergoing fixed orthodontic treatment
within 6 to 12 months were recruited in this study (Tufekci et al.,
2011). However, with the prolonged treatment time, such as at the
24 months of treatment, the occurrence of WSLs would further
increase (Khalaf, 2014). Previous studies had shown that compared
with the healthy teeth in caries-free children, the dental plaque on
the healthy teeth surface of caries-active children was more similar
to that with enamel caries, and had a higher risk of dental caries
(Richards et al., 2017). Therefore, it was speculated that the change
of microorganisms was earlier than the occurrence and aggravation
of WSLs. In addition, the sample size will also affect the correlation
results. One of the limitations of this study was that the sample size
was relatively small, it is necessary to further increase the sample size
in future research.

5. Conclusion

In conclusion, the present study revealed significant differences in
the supragingival plaque microbiome between orthodontic patients
with and without WSLs. C. albicans was more frequently detected
and enriched in the plaque with WSLs rather than in the healthy site.
The existence of C. albicans could shape the bacterial composition
in the supragingival plaque community. C. albicans have a certain
interkingdom association with bacteriomes. This study further
enhanced the understanding of WSLs from the perspective of
the oral microbiome, which is conducive to the exploration of
potential diagnostic approaches and interventions in orthodontic-
induced WSLs.
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