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Introduction: Mercury (Hg) is a major environmental pollutant that accumulates 
in biota predominantly in the form of methylmercury (MeHg). Surface-associated 
microbial communities (biofilms) represent an important source of MeHg in natural 
aquatic systems. In this work, we  report MeHg formation in biofilms of the iron-
reducing bacterium Geobacter sulfurreducens.

Methods: Biofilms were prepared in media with varied nutrient load for 3, 5, or 7 days, 
and their structural properties were characterized using confocal laser scanning 
microscopy, cryo-scanning electron microscopy and Fourier-transform infrared 
spectroscopy.

Results: Biofilms cultivated for 3 days with vitamins in the medium had the highest 
surface coverage, and they also contained abundant extracellular matrix. Using 
3 and 7-days-old biofilms, we demonstrate that G. sulfurreducens biofilms prepared 
in media with various nutrient load produce MeHg, of which a significant portion is 
released to the surrounding medium. The Hg methylation rate constant determined 
in 6-h assays in a low-nutrient assay medium with 3-days-old biofilms was 
3.9 ± 2.0 ∙ 10−14  L ∙ cell−1 ∙ h−1, which is three to five times lower than the rates found 
in assays with planktonic cultures of G. sulfurreducens in this and previous studies. 
The fraction of MeHg of total Hg within the biofilms was, however, remarkably high 
(close to 50%), and medium/biofilm partitioning of inorganic Hg (Hg(II)) indicated low 
accumulation of Hg(II) in biofilms.

Discussion: These findings suggest a high Hg(II) methylation capacity of G. 
sulfurreducens biofilms and that Hg(II) transfer to the biofilm is the rate-limiting step 
for MeHg formation in this systems.
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1. Introduction

Methylmercury (MeHg) is a neurotoxic compound that is formed as a result of methylation of 
divalent inorganic mercury (Hg(II)) by microorganisms carrying the genes hgcA and hgcB (Parks 
et al., 2013; Regnell and Watras, 2019). The formation of MeHg occurs in oxygen-depleted zones of 
wetlands (Tjerngren et al., 2012; Liem-Nguyen et al., 2021), sediments (Jonsson et al., 2014; de 
Oliveira et al., 2015; Bigham et al., 2017; Jones et al., 2020), rice paddy soils (Qin et al., 2020; Wang 
et al., 2021) and fresh-and marine water columns (Capo et al., 2020). The bioaccumulation, trophic 
transfer efficiency and very low elimination rate lead to a biomagnification of MeHg in aquatic food 
webs and potentially exposure of wildlife and humans to elevated MeHg concentrations (Tollefson 
and Cordle, 1986; Orihel et al., 2007). Metagenome research (Podar et al., 2015; Capo et al., 2020; 
Peterson et al., 2020), sequencing studies (Bravo et al., 2018; Xu et al., 2021) and experimental 
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incubations (Gilmour et  al., 2013; Bravo et  al., 2018) have revealed 
diverse bacterial communities to be  responsible for Hg methylation 
including sulfate-reducing bacteria, iron-reducing bacteria, and 
methanogens. Several bacterial isolates were used as model organisms in 
studies of mechanistic principles of Hg methylation covering the aspects 
of Hg speciation in the medium (Schaefer et al., 2011; Thomas et al., 
2014, 2018; Isaure et al., 2020), its coordination environment on bacterial 
cell membranes (Song et al., 2020; Thomas et al., 2020) and the microbial 
uptake of Hg (Schaefer et al., 2011; Thomas et al., 2014; Szczuka et al., 
2015; Wang et  al., 2020), among others. These works allowed for 
significant advancements in understanding which factors control the rate 
and amount of MeHg formation. Yet the still existing inaccuracy of 
predictive models for MeHg formation in the environment suggests that 
further developments in the experimental designs are necessary.

One experimental challenge in mechanistic studies of Hg 
methylation is to control the speciation of Hg and the metabolic state of 
microorganisms. Both these factors can contribute to changes in the rate 
of MeHg formation (Goñi-Urriza et  al., 2015). Many studies have 
adopted a two-step experimental protocol, in which the growth of 
bacterial cells in a suitable nutritive medium is followed by washing and 
resuspending a certain number of cells in a nutrient-poor and chemically 
defined assay buffer for an incubation period of several hours (Schaefer 
et al., 2011; Thomas et al., 2014, 2018, 2020; Szczuka et al., 2015; Wang 
et al., 2021). These conditions allow chemical speciation and cell MeHg 
concentration to be monitored while the growth of cells and metabolic 
changes are fairly limited. Furthermore, the homogeneity in properties 
and functions of bacterial cells in a culture is an important assumption 
for normalization of values of MeHg formation rate per cell. Hence, 
laboratory experiments were conducted almost exclusively (Lin and Jay, 
2007; Lin et al., 2013) on planktonic cell cultures. In contrast, in natural 
environments microorganisms are predominantly present in aggregated 
communities called biofilms (Flemming and Wuertz, 2019). In 
sediments and aquifers, for example, the number of cells in biofilms is 
estimated to be 100–1,000 times higher than that of unattached cells 
(Flemming and Wuertz, 2019).

Biofilms are distinct from planktonic cells due to the presence of an 
accumulated extracellular matrix that links cells and shapes the structure 
of the biofilm (Flemming et  al., 2016). The matrix is composed of 
polymeric substances enabling accumulation of various substances from 
the bulk medium surrounding the biofilm, as well as substances 
produced by bacterial cells or that are a result of cell degradation within 
the biofilm volume. Several field studies reported MeHg and Hg(II) 
accumulation in freshwater biofilms grown in rivers (Dominique et al., 
2007; Dranguet et al., 2017; Leclerc et al., 2021), creeks (Olsen et al., 
2016; Schwartz et al., 2019), and lakes (Leclerc et al., 2015; Bouchet et al., 
2018), and biofilms represent a MeHg source for macroinvertebrates and 
fish (Dominique et  al., 2007; Cremona et  al., 2009). Biofilms can 
accumulate low-molecular-weight thiol compounds (Leclerc et al., 2015; 
Bouchet et al., 2018), some of which are known to promote microbial 
Hg uptake and methylation (Schaefer and Morel, 2009). However, there 
are noteworthy few mechanistic studies of Hg methylation in controlled 
laboratory experiments on biofilms from bacterial isolates. One 
laboratory study reported 10 times higher Hg methylation rates in 
biofilms compared to planktonic cultures of a sulfate-reducing 
bacterium (Lin and Jay, 2007), and this result was suggested to be due to 
metabolic differences between the two cultures (Lin et al., 2013). It is 
clear that understanding the processes controlling Hg availability and 
methylation in biofilms is important and will require controlled studies 
on biofilms of model organisms.

Iron-reducing bacteria are important members of Hg-methylating 
communities in natural environments (Bravo et al., 2018; Leclerc et al., 
2021) and one common bacterium used to study mechanisms of MeHg 
formation in laboratory settings is Geobacter sulfurreducens (Kerin et al., 
2006; Schaefer and Morel, 2009; Schaefer et al., 2014; Lin et al., 2015; Si 
et al., 2015; Qian et al., 2016; Thomas et al., 2020). Geobacter species 
generally play an important role in the biogeochemistry of many 
environments due to their capacity to grow on abundant minerals 
containing iron or manganese, and interact with other trace metals such 
as uranium or vanadium (Cologgi et al., 2014; Yan et al., 2022). The use 
of G. sulfurreducens enables relatively good control of Hg speciation and 
its availability for cellular uptake, because it is incapable of sulfate 
reduction, thus, minimizing the formation of sulfides during the assay 
(Schaefer and Morel, 2009). Notably, G. sulfurreducens forms biofilms in 
a variety of settings including iron minerals (Reguera et  al., 2007; 
Wilkins et al., 2007; Downie et al., 2018; Newsome et al., 2018), poised 
electrodes (Steidl et al., 2016; Li et al., 2017; Chadwick et al., 2019), and 
glass (Reguera et al., 2007; Klimes et al., 2010; Cologgi et al., 2014; 
Richter et al., 2017), making it a promising model organism for studying 
Hg methylation in bacterial biofilms.

The overall purpose of this work was to establish optimal conditions 
for Hg methylation assays with G. sulfurreducens biofilms and to 
quantify Hg methylation and partitioning in these systems. Structural 
changes in G. sulfurreducens biofilms were monitored as a function of 
growth conditions and Hg(II) methylation rate and partitioning of 
MeHg and Hg(II) were determined in selected biofilm assays. Biofilms 
were prepared in media with varied nutrient load by addition of yeast 
extract or a mixture of vitamins for 3, 5, or 7 days, followed by exposure 
to Hg(II). The yeast extract is known to promote cell growth in 
G. sulfurreducens planktonic cultures (Coppi et al., 2001), and it was 
added to investigate whether this rich medium also promotes the growth 
of cells in a biofilm form. Vitamins are commonly used in preparation 
of nutritive media in studies of G. sulfurreducens biofilms (Reguera et al., 
2007; Cologgi et  al., 2014), but are usually not present in standard 
nutritive media in Hg methylation studies. Using these two amendments 
we thus aimed to investigate what conditions allow abundant biofilm 
growth together with the capacity to methylate Hg. The biochemical 
composition and structural properties of the biofilms were examined 
using infrared spectroscopy, confocal laser scanning microscopy and 
cryo-scanning electron microscopy. By carefully analyzing several 
structural characteristics of biofilms, as well as methylation of Hg(II) 
and partitioning of Hg(II) and MeHg in biofilms, we contribute to the 
advancement of the mechanistic understanding of Hg(II) 
transformations in environmental systems and pave the way for future 
studies of Hg methylation in G. sulfurreducens biofilms.

2. Materials and methods

2.1. Bacterial strain and culture conditions

Geobacter sulfurreducens PCA (ATCC 51573) was purchased from 
DSMZ (Germany) and used in all experiments. The bacterial growth was 
routinely maintained as a liquid culture under N2 atmosphere at 30°C 
and pH 6.8. The growth medium (hereafter called standard nutritive 
medium) contained 10 mM sodium acetate, 40 mM sodium fumarate, 
10 mM MOPS, 5.6 mM NH4Cl, 1.3 mM KCl, 0.2 mM NaCl, 0.1 mM 
MgSO4, 8.8 μM CaCl2, 0.05 mM NaH2PO4, 1% (v/v) Wolfe’s trace metals 
solution containing 10 times lower concentration of CuSO4, 0.6 μM 
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Na2SeO3, and 1 μg/mL resazurin (Schaefer and Morel, 2009). Resazurin 
was used as an indicator of the redox status of the medium containing 
bacterial cells. The growth of bacterial cultures was monitored using 
optical density measurements of cultures at 660 nm (UV-1201 
spectrophotometer, Shimadzu). The late-exponential-phase cultures 
were obtained within 40–44 h after bacterial inoculation (1%–2%) into 
the fresh standard nutritive medium (Supplementary Figure S1a).

2.2. Set-up for biofilm formation

The late-exponential-phase cultures were diluted in three different 
nutritive media containing vertically placed acid-washed (15% HCl) 
glass substrates with the surface area of ~4 × 1 cm2, prepared by cutting 
microscopy slides (ABAA000001##02E, Thermo Scientific). The starting 
optical density of bacterial cultures used for the biofilm growth was 
~0.02 and the volume of the nutritive media was 15 mL. The nutritive 
media used were (i) standard nutritive medium, (ii) standard nutritive 
medium amended with yeast extract (1 g/L, Merck), or (iii) standard 
nutritive medium amended with vitamins mixture (1% v/v, MD-VS™, 
ATCC). The standard nutritive medium composition was selected based 
on previous studies and has been optimized for G. sulfurreducens Hg 
methylation assays (Schaefer and Morel, 2009; Schaefer et al., 2011). 
Biofilms were cultivated for 3, 5, or 7 days, in static conditions and in 
dark at 30°C. When biofilms were cultivated for 5 or 7 days, every other 
day ~7 mL of the nutritive medium was carefully replaced with the fresh 
corresponding medium using N2-filled syringe to support continuing 
bacterial growth, as schematically presented in Supplementary Figure S1b. 
The range of conditions for biofilm formation experiments was selected 
based on earlier research of G. sulfurreducens biofilms grown on glass 
(Reguera et al., 2007; Cologgi et al., 2014), as well as a study of Hg 
methylation by biofilms in laboratory settings (Lin and Jay, 2007).

2.3. Biofilm morphology

Morphological properties of biofilms were studied using confocal 
laser scanning microscopy (CLSM). Biofilms were carefully rinsed twice 
by dipping glass slides into cell-free nutritive media. The nutritive 
medium (100 μL) containing 1.5 μL of SYTO 9 stock solution, prepared 
by 10-fold dilution of SYTO 9 dye (3.34 mM in DMSO, Invitrogen) in 
0.9% (w/v) NaCl, was spread on top of the glass slide with the biofilm. 
Biofilms were stained in dark for 15 min, followed by removal of dye 
excess by dipping slides in cell-free nutritive media. Glycerol solution 
(50% in milli-Q water) was used to mount glass cover slips on top of the 
biofilms for subsequent observation with the microscope. Images were 
recorded every 1.74 μm along the biofilm height using a DIC 20X (NA 
0.75) objective of a Nikon A1R confocal microscope controlled by 
Nikon NIS Elements interface. The percent of the surface covered with 
bacteria was determined using a function of manual threshold 
adjustment in Fiji (Schindelin et al., 2012) on two-dimensional images 
representing maximal intensity projections. The structural parameters 
of biofilms were calculated using BiofilmQ software following 
segmentation of three-dimensional biofilm images in cubes (pseudo-
cells) with the side length of 1.87 μm after semi-manual threshold 
adjustment (Hartmann et al., 2021). The resulted number of pseudo-
cells per image field was used for estimation of the approximate number 
of bacterial cells in biofilms (Hartmann et al., 2021) in Hg methylation 
assays after adjustment of the value to the surface area of the glass slides. 

The estimation of cell number was made with the assumption that the 
two sides of the glass slides were equally covered with the biomass since 
the slides were placed vertically during the incubation. In addition, cell 
numbers were estimated assuming that biomass distribution recorded 
in the images is representative of full glass slide area. Four to seven 
images collected on samples from two separate experiments were used 
for the analysis of structural parameters of biofilms. Biofilms biomass 
was estimated as a ratio of biofilms biovolume (sum of all segmented 
cubes) to the substrate surface area. The roughness of biofilms was 
determined as the mean of the difference between local thickness (one 
cube area) and mean thickness of the biofilm divided by mean thickness 
of the biofilm (Hartmann et al., 2021). Statistically significant changes 
were determined using the Student’s t-test in Microsoft Excel.

2.4. Examination of biofilm extracellular 
matrix

Biofilms were prepared as described above, except that ~1 × 1 cm2 
glass slides were placed in 6 mL of the nutritive medium for cultivation. 
Prior the analysis, biofilms were rinsed by dipping the glass slides twice 
into the assay buffer (the assay buffer was the same as for Hg methylation 
assay, but not amended with Hg), plunged into liquid nitrogen slush, 
sublimated in vacuo for 30 min at-90°C, and coated with a thin layer of 
platinum. Imaging was performed on a Carl Zeiss Merlin field-emission 
cryogenic scanning electron microscope (cryo-FESEM), fitted with a 
Quorum Technologies PP3000T cryo preparation system. Images were 
taken at-140°C using secondary electron detectors at an accelerating 
voltage of 3 kV and a probe current of 50 pA. The images presented are 
representative from a series recorded on duplicate samples.

2.5. Biochemical composition of biofilms

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) 
spectroscopy was used to characterize molecular composition of 
biofilms. Biofilms were scraped off the glass slides using pipette tips and 
placed on the diamond crystal in the ATR accessory of the Bruker Vertex 
80v FTIR spectrometer. Each spectrum was recorded by collecting 100 
scans between 4,000 and 700 cm−1. The resolution of the single beam was 
4 cm−1. The absorbance scale of the spectra correspond to log (Rreference/
Rsample), where R is the internal reflectance. A spectrum of cell-free 
medium was used as a reference for the biofilm spectra. Spectra were 
processed to remove water vapor contribution and baseline-corrected at 
3,580, 2,750, 1,800, and 900 cm−1 in OPUS 7.8 software.

2.6. Hg methylation assay

In a glovebox maintained under N2 atmosphere (Saffron Scientific 
Equipment Ltd., North Yorkshire, United  Kingdom), biofilms were 
carefully rinsed twice as described above and introduced into 6 mL of 
the assay buffer containing 100 nM Hg(II), prepared by dilution of 5 mM 
Hg(NO3)2 stock solution (28941-100ML-F, Fluka). The assay buffer 
contained 1 mM acetate, 1 mM fumarate, 10 mM MOPS, 0.1 mM NH4Cl, 
1.3 mM KCl, 0.15 mM MgSO4, 5 mM NaH2PO4, 0.17 mM NaCl, and 
1 mg/L resazurin (Schaefer et  al., 2014). The assay buffer was 
pre-equilibrated with Hg(II) for ~1 h before incubation with biofilms. 
The assays were carried out at 30°C in dark in acid-cleaned glass vials 
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covered with Teflon stoppers and sealed with crimps. After 6 h of 
incubation, samples were collected and spiked with Me200Hg or 200Hg for 
quantification by isotope dilution analysis of MeHg and total Hg, 
respectively. Inorganic Hg was determined by subtraction of MeHg from 
total Hg. Analyses were performed on biofilm and biofilm-surrounding 
media samples. Samples of the medium surrounding biofilms were 
prepared by taking 1 mL aliquot of the solution surrounding a glass slide 
with the biofilm, after which the glass slide was carefully extracted from 
the vial for collecting the biofilm sample. Biofilms were scraped off the 
glass slides into 1 mL of the assay buffer using inoculating loops and 
vortexed before splitting the samples in two for MeHg and total Hg 
analyses. Biofilms and media collected for MeHg analyses were 
processed for 24 h under alkaline conditions by addition (1:10 v/v) of 
25% (w/v) NaOH, whereas samples collected for total Hg quantification 
were treated with BrCl following the EPA 1631E method (Method 1631, 
Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold 
Vapor Atomic Fluorescence Spectrometry. EPA-821-R-02-019, 2002). 
Samples were stored at −20°C until analysis. If not stated otherwise, 
three replicate samples were prepared and statistically significant 
difference between conditions was determined using the Student’s t-test 
in Microsoft Excel.

Separately from biofilm experiments, Hg methylation assays were 
performed with G. sulfurreducens planktonic cultures in vials of the 
same volume and with the same assay medium as for biofilm 
experiments. Planktonic cultures used for the assay were grown until 
late-exponential phase in the standard nutritive medium amended with 
the vitamins mixture (1% v/v), washed twice with the assay buffer and 
transferred to the assay buffer amended with 100 nM Hg(II) at the OD 
of ~0.01. The conditions of the assay and the quantification of MeHg and 
total Hg were identical to biofilm assays. Hg(II) associated with cells was 
determined by subtraction of MeHg from total Hg values that were 
obtained by calculating the difference of corresponding values for 
samples of bacterial suspensions and samples that were filtered prior to 
the analysis.

2.7. Total Hg and MeHg analyses

MeHg concentration in biofilms and biofilm-surrounding media 
was determined using thermal desorption gas chromatography−ICPMS 
(TD-100 Markes – GC 7890B Agilent – ICP-MS 7700 Agilent) after 
adjustment of samples pH to ~4.5 using 5 M HCl and 2 M CH3COONH4. 
Samples were derivatized with NaB(C2H5)4, purged with N2 and trapped 
on Tenax adsorbent. Total Hg concentration was determined using 
CETAC HGX-200 cold vapor system coupled with ICPMS (8900 
Agilent) after sample neutralization with NH2OH∙HCl and online 
Hg(II) reduction with SnCl2 (Adediran et al., 2019).

3. Results and discussion

In a first pilot study, Hg methylation assays were performed using 
7-day-old biofilms cultivated in three different media, i.e., (i) standard 
nutritive medium, (ii) standard nutritive medium amended with yeast 
extract, and (iii) standard nutritive medium amended with vitamins 
mixture (as described further in the Materials and methods section). It 
was found that all biofilms produced MeHg with on average ~ 8% of the 
added Hg(II) transformed into MeHg over a time period of 24 h 
(Figure 1). This result shows that all studied nutritive media support the 

growth of biofilms with cells capable of Hg methylation. Furthermore, 
the fraction of MeHg associated with biofilms was from 7 to 20% of the 
total produced MeHg for the three different cultivated biofilms. The 
substantial portion of MeHg in the medium surrounding biofilms 
supports the notion that G. sulfurreducens exports MeHg from the 
intracellular cell compartments during methylation assays (Schaefer 
et al., 2011).

To get a better understanding of biofilm growth patterns and the 
evolution of structural properties as a function of time, CLSM images of 
biofilms cultivated for 3, 5, or 7 days in the three nutritive media were 
taken (Figure 2). After 3 days of growth in standard nutritive medium, 
cells could be seen dispersed in a ~17 μm thick layer covering ~32% of 
the substrate surface (Figures 2A,J). Within this layer, sphere-shaped cell 
colonies were distributed. Colony formation in biofilms is one strategy 
utilized by bacteria to optimize access to nutrients (Stoodley et  al., 
2002), while its multilayer structure is likely associated with the presence 
of extracellular matrix binding the cells (Karatan and Watnick, 2009). In 
5- and 7-day-old biofilms, the appearance of colonies was less distinct 
(Figures 2B,C). The variation in colony morphology did not promote a 
significant change in biofilm roughness or thickness, but the surface 
coverage and biomass were lower in 7-day-old biofilms (Figure 2J). The 
size of colonies was on average larger in biofilms grown with yeast 
extract for 3 days (Figure 2D), but the biomass decreased after 5 days of 
growth, which was reflected by a decrease of colony size in older biofilms 
(Figures 2E,F). It should be noted that three-dimensional structures 
loosely associated with glass surfaces were observed by naked eye when 
biofilms were grown in medium with yeast extract for 7 days. These 
structures were weakly bound to surfaces and, thus, were easily washed 

FIGURE 1

Percentage of MeHg produced from 100 nM added Hg, determined in 
biofilms and surrounding media, after 0 or 24 h of incubation with 
Geobacter sulfurreducens biofilms grown for 7 days in standard 
nutritive medium (“standard medium”), in standard nutritive medium 
amended with yeast extract (“yeast”), or standard nutritive medium 
amended with vitamins mixture (“vitamins”). Control represents 
samples without Hg addition. Bars represent MeHg produced of which 
the gray part represent MeHg in the surrounding medium and the black 
part MeHg in the biofilm. Each bar represents one experimental replica.
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off during sample handling following biofilm growth. The large bacterial 
clusters associated with glass surfaces were also observed in medium 
with vitamins. They were clearly visible in CLSM images (Figures 2H,I), 
which indicates a higher strength of attachment when grown in presence 
of vitamins. Indeed, these enhanced interactions with the substrate 
surface may explain the higher biofilm content in the 3-day-old biofilm 
grown in medium with vitamins, where ~85% of the surface was covered 
by bacteria (Figures 2G,J). Overall, the CLSM results suggest that higher 
nutrient content does not promote a significant increase in 
biofilm biomass.

Structural parameters of 3-day-old biofilms grown with vitamins 
were remarkably consistent with those reported previously for a biofilm 
of the same age and cultivated in a similarly composed medium (Cologgi 
et al., 2014). The surface coverage, biomass, and mean thickness found 
in our work were 86 ± 10%, 8.9 ± 5.2 μm3/μm2, and 19 ± 7 μm, while those 
reported by Cologgi et al. (2014) were 92 ± 7%, 10.6 ± 3.3 μm3/μm2, and 

14 ± 4 μm. However, the roughness of biofilms in this work was lower 
than in the work of Cologgi et al. (0.1 ± 0.04 and 0.24 ± 0.06, respectively).

To image the extracellular matrix at a higher spatial resolution, a 
3-day-old biofilm grown in the medium with vitamins was observed 
using cryo-SEM. Figures 3A,B shows that the overall structure of the 
biofilm is formed by cell colonies homogeneously distributed over the 
surface, in agreement with the CLSM results. As shown in Figure 3C, 
the colonies appeared to be fairly porous, perhaps to enable storage and 
transport of bacterial metabolites and nutrients (Quan et al., 2022). 
Bacterial colonies, as well as individual cells, were clearly enveloped in 
extracellular material (Figures 3D–F). Furthermore, ~100–300 nm large 
matrix-associated bundles were detected in some places of the biofilm 
(Figures  3D,E). The evidence of abundant extracellular matrix is in 
accordance with previous studies that have demonstrated extracellular 
substances linking G. sulfurreducens cells in biofilms (Rollefson et al., 
2011; Cologgi et al., 2014).

A B C J

D E F

G H I

FIGURE 2

CLSM images of biofilms cultivated in (A-C) standard nutritive medium, (D-F) standard nutritive medium amended with yeast extract, and (G-I) standard 
nutritive medium amended with vitamins mixture for (A,D,G) three, (B,E,H) five or (C,F,I) 7 days with (j) corresponding structural parameters. The lines 
indicate statistically significant differences (p ≤ 0.05) for samples prepared in the same medium, or cultivated for the same number of days.
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We pursued the study of Hg methylation using 3-day-old biofilms 
prepared in medium with vitamin mixture since these conditions 
resulted in the highest surface coverage of biofilm. MeHg and Hg(II) 
were quantified both in biofilms and in surrounding media after 6 h of 
incubation with 100 nM Hg(II). Similar to the pilot assays with 7-day-
old biofilms, ~8% of the initially added Hg(II) was methylated 
(Figure  4A). Using the average estimated cell number from CLSM, 
(2.0 ± 1.1) ∙ 109 cells in the biofilm, the Hg methylation rate constant was 
calculated and found to be km = (3.9 ± 2.0) ∙ 10−14 L ∙ cell−1 ∙ h−1. This 
result is comparable to the study of biofilms of a sulfate-reducing 
bacterium (Lin and Jay, 2007; 3.0 ∙ 10−13 L ∙ cell−1 ∙ h−1, as recalculated 
from per-day value), although MeHg was quantified only in media 

surrounding the biofilms in that study. Furthermore, the km value 
determined for G. sulfurreducens biofilms in our study is ~20% of the 
Hg methylation rate constant obtained in G. sulfurreducens planktonic 
cultures after 6 h of incubation in the medium of the same composition 
as for biofilm assays, km = (2.6 ± 0.3) ∙ 10−13 L ∙ cell−1 ∙ h−1. Previously 
reported Hg methylation rate constants in planktonic culture assays with 
G. sulfurreducens vary depending on for example the type of added 
ligands, particularly low-molecular-weight thiols (Schaefer et al., 2011; 
Adediran et al., 2019). The km value found for biofilms in our study is 
~20% and 40% of km values reported previously for planktonic cells for 
one-and two-hour-long assays without thiols addition ((2.1 ± 0.7)∙ 
10−13 L ∙ cell−1 ∙ h−1 (Schaefer et al., 2014) and (1.0 ± 0.4) ∙ 10−13 L ∙ cell−1 

FIGURE 3

Cryo-SEM images showing extracellular matrix surrounding (A,B) colonies and (D-F) individual cells, as well as (C) an example of cell organization in a 
colony, of 3-day-old G. sulfurreducens biofilm grown in standard nutritive medium amended with vitamins.

A B

FIGURE 4

Percentage of (A) MeHg produced from 100 nM added Hg, determined in biofilms and surrounding media, after 0 or 6 h of incubation with G. 
sulfurreducens biofilms grown for 3 days in standard nutritive medium amended with vitamins mixture, and (B) Hg(II) present in biofilms and surrounding 
media at the same assays. Error bars indicate standard deviation obtained from three replicates.
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∙ h−1 (Schaefer et al., 2011), respectively). We therefore conclude that in 
the minimal nutritive conditions of the assay medium G. sulfurreducens 
biofilms methylate Hg at a lower rate compared to planktonic cultures, 
albeit within the same order of magnitude.

It should be noted that no cell detachment was observed during the 
assay (OD660 ≤ 0.003 of the medium surrounding biofilms after 6-h 
incubation). This means that all MeHg produced can be attributed to the 
activity of bacterial cells in the biofilms and not to planktonic cells. In 
biofilms, bacterial cells can vary in metabolic state depending on their 
location due to differences in the microenvironment of each cell. For 
example, lower nutrient availability and accumulation of cell metabolites 
can lead to a slower growth rate and death of cells in the inner and 
bottom parts of the biofilm (Mah and O’Toole, 2001; Karatan and 
Watnick, 2009). Therefore, it is possible that not all cells in the biofilm 
participate in Hg methylation to the same extent. Furthermore, 
considering Hg(II) diffusion into the biofilm, it is likely that the cells at 
the top of the biofilms are more exposed to Hg(II) and may be more 
active in methylation. Interestingly, we  found low accumulation of 
Hg(II) in biofilms. While the partitioning coefficient “cells/medium” at 
6 h of incubation for MeHg was equal to 0.41 ± 0.16, the corresponding 
partitioning for Hg(II) was only 0.10 ± 0.02 (Figure  4B). The low 
concentration of Hg(II) in biofilms could be explained by a slow mass 
transfer of Hg(II) into the biofilm, in comparison with planktonic cell 
cultures. Indeed, the partitioning coefficient “cells/medium” for Hg(II) 
in planktonic cultures was consistently higher compared to biofilm 
assays (0.61 ± 0.18 and 0.75 ± 0.41 after 2 and 6 h of incubation for 
planktonic cells, compared to 0.039 ± 0.001 and 0.10 ± 0.02 after 2 and 
6 h for biofilms). In planktonic cultures cells are distributed more 
homogeneously in solution, allowing exposure to Hg(II) from every 
direction, which may explain higher amount of Hg(II) associated with 
planktonic G. sulfurreducens cells.

The fraction of MeHg of total Hg in the biofilm was noteworthy high, 
close to 50% (2.5% and 3.3% of initially added Hg was found in biofilms 
as MeHg and Hg(II), respectively, Figures 4A,B). For comparison, the 
proportion of MeHg to total Hg was reported to be <1% in biofilms 
grown on artificial substrata in reservoirs of a Hg-contaminated river 
(Dranguet et al., 2017), <0.1% in an industrially contaminated freshwater 
creek (Schwartz et al., 2019), 11%–18% in a river affected by run-of-river 
power plants and artificial wetlands (Leclerc et al., 2021), as well as 12% 
and 57% in plant-associated biofilms in lake Titicaca (Bouchet et al., 
2018). Experiments with planktonic cell cultures of G. sulfurreducens 
have previously shown that MeHg is not accumulated inside cells 
(Schaefer et al., 2011). Hence, we hypothesize that in our study MeHg in 
biofilms was associated with bacterial cell walls and with the biofilm 
matrix. The high fraction of MeHg of total Hg in biofilms reflects a 
remarkably high capacity of Hg methylation by G. sulfurreducens cells in 
biofilm systems. Together with the low partitioning of Hg(II) to biofilm 
cells these results suggest that Hg methylation in biofilms is rate-limited 
by the mass transfer of Hg(II) into the biofilm.

It should be noted that a substantial decrease of Hg(II) in the 
medium was observed during the methylation assays (Figure 4B). 
Hg(II) loss could occur due to Hg(II) adsorption on glass vial walls 
and microbial Hg reduction. This would also affect the overall mass 
balance of total Hg and may explain why only 44% was recovered 
after 6 h. Previous studies have reported an abundance of redox active 
proteins (cytochromes) in the extracellular matrix of G. sulfurreducens 
biofilms (Rollefson et al., 2011; Steidl et al., 2016). Furthermore, a 
correlation has been shown between abundance of cytochromes and 
Hg reduction rates (Lin et  al., 2014; Qian et  al., 2016). It is thus 

possible that Hg(II) reduction and methylation were two competing 
processes upon Hg(II) entering into the biofilm. In previous studies 
with G. sulfurreducens planktonic cultures the extent of Hg reduction 
decreased by the adsorption of Hg onto bacterial cell wall surfaces, 
particularly via binding to thiol groups (Hu et al., 2013; Lin et al., 
2014). Since Hg(II) did not accumulate in the biofilm significantly but 
its loss in the system was high, one could assume high reduction 
relative to cell adsorption of Hg. Thiol groups are present on the 
bacterial cell wall, but they could also be  accumulated in the 
extracellular matrix of the biofilm. This could particularly be expected 
for G. sulfurreducens biofilms, since its planktonic counterparts can 
produce up to ~50 nM of extracellular low molecular mass thiols 
compounds within 6 h at 1.1 × 108 cells mL−1 under the same nutritive 
conditions of the assay medium as used in this study (Adediran et al., 
2019). It will thus be  highly interesting to investigate both Hg 
reduction and possible thiol production and accumulation in 
G. sulfurreducens biofilms in future studies.

Finally, since changes in the physiological state of the microorganism 
may affect the rate of MeHg formation (Goñi-Urriza et  al., 2015), 
we investigated biochemical composition of biofilms in the beginning 
and at the end of the 6 h methylation assay using ATR-FTIR 
spectroscopy. This method is particularly sensitive to relative changes in 
the amounts of major biochemical compounds such as proteins, 
polysaccharides, nucleic acids and lipids, which can be monitored at 
native state. Nonetheless, some specific metabolic changes can also 
be  detected upon changes in the cell environment. For example, in 
G. sulfurreducens planktonic cultures we observed significant variation 
in relative amounts of energy-reserve compounds and nucleic acids 
during Hg methylation assays that were consistent with changes in cell 
density (Gutensohn et al., unpublished data). The ATR-FTIR spectra of 
biofilms showed that relative amounts of proteins (indicated by amide 
I and amide II bands), nucleic acids (νaPO2

−, νsPO2
−, δCH), lipids (CH2, 

CH3) and polysaccharides (νCO, C–O–C, P–O–C, R–O–P–O–R′) were 
similar at both time points (Bremer and Geesey, 1991; Stuart, 2004; 
Yunda and Quilès, 2019; Figure 5). Furthermore, the stable relative 
content of nucleic acids, indicated mainly by the bands at 1240–
1220 cm−1, suggests that the cell number in biofilms likely remained 
unchanged throughout the assay. Hence, in accordance with the design 
of the assay, the experimental conditions allowed limiting cells growth 
and strong changes in cells physiology.

4. Conclusion

In this work, we  demonstrate that G. sulfurreducens biofilms 
prepared in media with various nutrient load produce MeHg, from 
which a significant portion is released in the surrounding medium. The 
addition of vitamins during the growth allowed for significantly higher 
biofilm surface coverage 3 days of cultivation, compared to other media 
investigated. The biofilm formed was characterized by generally high 
rate of MeHg formation, although this value was three to five times 
lower than the rates of MeHg formation in assays with G. sulfurreducens 
planktonic cultures found in our and previous works. The percent of 
Hg(II) associated with cells in the biofilm was notably lower than the 
values found for planktonic cultures, while the fraction of MeHg of total 
Hg in the biofilm was remarkably high. The high fraction of MeHg in 
biofilms and low Hg(II) accumulation in biofilms suggest that 
G. sulfurreducens rapidly transforms Hg(II) into MeHg once Hg(II) 
reaches the biofilm.
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