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Introduction:  Protein corona (PCN) adsorbed on the surface of nanoparticles has 
brought new research perspectives for the interaction between nanoparticles and 
microorganisms. In this study, the responses of saccharomyces cerevisiae’ membrane 
lipid composition, the average length of the fatty acyl chains and the average number 
of unsaturation of fatty acids to ultrasound combined with nano-Fe3O4@PCN with 
time-limited proteolysis (nano-Fe3O4@TLP-PCN) was investigated.

Methods: Lipidomic data was obtained using Ultra-high performance liquid 
chromatography coupled with a Q-Exactive plus mass spectrometer. The membrane 
potential, proton motive force assay and the membrane lipid oxidation were measured 
using Di-BAC4(3), DISC3(5) and C11-BODIPY581/591 as the probes. Combined with 
the approach of feasible virtual samples generation, the back propagation artificial 
neural network (BP-ANN) model was adopted to establish the mapping relationship 
between lipids and membrane properties.

Results: The time-limited proteolysis targeting wheat PCN-coated Fe3O4  
nanoparticles resulted in regular changes of hydrodynamic diameters, ζ-potentials, 
and surface hydrophobicity. In addition, with the prolongation of PCN proteolysis 
time, disturbances of 3 S.cerevisiae membrane characteristics, and membrane lipidomic 
remodeling in response to ultrasound+ nano-Fe3O4@PCN were observed. The analysis 
of relative importance which followed revealed that ergosterol, phosphatidylserine, 
and phosphatidylinositol phosphate had the greatest influence on membrane 
potential. For membrane lipid oxidation, ceramide, phosphatidylethanolamine, and 
sitosterol ester contribute 16.2, 14.9, and 13.1%, respectively. The relative contributions 
of six lysolecithins to the dissipation of proton motive force remained limited.

Discussion: An adaptation mechanism of cell membrane to proteolyzed PCN, 
wherein lipidome remodeling could preserved functional membrane phenotypes 
was revealed. Furthermore, it is highlighted that the relative importances of SiE, Cer, 
PE and PIP in determining membrane potential, PMF dissipation and membrane lipid 
oxidation by establishing FVSG-BP-ANN model.
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Introduction

Nowadays, ultrasound (US) is emerging as a useful tool in 
fermentation applications. Ultrasound-guided shockwaves could alter the 
liquidity of the phospholipid bilayer of fermentation bacteria, and create 
nonlethal transient sonopores on fermentation bacteria’s cytomembrane, 
which might facilitate membrane permeability and release of intracellular 
enzymes through the cell membrane (Chandan et al., 2020; Choi et al., 
2020). For fermentation bacteria, flexible lipidomic remodeling is 
essential to maintain the physical and chemical properties of the 
membrane within the range compatible with the life of unicellular 
organisms (Levental et al., 2020). Interestingly, recent studies revealed 
that the combination of biocompatible nanoparticles and low-intensity 
US treatment has shown a satisfactory synergistic effect on the vitality of 
fermentation bacteria and fermentation efficiency (Li et al., 2020; Zheng 
et  al., 2020). Nanoparticles, as nucleation sites for US-triggered 
microbubbles, could be  directly deposited on a cell (mechanism of 
sonoprinting). The microbubbles and the rigid surface of the nearby 
nanoparticles collided with the cell membrane, resulting in stronger 
dynamic effects of the stretch-compression scattering, reflection wave jet 
(water hammer), and wicket wave (Blum et al., 2019).

In a fermentation environment, nanoparticles with ultrahigh 
specific surface area easily interact with surrounding proteins and 
form a protein corona (PCN), and its surface properties determine the 
real biological effect of nanoparticles (Lesniak et al., 2013). In most 
cases, the PCN could reduce cellular internalization and mitigate the 
cytotoxicity of nanoparticles by preventing interaction between cell 
membranes and nanoparticles (Lesniak et al., 2013). However, the 
proteolysis effects of proteases from fermentation microorganisms on 
PCN and the resultant synergistic effect of US+ nanopartice@PCN on 
cell membranes have not been studied. Protease might degrade PCN 
through specific cleavage towards peptide bonds, thus affecting the 
topological defect of the surface structure, viscoelasticity, and the 
surface hydrophobic properties (water contact angle) of nanoparticle@
PCN. These changes have a profound impact on the dynamic 
characteristics of microbubbles and the interface force at protein 
residues/cytoderm (or cytomembrane) contact regions via 
electrostatic force, van der Waals force, hydrophobic force, etc. As 
mentioned earlier, perturbation of membrane physical properties led 
to the lipidomic remodeling of the membrane, which was vital for 
bacteria viability.

Wheat protein is common and inexpensive in the food industry, 
and it is subdivided into albumin (water-soluble), globulin (salt-
soluble), gliadin (alcohol-soluble), and glutenin (residual proteins; 
Wang et  al., 2019). It is worth noting that wheat glutenin which 
accounts for around 45% of the total wheat protein, is a highly 
hydrophobic heterogeneous mixture consisting of various subunits 
connected by disulfide bonds. Therefore, hydrophobic wheat proteins, 
similar to conventional hydrophobic surfactants, are excellent 
stabilizing agents for nanoparticles (Mandial et al., 2019).

In this study, the responses of saccharomyces cerevisiae’ membrane 
lipid composition, the average length of the fatty acyl chains, and the 
average number of unsaturation of fatty acids (FA) to the US combined 
with nano-Fe3O4@PCN with time-limited proteolysis (nano-Fe3O4@
TLP-PCN) was investigated. Alterations of 3 membrane properties, 
including membrane potential, membrane lipid peroxidation, and 
proton motive force, were also analyzed. Furthermore, BP-ANN models 
and the accompanying relative importance analysis were implemented 
to gain in-depth insights into the mapping relationship between 

membrane lipid composition and membrane properties. In order to 
solve the problem of the small sample in omics modeling, the data 
dimension reduction method and virtual sample generation method 
were conducted and compared.

Materials and methods

Materials

The wheat flour was purchased from Yihai Kerry Food Industry Co, 
LTD (Dongguan, China). Sodium selenite was purchased from 
Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). Ultra-pure 
water was produced by the Milli-Q water purification system (Milford, 
MA, United States). Bis-(1,3-dibutybarbituric acid) trimethine oxonol 
(Di-BAC4(3)), 3,3′-dipropylthiadicarbocyanine iodide (DISC3(5)) and 
BODIPY581/591 C11 were purchased from Thermo Fisher Scientific 
(United States).

Preparation of cell-free protease extract

The S. cerevisiae strain was seeded on yeast extract peptone dextrose 
(YPD) liquid medium and incubated at 32°C and 150 rpm for 12 h 
(OD600 = 1.2). Then, the cells were harvested using centrifugation 
(4,000 rpm, 10 min, 4°C). The supernatant was filtered by 0.22 μm 
membrane and CFPE was obtained.

Sigma’s non-specific protease activity assay was conducted using 
casein as a substrate. One unit (U/mg) of protease activity of CFPE was 
defined as the amount of enzyme that is capable of releasing one μmol 
of tyrosine ml−1 per minute (Hui et al., 2019).

CFPE proteolysis of nano-Fe3O4@PCN

Fe3O4 nanoparticles were synthesized according to a previous study 
(Zheng et  al., 2020). Wheat proteins were extracted by Osborne 
extraction procedure, and the obtained wheat proteins solution was 
incubated with 0.3 mg/ml of prepared nano-Fe3O4 at room temperature 
for 1 h under gentle agitation. The obtained nano-Fe3O4@PCN (Fe 
concentration of 0.3 mg/ml) were incubated in 5 ml of CFPE (protease 
activity of 217.3 u/ml) under stirring slowly at 30°C. The proteolysis 
time was between 0 and 12 h.

Measurement of nano-Fe3O4@PCN 
diameter, ζ-potential, degree of hydrolysis, 
and surface hydrophobiciy

Particle size distribution and ζ-potential of nano-Fe3O4@PCN were 
determined by dynamic light scattering (DLS) measurements (Minić 
et  al., 2022). The OPA (ortho-phthalaldehyde) method with some 
modifications was used to determine the degree of hydrolysis (DH) of 
protein corona (Moaveni et al., 2022). A total of 1 ml of 0.1 M sodium 
tetraborate decahydrate solution containing 0.02 mM SDS, 2 μl of 
β-mercaptoethanol, 20 μl of methanol-OPA (1:200, w/v), and 50 μl of 
proteolytic protein corona solution or CFPE from S. cerevisiae were 
mixed. Absorbance at 340 nm was measured after 2 min. Glycine was 
used as standard. DH values were calculated using the following formula:
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NH2ti and NH2t0 were the free amino groups at i and 0 h. NH2ti.CFPE 
was the free amino group in the CFPE solution at i h. NH2Total was the 
free amino group from the whole protein corona.

Octanol–water partition coefficients (KOW) of nano-Fe3O4@PCN 
were adopted to evaluate the surface hydrophobicity. Equal volumes 
of Octanol and ultrapure water were combined, and the equilibration 
process started with the addition of nano-Fe3O4@PCN (1,10,000, 
w/v). After 24 h, the mixture was shaken at 50 rpm for 4 h, followed by 
static separation for 5 h. Nano-Fe3O4@PCN was collected from each 
phase, and the concentration of nano-Fe3O4@PCN was quantified by 
Inductively Coupled Plasma-optical emission spectroscopy 
(ICP-OES).

Combined treatment of US and 
nano-Fe3O4@TLP-PCN on Saccharomyces 
cerevisiae

2 Log CFU (colony forming unit) /ml of S. cerevisiae were treated 
by the CFPE-treated nano-Fe3O4@TLP- PCN (Fe concentration of 
0.1 mg/ml) and 45 kHz ultrasonic waves from an ultrasonic bath. The 
amplitude was 40% (0.0223 W/ml) for 15 s with continuous mode. The 
power of the US was calculated by the calorimetric method (Peng et al., 
2020). The parameter values of US and nano-Fe3O4@TLP- PCN were 
chosen according to previous experiments, in order to control the death 
percentage of S. cerevisiae caused by increased membrane permeability 
(data not shown).

Lipidomics analysis of the plasma membrane

Saccharomyces cerevisiae cells treated by US + nano-Fe3O4@TLP- 
PCN were converted to spheroplasts by treatment with EDTA and 
lysozyme and then disintegrated under sonication (5 min, 0°C) 
combined with acid-washed glassbeads. The unbroken cells and 
glassbeads were removed by centrifugation (20,000 g, 4°C, 15 min). 
The resultant cell lysates were ultra-centrifuged (100,000 g, 4°C, 
120 min). The crude membrane fraction (a mixture of plasma 
membranes and inner membranes) was collected and subjected to 
sucrose density gradient centrifugation in MES-buffer (38, 43, and 
53% sucrose). After ultracentrifugation for 3 h (100,000 g, 4°C), the 
plasma membrane fraction was collected at 43/53% interface, and 
then diluted in Tris buffer (20 mM, pH 7.5) and sedimented (80,000 g, 
4°C, 3 h). The obtained plasma membranes were lyophilized and 
stored at −80°C.

Lipidomic data was obtained using Ultra-high performance liquid 
chromatography (UHPLC, Shimadzu, Kyoto, Japan) coupled with a 
Q-Exactive plus mass spectrometer (Thermo Scientific, Waltham, 
United States). The extracted membrane lipids were resuspended in 
acetonitrile/isopropanol (1:9, v/v). The lipids were separated using 
gradient elution mode (Yuan et al., 2021). The mobile phase consisted 
of A (6:4 acetonitrile/water with 10 mM ammonium formate) and B 
(1:9 acetonitrile/isopropanol with 10 mM ammonium formate) under 
30% B at 0–2 min, 30–100% B at 3–25 min, 30% B at 25–35 min. The 
gradient elution modes were identical for positive and negative ESI 

modes. The MS/MS data were acquired in data-dependent acquisition 
mode. The full scan spectra covered 200–1800 for positive and 
negative ESI modes. The resolutions of the full scan (MS1) and 
fragment spectra (MS2) were 70,000 and 17,500, respectively. The 
automatic gain control target values of MS1 and MS2 were 2 × 106 and 
1 × 105. The maximum inject time was 150 ms for MS1 and 80 ms for 
MS2. Lipid analysis and identifications were conducted using the 
LipidSearch (4.1) database.

For ergosterol analysis, an atmospheric-pressure chemical ionization 
(APCI) source operating in positive-ion detection mode was conducted, 
and the MS setting was in line with a previous study (Henderson 
et al., 2013).

The following parameters were used for lipid identification and 
peak extraction: the quality deviation of precursor ion and product 
ion in the library was 5 ppm, the response threshold was set as the 
relative response deviation of product ion (5.0%), the quantitative 
parameter was set to calculate the peak areas of all identified lipids, 
and the mass deviation of peak extraction was set to 5 ppm; adduct 
forms of positive ion mode were [M + H]+, [M + NH4]+, [M + Na]+, 
and negative ion mode was [M−H]− and [M−2H]− and [M−HCOO]−. 
The original data exported was imported into metaX for data 
preprocessing, including deleting the lipid molecules missing more 
than 50% of QC samples, filling the missing value based on the 
K-nearest Neighbor algorithm, and normalizing data using 
Probabilistic Istic Quotient Normalization.

Each lipid was normalized by the internal standard or the average 
response of all the used internal standards if no internal standard was 
available. The average length (L) of the fatty acyl chains and the average 
number (N) of unsaturations were calculated as follows:
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nk is the number of fatty acyl chains of each lipid (k), ck is the relative 
concentration, clk is the average carbon length of fatty acyl groups 
inlipids and ik is the number of unsaturations.

Measurement of the membrane potential

2 μg/ml Di-BAC4(3) was used to stain the treated S. cerevisiae 
(OD600 = 0.5) in black non-transparent 96-well plates at 30°C for 45 min. 
Membrane potential was detected using flow cytometry (excitation 
wavelength of 488 nm, emission wavelength of 530 nm).

Proton motive force assay

The treated cells (OD600 = 0.3) were incubated with 0.5 μM DISC3(5) 
in black non-transparent microtiter plates for 15 min. Measurements of 
DISC3(5) fluorescence were conducted using a fluorimeter (622 nm 
excitation and 670 nm emission filters).
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Measurement of the membrane lipid 
oxidation

Saccharomyces cerevisiae cells which were suspended in 8 mM citrate 
buffer (pH = 7) and 8 μM C11-BODIPY581/591 were incubated for 30 min 
at 30°C and 120 rpm in the dark. Then the cells were treated by nano-
Fe3O4@TLP- PCN and US. To increase the membrane-solubility of the 
probe, 5 mg/ml of lysozyme and 0.2 M EDTA were added to the 
suspension. The data of membrane lipid peroxidation were obtained by 
fluorescence spectroscopy at 500 nm (excitation wavelength) and 
520 nm (emission wavelength).

Data dimension reduction for membrane 
lipid data

To solve the problem of small sample modeling, data dimension 
reduction is a powerful alternative method. Effective dimensionality 
reduction (DR) techniques include principal component analysis (PCA), 
Laplacian eigen map, locally linear embedding, and autoencoder (AE). 
First, PCA which is the most commonly used algorithm and adept at 
linear dimension reduction was conducted in the present study.

Autoencoder is an effective non-linear dimensionality reduction 
algorithm, which can perform the nonlinear transformation on the 
high-dimensional input data, map the original high-dimensional 
features in unsupervised learning, and ensure the integrity of feature 
information. In order to assess the effectiveness of DR, a series of AE 
models were established by using membrane lipid data. To optimize the 
topological structure of the AE model, the number of hidden layers, the 
number of neurons in each layer, the activation function and the 
optimization function were adjusted. The number of input data 
dimensions was set in the range of 2–20. The optimal topology structure 
was obtained by comparing the reconstruction error which was 
expressed using mean squared error (MSE). For each AE, MSE was 
calculated based on the square of the norm of the difference between the 
lipid data vector obtained from the decoder part of the AE and the 
actual lipid data vector from the validation data.

Generation of feasible virtual samples

Generating feasible virtual samples is another feasible approach to 
solving the modeling of a small sample problem. The process could 
be divided into 7 steps. Step 1: an extreme learning machine (ELM) was 
constructed to capture nonlinear mapping between the original data and 
the extracted features (10-fold cross-validation). The number of hidden 
layer nodes of the ELM model was determined based on the RMSE (root 
mean square error) value using trail-and-error method. Step 2: based on 
the topological manifold concept, Isometric Feature Mapping (Isomap) 
was adopted to reduce high dimensional data to two visual dimensional 
spaces, and discover intuitively the sparse data area. Each data point was 
connected with the 10 nearest neighbor points. Step 3: adequate feasible 
virtual samples were generated by the half interpolation method in the 
information gaps, aiming to supplement the space of the original small 
sample. Step  4: Using the established ELM models, the generated 
two-dimensional virtual samples were projected back to the original space. 
Step  5: the outputs (membrane features) of the virtual samples were 
obtained by the established ELM model. Step 6: virtual samples were 
screened based on feasibility using an asymmetric acceptable domain 

range expansion approach. Step 7: the virtual samples and the original 
training samples were combined into a new training dataset which was 
used for modifying and validating the ELM model. The performance of 
the modified ELM model was improved by adding a different number of 
virtual samples and was evaluated based on RMSE values.

BP-ANN modeling

BP-ANN which is based on a back propagation algorithm (BP) and 
artificial neural network (ANN) is applied in the present study to 
establish the membrane lipid data and membrane properties mapping 
relationship. BP-ANN is composed of an input layer, multiple hidden 
layers, and an output layer connected in series, and each layer contains 
multiple independent neurons in parallel. Adjustable weights between 
two neurons were applied to stimulate neurons by the activation function.

To successfully train ANNs, especially to prevent overfitting, the 
dataset should be sufficiently large. One rule-of-thumb is that the size of 
the sample should be  10 times more than the number of features. 
However, the sample size of cell membrane lipidomics data was limited 
in the present study.

To avoid overfitting, a dropout algorithm was adopted in each training 
epoch to reduce the interdependence between neurons and realize 
network sparsity processing by discarding part of hidden layer neurons 
randomly and temporarily. As a consequence, the overfitting of the 
BP-ANN model was avoided, and the generalization ability was enhanced. 
The probability of neuron dropout was set at 10–50%. Moreover, an “early 
stopping” strategy was also adopted in the training process to avoid 
overfitting. The training process and the testing of model performance 
were conducted synchronously. Once the AUC (area under the curve) of 
the training dataset rose and the AUC of the validation dataset descended, 
the training process was terminated. To ensure robustness, the 
optimization of BP-ANN was conducted by 10-fold cross-validation.

Garson’s algorithm was used to evaluate the relative importance of 
lipid species to the membrane properties, and the normalized significance 
of each predictor was expressed as percentages (Zheng et al., 2020).

Results

Characterization of nano-Fe3O4@TLP-PCN

The results of dynamic light scattering (DLS) revealed that the 
prepared nano-Fe3O4 had an average diameter of 71.5 ± 5.4 nm (data not 
shown). After co-incubation with wheat protein, the diameter of nano-
Fe3O4@ PCN soared to 209 ± 11.6 nm (Figure  1A; Supplementary  
Figure S1). With the extension of proteolysis time, the diameter of nano-
Fe3O4@TLP- PCN gradually dwindled to 92.5 ± 9.8 nm and stopped 
descending after 60 min.

In consideration of the molecular size of wheat protein, DLS results 
indicated that the PCN on the surface of nano-Fe3O4 was a mult-layer 
PCN. Moreover, the diameter of nano-Fe3O4@ PCN which underwent 
full proteolysis was significantly higher than the diameter of original 
nano-Fe3O4, indicating that there was an unable-to-be proteolyzed PCN 
layer on the contact surface of nano-Fe3O4.

The OPA method with some modifications was used to determine the 
degree of hydrolysis (DH) of the protein corona，and the CFPE solution 
was the blank group. It was found that DH values of PCN started at 0% 
and gradually increased to 85.2 ± 5.1% during 12 h of CFPE-proteolysis, as 

https://doi.org/10.3389/fmicb.2023.1082666
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zheng et al. 10.3389/fmicb.2023.1082666

Frontiers in Microbiology 05 frontiersin.org

shown in Figure 1A (blue line). Meanwhile, during the proteolysis of PCN, 
the average surface charge density (ζ-potential) of nano-Fe3O4@TLP-PCN 
was shifted towards lower values (from −4.7 to −7.8 mV; Figure 1A, red 
line). Specifically, ζ-potential showed a slow descent (0–30 min) followed 
by a fast descent (30–50 min), and then it ran at a level close to −7.8 mV.

Octanol–water partition coefficient (KOW) is defined as the ratio of 
the concentration of a chemical or nanoparticle in the octanol phase to 
its concentration in the aqueous phase at equilibrium. When the KOW 
value is higher than 1, it indicates the hydrophobic property of 
nanoparticles, and larger values indicate a greater hydrophobic property 
of nanoparticles. The results showed that the KOW of nano-Fe3O4@
TLP-PCN increased from 0.61 to 1.19 (Figure 1A, violet line), indicating 
that CFPE digestion might expose more hydrophobic regions of PCN.

Analysis of membrane lipidomics

It is critical to understand the interaction between nanoparticles and 
fermentation bacteria from the perspective of membrane lipids, which 
is helpful for designing more efficient nanoparticles and PCN. The 
typical total ion chromatogram of membrane lipids extract was shown 
in Supplementary Figure S2. The lipids of unidentified in ESI+ and ESI− 
modes were discarded, and the list of 72 unique compounds and 
information (retention time, m/z, YMDB code, and major adducts) were 
shown in Supplementary Table S1. A total of 13 lipid subclasses were 

identified in S. cerevisiae membranes, including 15 phosphatidylinositols 
(PI), 14 phosphatidylcholines (PC), 13 phosphatidylethanolamines (PE), 
7 phosphatidylserines (PS), 3 phosphatidic acids (PA), 2 ceramides 
(Cer), ergosterol (Figure 1B). Additionally, phospholipids (62.5–67.1%) 
predominated in all groups, followed by sphingolipids (12.4–18.2%) and 
sterol lipids (11.5–17.6%). Most phospholipids contained either 32 or 34 
carbons, and most phospholipids contained no more than 2 double 
bonds. Moreover, only saturated and monounsaturated FA chains were 
observed, which was in line with a previous study (Danne-Rasche 
et al., 2020).

Principal component analysis was performed by using lipidomics 
data from 50 samples (Figure  1C). The score plot exhibited the 
distribution of the individuals of 50 samples (3 biological replicates) 
which were treated with different nano-Fe3O4@TLP-PCN in 
two-dimensional space, and two principal components captured 64% 
changes in lipid composition. The black arrow lines connecting the 
points which were the centers of 5 confidence ellipses showed how the 
scores evolved with the proteolysis time of PCN. Score plots indicated 
that membrane lipid profiles in samples treated with PCN96-120 min were 
negatively correlated with those in the samples treated with PCN0-24 min 
on the axis of principal component 1. It was worth noting that the black 
arrow lines presented a reversed “U” shape, demonstrating that some 
specific lipid species presented call-back tendencies along with the 
proteolysis of PCN. Additionally, clear discrimination from two samples 
whose interval of the proteolysis time was higher than 24 min was 

A B

C D

FIGURE 1

(A) Changes of the diameter of nano-Fe3O4@TLP- PCN (black line), the degree of hydrolysis of protein corona (blue line), ζ-potentials (red line), and surface 
hydrophobicity (violet line) during PCN proteolysis process. (B) 13 membrane lipids subclass and 72 lipid molecular species. (C) PCA score plot of 
membrane lipids colored by samples which were divided into a group every 24 min of proteolysi time. (D) PCA loading plot of membrane lipid species.
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found. Meanwhile, correlations between lipid species and principal 
components were found in the loading plot (Figure 1D). A total of 8 of 
13 PIs and all PEs presented positive correlations with principal 
component-1, whereas all PAs, the remaining PIs, all PC and LPC were 
negatively correlated with principal component 1. Additionally, 
PC(12:0/18:2), PC(15:0/18:2), PC(16:0/18:1), PA(36:2), and 
PE(16:0/18:1) gathered in the center of the loading plot, suggesting their 
unimportant contribution in the sample-grouping.

Furthermore, alterations in the relative abundances of membrane 
lipid subclasses with the proteolysis time of PCN were summarized as a 
heatmap (Figure 2A). Unlike most phospholipids, the relative abundance 
of sphingolipids first decreased and then increased with the prolongation 
of proteolysis time. It was observed that the relative abundances of PE 
maintained stability with the increased proteolysis time, while the 
relative abundances PS and PI reached their maximum at proteolysis 
time of 40.8 and 55.2 min, respectively.

The concentration changes of 12 phospholipids and sterols were 
quantitatively analyzed (Figures 2B–D). The concentrations of the 
selected lipids ranged from 0.023 mol% (PE 16:1–12:0) to 
13.95 mol% (ergosterol). Concentrations of PE (16:1–18:1, high-
abundance), PC (18:1–18:1, middle-abundance), PI (18:1–18:1, 
middle-abundance), and PA (18:1–18:1, low-abundance) elevated 
and the rising speed slowed down with the increased proteolysis 
time of PCN. Particularly, PI (18:1–18:1, middle-abundance) 
showed an S-shaped growth. Conversely, concentrations of PE 
(16:0–16:1, high-abundance), PA (16:0–16:1, middle-abundance), 
PS (16:0–16:1, low-abundance), and PE (16:1–12:0, low-abundance) 

exhibited downward trajectory. PE (16:0–16:1, high-abundance) 
showed an S-shaped decline. Apart from the abovementioned 
phospholipids, concentrations of the remaining lipids including 
ergosterol, PI (18:0–18:1), PI (16:0/18:2), and PC (16:1–16:1) 
increased followed by a decline with the rising of proteolysis time. 
Moreover, the levels of all four phospholipids with 2 unsaturated 
double bonds increased.

From the results of the average FA chain length for each lipid 
subclass, PC, PI, and PS showed a slow rise in the average FA chain 
length with the increase of PCN proteolysis time, whereas the average 
FA chain length of Cer, phosphatidylinositol phosphate (PIP) and PA 
exhibited an ambiguous trend in response to the proteolysis time 
(Figure  3A). The average FA chain length of PE and PIP remained 
basically stable.

The alterations of the unsaturation level for each lipid subclass were 
also investigated. Except for Cer, lysophosphatidylethanolamine (LPE) 
and lipopolysaccharide (LPS), the average unsaturation level for most 
lipids rose slowly with the prolongation of proteolysis time (Figure 3B). 
It was also noticed that the increments of unsaturation levels of PA and 
PE were higher than those of PI, PS, and PC.

Changes in plasma membrane properties

In consideration of that self-adaptive remodeling of membrane 
lipids and recovery of baseline physical properties are temporally 
regulated, the time point of sample collection must be set as early as 

A B

C D

FIGURE 2

(A) Heatmap providing the relative abundance change of each identified lipid in cytomembrane during the PCN proteolysis process. Quantitative analysis of 
the compositional changes of 12 phospholipids and sterols with (B) high-abundance, (C) middle-abundance, and (D) low-abundance.
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possible after US+ nano-Fe3O4@TLP-PCN treatment. The effect of 
US+ nano-Fe3O4@TLP- PCN on the membrane potential of 
S. cerevisiae was investigated by measuring the fluorescence intensity 
of Di-BAC4(3). From Figure 4A, it was found that the membrane 
potential decreased with the prolongation of PCN proteolysis. 
Moreover, US+ nano-Fe3O4@TLP- PCN resulted in an insignificant 
increase of membrane lipid oxidation and dissipation of proton-
motive force (PMF) which was equal to the sum of transmembrane 
electrical potential (Δψ) and transmembrane proton gradient (ΔpH; 
Figures 4B,C).

BP-ANN model establishment and 
verification

Prior to BP-ANN modeling, two approaches, i. e., data dimension 
reduction and virtual sample generation were taken into 
consideration to prevent overfitting in small-sample BP-ANN 
modeling. First, PCA and AE were applied to reduce the 
dimensionality of membrane lipids data. The results showed that the 

first 17 principal components could explain more than 99% variance 
of the original lipid data (Figure  5A). Figure  5B exhibited the 
calculated MSE as a function of the dimensionality based on the 
BP-ANN model with principal components as the input dataset. It 
was clear that the dimension of the input data space could 
be reduced to 8 with MSE < 10−3. Similarly, for dimension reduction 
of the AE approach, the number of input data dimensions was 
eventually chosen as 10.

To achieve feasible virtual sample generation (FVSG), Isomap was 
established to reduce high-dimensional data to two visual dimensional 
space (Figure 5C; black points) and numerous feasible virtual samples 
(Figure  5C; red points) were generated by the semi-interpolation 
method in the information gaps. The average RMSE achieved a 
minimum of 0.228 when the number of random virtual samples was 
227. Therefore, the merged dataset consisted of 227 virtual samples and 
50 original samples.

First, 8 principal components and 10 new features obtained by PCA 
and AE were used as the input data for BP-ANN model training, 
validation, and test. Considering that the predictive power of BP-ANN 
hinged on the randomness of training data and validation data, the data 

A B

FIGURE 3

(A) Alterations of the average length of the fatty acyl chains and (B) the average number of unsaturations in membrane lipids of S. cerevisiae exposed to 
US+ nano-Fe3O4@TLP- PCN with different proteolysis time.

A B C

FIGURE 4

The effects of US+ nano-Fe3O4@TLP- PCN with 0–120 min of proteolysis on the (A) membrane potential, (B) membrane lipid oxidation, and (C) dissipation 
of PMF.
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consisted of 50 samples that were randomly divided into 60% training 
dataset, 20% validation dataset, and 20% test dataset.

Second, the strategy of early-stopping was applied to achieve the 
best results for each case (Figure 5D). For instance, Figure 6A showed 
that the AUC of AE-BP-ANN on the validation dataset rose during the 
first 65 epochs, but began to descend after 66 epochs, while AUC on the 
training dataset gradually increased and then maintained constant 
eventually before 300 epochs. Similarly, the early-stop strategy was also 
conducted at 98 epochs for PCA-BP-ANN training. However, there was 
no decline in the AUC of FVSG-BP-ANN on the validation dataset, and 
MSE for FVSG-BP-ANN training and validation stopped falling after 
342 epochs. Taking the above results into account, it was recommended 
training should stop at 65,98, and 352 epochs for AE-BP-ANN, 
PCA-BP-ANN, and FVSG-BP-ANN, respectively.

Third, Figures 6B–D showed the comparison between the predicted 
values of membrane potential and experimental values in 3 BP-ANN 
models on training, validation, and test datasets. The predictive 
performances of PCA-BP-ANN, AE-BP-ANN, and FVSG-BP-ANN 
models for membrane potential were evaluated based on the regression 
coefficients (R2) of the test dataset, which were 0.8641, 0.8901, and 
0.9302, respectively. In addition, test dataset R2 of membrane lipid 
oxidation and dissipation of PMF were exhibited in 
Supplementary Figure S3. Under the premise of equal weight, the 
average R2 of 3 membrane properties in the test dataset was the highest 
in the FVSG-BP-ANN model (Supplementary Figure S3). Consequently, 
the highest predictive ability of the model was FVSG-BP-ANN.

Relative importance analysis of lipids to 
membrane properties

Relative importance analysis (sensitivity analysis) based on the 
established FVSG-BP-ANN model was applied to calculate the relative 
importance of each lipid subclass to 3 membrane properties. As shown 
in Figure 6E, the most important predictor of membrane potential was 
ergosterol, followed by PS and PIP. Meanwhile, LPA and PA had a slight 
influence on the membrane potential. For membrane oxidation, Cer, PE, 
and SiE were identified as the top three important lipids. Furthermore, 
the normalized relative importance of PE, ergosterol, and PS to PMF 
dissipation of membrane was higher than 9%.

Discussion

According to a previous study, PCN may trigger the aggregation of 
nanoparticles through protein bridges, resulting in a larger apparent 
hydrodynamic diameter (Dominguez-Medina et al., 2013). In contrast, 
the existence of a protein corona may also stabilize nanoparticles and 
prevent aggregation in different conditions. In the present study, the 
diameter of nano-Fe3O4@PCN showed a gradual decrease during the 
process of PCN proteolysis. The cleavage of peptide bonds in PCN 
during CFPE-hydrolysis disrupted the intact wheat protein structure, 
and most of the resultant peptide residues on the surface of PCN might 
be amorphous with different chain lengths (Zhao et al., 2021). Hence, 

A B

C D

FIGURE 5

(A) The relationship of principal components number and cumulative explained variance (%). (B) Reconstruction MSE in the logarithmic scale as a function 
of the input data dimension number based on PCA-BP-ANN and AE-BP-ANN models. (C) Two-dimensional interpolation graph of virtual sample points. 
(D) BP-ANN topology architecture.

https://doi.org/10.3389/fmicb.2023.1082666
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zheng et al. 10.3389/fmicb.2023.1082666

Frontiers in Microbiology 09 frontiersin.org

the PCN surface with a “brush-shape” failed to adsorb the surrounding 
peptide or protein. Moreover, the results of ζ-potential showed that the 
increased surface electrostatic repulsion might result in decreased 
aggregation of the nanoparticles. On the other hand, the analysis of the 
surface hydrophobicity indicated that more hydrophobic regions of 
PCN were exposed to CFPE digestion. Exposure of the hydrophobic 
patches on the outer surface of PCN might also help to prevent the 
attachment of proteins or peptides in the surrounding medium to the 
outer surface of PCN (Ma et al., 2020).

In addition, proteins adsorbed to nanoparticles’ surfaces might 
undergo either reversible or irreversible conformational changes, even 
forming protein aggregates (Lesniak et al., 2013). The changes in protein 
conformation of PCN could be uncovered using cross-linking mass 
spectrometry (XL-MS) technique in subsequent studies. The steric 
hindrance and polymer shielding caused by the interface interaction of 

nanoparticle-protein might result in resistance of the innermost PCN 
layer to protease.

The alterations of PCN surface hydrophobicity, ζ-potential, and 
diameter of nanoparticles during the CFPE proteolysis process might 
result in regular changes of membrane lipid. In consideration that cell 
membrane lipids are hydrophobic, it was found that PCN surfaces with 
higher hydrophobicity might have a greater impact on membrane lipid 
and membrane properties in the present work. A previous study 
exhibited that PCN interacted more strongly with the anionic leaflet of 
the cell membrane than with the zwitterionic leaflet，resulting in 
significantly disordered anionic leaflets (Lee, 2021). Interestingly, our 
results also showed the maximum fold-change of anionic PI among all 
lipid subclasses, and smaller fold-change of neutral lipids including PC 
and PE. PI and PS have the common substrate cytidine diphosphat-
diacylglycerin, indicating that they have a competitive relationship (Liu 

A B

C

E

D

FIGURE 6

(A) Training and validation AUCs of 3 BP-ANN models. (B) PCA-BP-ANN, (C) AE-BP-ANN, and (D) FVSG-BP-ANN predictions of membrane potential vs. 
experimental values during training, validation, and testing. (E) Relative importance analysis (variations of membrane lipids as the input data to membrane 
properties as the output data).
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et al., 2022). However, the change trends of PI and PS are similar in the 
present study.

To adapt to complex and changeable circumstances, microorganisms 
could change the membrane properties by adjusting membrane lipids. 
Membrane lipid composition could be  controlled by regulating the 
type of phospholipid tail group and the distribution of the phospholipid 
head group (Nasution et al., 2017). The phospholipid tail type could 
also be  altered by adjusting the unsaturation level of lipids and 
modifying the length of the acyl chains. FAs of 16 or 18 carbon atoms, 
which serve critical functions including energy source, protein 
modifiers, and signal molecules, are the preferred acyl substance of 
eukaryotic membrane lipids (Enkavi et al., 2019). According to the 
result of previous research, the membrane with a long FA chain length 
was relatively thick and stable in the fluid phase (Henry et al., 2006). 
For membrane lipid unsaturation, an increased degree of membrane 
lipid unsaturation might enhance the steady state of yeast cells in 
coercion (Jordá et  al., 2020). According to the results of FA chain 
length and unsaturation level, it could mean that PCN with higher DH 
exerted a greater coercive effect on S. cerevisiae. It was also noticed that 
unsaturation levels of PA and PE rose more than PI, PS, and PC, 
indicating the priority of unsaturation change in different 
lipid subclasses.

Although the cell membrane is negatively charged, some patchy 
areas with cationic sites might allow the binding of the negatively 
charged PCN, resulting in the disturbance of membrane lipids 
(Dominguez-Medina et  al., 2013). Furthermore, amphiphilic and 
hydrophobic peptides on the PCN surface were inserted into the 
S. cerevisiae membrane through hydrophobic interaction, resulting in a 
slight potential change.

The result of membrane lipid oxidation was nearly identical to that 
of a previous study, which indicated that membranes rich in saturated 
FAs are less sensitive to lipid oxidation (Rysman et al., 2010). Meanwhile, 
the altered abundance of lipid rafts might also protect cells from lipid 
oxidation (Beloribi-Djefaflia et al., 2016).

In previous research, the adaption of membrane homeostasis has 
been preliminarily deduced from the data-driven model by using 
physicochemical properties of the lipid matrix, including curvature and 
melting temperature (Dymond, 2015). Nevertheless, the extrapolation 
of membrane physical parameters based on the in vitro model may not 
be a reliable approach. In the present work, the BP-ANN model was 
applied to establish the relationships between membrane lipids and 
membrane properties.

Negatively charged PS and PI have a considerable impact on the 
electrostatic properties of the membrane, which is consistent with our 
findings (Agarwala et al., 2022). As for PI(4)P, it drives the distribution 
of other membrane lipids and appeared as an important determinant of 
the whole membrane structure (Banerjee and Kane, 2020). PA is a 
precursor to other phospholipids, and also a signaling molecule (Walker 
et al., 2020). On the other hand, a previous study indicated that the 
membrane homeostasis of prokaryotes is usually regulated by 
phospholipids, whereas the membrane properties of most eukaryotes 
are mediated by sterols (Crockett, 1998). The present work also 
confirmed the importance of ergosterol to membrane potential, PMF 
dissipation, and membrane lipid oxidation. Severe PMF collapse leads 
to the loss of bacterial viability and affects cell volume and expansion by 
driving transport across the cell membrane (Morth et al., 2011; Jia et al., 
2022). According to the results of the relative importance analysis, it 
could be deduced that the change of the Cer/PE/SiE ratio is one of the 

adaptive mechanisms of S. cerevisiae to oxidative stress induced by US+ 
nanoparticles.

Conclusion

In cooperation with the US, PCN with different proteolysis 
degrees strongly impacted membrane lipids compositions, and several 
lipids exhibited monotonicity change. Fold-change of PS (16:0–16:1), 
PIP, and PI (18:1–18:1) could be 3.94, 4.53, and 5.04, respectively. In 
regard to lipid subclasses, PE, PA, and LPS were barely affected by the 
proteolysis degree of PCN. In view of the results that the variation 
extents of membrane lipids subclasses were less severe than those of 
lipid molecular species, it could be inferred that membrane lipidic 
adaptation to the different PCN might be  instead addressed by 
modifying the proportions of the different lipid molecular species. 
We found a minor increase in the FA chain length of PI, PC, and PS 
and a slight increase in the average unsaturation of most lipids with 
the increase in the degree of PCN proteolysis. The changes in 
membrane potential, dissipation of PMF, and membrane lipid 
oxidation were less than 26.7%. These results revealed an adaptation 
mechanism of the cell membrane to proteolyzed PCN, wherein 
lipidome remodeling preserved functional membrane phenotypes. 
Furthermore, we highlighted the relative importance of SiE, Cer, PE, 
and PIP in determining membrane potential, PMF dissipation, and 
membrane lipid oxidation by establishing the FVSG-BP-ANN model.
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