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Characterization of antibiotic resistance genes (ARGs) from high-throughput 
sequencing data of metagenomics and cultured bacterial samples is a challenging 
task, with the need to account for both computational (e.g., string algorithms) and 
biological (e.g., gene transfers, rearrangements) aspects. Curated ARG databases 
exist together with assorted ARG classification approaches (e.g., database 
alignment, machine learning). Besides ARGs that naturally occur in bacterial 
strains or are acquired through mobile elements, there are chromosomal genes 
that can render a bacterium resistant to antibiotics through point mutations, i.e., 
ARG variants (ARGVs). While ARG repositories also collect ARGVs, there are only a 
few tools that are able to identify ARGVs from metagenomics and high throughput 
sequencing data, with a number of limitations (e.g., pre-assembly, a posteriori 
verification of mutations, or specification of species). In this work we present the 
k-mer, i.e., strings of fixed length k, ARGV analyzer – KARGVA – an open-source, 
multi-platform tool that provides: (i) an ad hoc, large ARGV database derived 
from multiple sources; (ii) input capability for various types of high-throughput 
sequencing data; (iii) a three-way, hash-based, k-mer search setup to process 
data efficiently, linking k-mers to ARGVs, k-mers to point mutations, and ARGVs 
to k-mers, respectively; (iv) a statistical filter on sequence classification to reduce 
type I and II errors. On semi-synthetic data, KARGVA provides very high accuracy 
even in presence of high sequencing errors or mutations (99.2 and 86.6% accuracy 
within 1 and 5% base change rates, respectively), and genome rearrangements 
(98.2% accuracy), with robust performance on ad hoc false positive sets. On data 
from the worldwide MetaSUB consortium, comprising 3,700+ metagenomics 
experiments, KARGVA identifies more ARGVs than Resistance Gene Identifier 
(4.8x) and PointFinder (6.8x), yet all predictions are below the expected false 
positive estimates. The prevalence of ARGVs is correlated to ARGs but ecological 
characteristics do not explain well ARGV variance. KARGVA is publicly available at 
https://github.com/DataIntellSystLab/KARGVA under MIT license.
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1. Introduction

Bacterial antimicrobial resistance is a global threat to human health and to numerous 
ecosystems, responsible for over 1 million and associated to over 4 million of peoples’ deaths 
annually (2019 estimate) worldwide (Murray et al., 2022), disruption of livestock production, 
and environmental contamination (Iwu et  al., 2020). Resistance in bacteria can manifest 
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naturally, evolve through genetic mutations, or be acquired through 
gene transfer. While antibiotic susceptibility testing through in vitro 
cultures is the standard in microbiology research and in clinical/
veterinary care settings, high-throughput – targeted and 
metagenomics – sequencing is becoming a promising alternative, at a 
relatively low cost and fast turnaround time (Gu et al., 2019; de Abreu 
et al., 2021). The characterization of antibiotic resistance genes (ARGs) 
from metagenomics as well as cultured bacterial samples through 
high-throughput sequencing involves development of computational 
approaches to process large experimental data, up to the terabyte scale, 
as well as biological annotation of existing and new ARGs into curated 
database resources (Boolchandani et al., 2019).

Several public ARG databases are actively maintained, e.g., the 
comprehensive antibiotic resistance database (CARD; Alcock et al., 
2020), MEGARes (Doster et  al., 2020), the national database of 
antibiotic resistant organisms (NDARO; Sayer et al., 2020), ResFinder 
(Bortolaia et al., 2020), and the structured antibiotic resistance gene 
(SARG) database (Yin et al., 2018), providing access to thousands of 
gene entries and functional annotations. There is substantial overlap 
among the databases, however, and it is nontrivial to compare the 
annotations due to differences in ontology used. For instance, 
MEGARes uses a tree-based hierarchical structure to represent 
antimicrobial chemical classes, biological mechanisms, and operon-
level gene groups; conversely, CARD uses a reticulate structure. 
Numerous tools for ARG identification from high-throughput 
sequencing data are available that rely on one or more of these 
databases, including methods that are based on: sequence alignment, 
e.g., AMRPlusPlus (Doster et al., 2020); k-mers (strings of fixed length 
k), e.g., ResFinder (Bortolaia et  al., 2020), KARGA (Prosperi and 
Marini, 2021), and AMR-meta (Marini et al., 2022); hidden Markov 
models, e.g., Meta-MARC (Lakin et al., 2019), Resfams (Gibson et al., 
2015); and other machine learning algorithms, e.g., DeepARG 
(Arango-Argoty et al., 2018).

One crucial problem in ARG identification that has gone largely 
unexplored for metagenomic data is the detection of ARG variants 
(ARGVs; Coculescu, 2009; Sultan et al., 2018; Prosperi et al., 2019). 
ARGVs are constituted by point mutations that allow regular 
chromosomal genes (e.g., housekeeping genes, topoisomerases) to 
confer resistance to one or more antimicrobials. It is particularly 
challenging to detect this type of resistance because both the gene and 
the mutation(s) must occur. Thus, only a few methods are capable of 
flagging ARGVs and/or verifying the presence of point mutations. 
AMRPlusPlus 2.0 flags genes that require variant confirmation, but 
leaves this additional analysis to the user. Other algorithms might 
require partial pre-assembly and protein translation, as was 
recommended in CARD’s resistance gene identifier (RGI) prior to 
version 6.0.0 to avoid over-reporting alignment to susceptible alleles; 
or they might be limited to a number of bacterial strains that have to 
be specified at runtime, such as PointFinder. This is a critical issue as 
ARGVs can encompass a substantial part of ARG databases. For 
example, 6% of the ARGs in MEGARes are ARGVs.

Here, we  present the k-mer antibiotic resistance gene variant 
analyzer (KARGVA). KARGVA is a multi-platform, open-source 
software specifically designed to confirm the presence of point 
resistance mutations in chromosomal genes from either metagenomics 
or whole genome sequencing data. KARGVA is built after – and it is 
intended to be used in conjunction with – our prior approach for 
regular ARGs, which is KARGA (Prosperi and Marini, 2021). 

KARGVA merges different ARGV databases and utilizes an efficient 
three-way, hash-based approach to mutually link point mutations, 
k-mers, and genes. It is equipped with a statistical approach to filter 
false positives and rank multiple, plausible ARGV candidates. Besides 
the algorithmic innovation, KARGVA provides advantage over 
existing tools since it relaxes the need to perform assembly and/or 
identify species before analysis, and automatically confirms the 
presence of required mutations during the analysis.

On semi-synthetic data, KARGVA provides high accuracy with 
sequencing errors or gene mutations and demonstrates robustness with 
respect to false positive sets. On a large collection of metagenomic data 
collated by the MetaSUB consortium, KARGVA identifies more ARGVs 
than AMRPlusPlus, RGI, and PointFinder, and its predictions exhibit a 
low false positive rate (estimated on a semi-synthetic benchmark set).

2. Methods

We proceed as follows: First, we  collate and manually curate 
ARGVs from different sources into the KARGVA database and 
develop the KARGVA algorithm; second, we benchmark KARGVA 
on semi-synthetic datasets with a known ground truth; finally, 
we validate KARGVA on real metagenomics data. This process is 
depicted in Figure 1.

2.1. Database collation

KARGVA integrates ARGV sequences from three different ARG 
databases: CARD,1 MEGARes,2 and NDARO.3 We  collect all the 
protein entries for NDARO. For CARD, we extract ARGVs from the 
protein variant model, including single resistance variants, multiple 
resistance variants (with the exclusion of duplications), nonsense 
mutations, and high confidence M. tuberculosis ARGVs (integrated in 
CARD from the ReSeqTB database).4 MEGARes ARGVs are compiled 
through external header and sequence mapping to one of the other 
sources with available point mutation information. The merged 
database is made partially non-redundant by collapsing sequences that 
are identical at the amino acid level. However, multiple mutations are 
unmodified from the original sources. Thus, if a gene can become 
resistant through multiple independent point mutations or different 
combinations of mutations, e.g., the wild-type gene MKRIK mutates 
into MKRVK or MKRPK to become resistant, all resulting ARGVs 
appear separately in the database. This is done on purpose to respect 
the natural occurrence of amino acid variations and their 
combinations as observed in real-world samples.

Sequence headers and antibiotic resistance ontology metadata, e.g., 
MEGARes’ class/mechanism/group hierarchy or NDARO’s antibiotic 
compounds, are pooled together. Since the ontologies of MEGARes, 
and CARD differ, and NDARO does not use a standardized annotation, 
KARGVA can report ARGVs with one ontology/annotation term, or 
more than one if the same ARGV comes from multiple databases.

1 https://card.mcmaster.ca/

2 https://megares.meglab.org/

3 https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/

4 https://github.com/CPTR-ReSeqTB/UVP
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2.2. Classification approach and statistical 
scoring

The classification of a DNA sequence read as belonging to an 
ARGV is carried out at the amino acid level, comparing the k-mer 
spectrum of a given protein-translated query sequence with the k-mer 
spectrum of the ARGV database and, separately, of all k-mers that 
include point mutations associated with antibiotic resistance. Since 
raw high-throughput data is at the nucleotide level, each sequence 
read is paired to its reverse complement, translated into amino acids 
using all six reading frames, and then queried against the merged 
ARGV database. The reason for performing reverse complements and 
protein translation in all reading frames is due to the fact that 
mutations of the AMR genes are annotated at the amino-acidic level, 
and thus we need to identify the right coding frame for a given read. 
Of note, since reads can contain errors (including frameshifts), we do 
not base the choice on stop codons, but we pick the translation with 
highest number of k-mer matches and mutation matches at the 
amino-acidic level, using the algorithm below.

For each query, first it is verified to determine whether its k-mer 
spectrum contains resistance mutations, by comparing it with each 
ARGV’s subset of k-mers that include at least one resistance mutation, 
out of the complete k-mer spectrum of each ARGV. All ARGVs for 
which at least one positive match of point mutations is found are 
retained as candidates. Second, the most probable ARGVs are chosen 
on the basis of the highest relative prevalence of point mutation 
k-mers as well as all k-mers that are included in the whole k-mer 

spectrum of an ARGV, but do not necessarily contain point mutations. 
Since k-mers might not be unique to ARGVs, the prevalence scores 
are weighted by the k-mer multiplicity in different genes, e.g., if a 
k-mer is present in three different ARGV genes, its weight is one third 
as compared to a k-mer that is found in one ARGV gene only. A 
combined score is the result of the probabilistic sum 
(Pcombined  = P1 + P2  –  P1×P2) of the two matching measures (i.e., P1 
represents the fraction of k-mers of the read that match a gene and P2 
represents the proportion of the subset of matching k-mers that 
contain resistance mutations) and decrees the final ARGV ranking.

We also use a statistical test that checks how many k-mer matches 
relative to point mutations could be due to chance given a specific 
sequence length and k value. In this way, we are able to filter out false 
positive classifications at a desired level of confidence. Our procedure 
calculates the empirical distribution of point mutation k-mer 
occurrences for a sufficiently number of random queries, and draws 
the probability threshold on the basis of the percentile distribution 
counts, resembling an exact formula previously introduced 
theoretically (Prosperi et al., 2012), and then later implemented. In 
brief, the test simulates a number of random reads and compares their 
k-mer spectrum against the AMR database, deriving a count 
distribution of k-mer matches. A given percentile of this distribution, 
e.g., 95th or 99th, is used as a threshold to flag false positives. For 
KARGVA, the p-value for false positive rejection is set to 0.01, and the 
number of query randomizations is set to 12,500 (although it can 
be  changed by the user). This parameter has been empirically 
optimized over 200,000 tests to accommodate a broad range of read 

FIGURE 1

Development of KARGVA: The KARGVA database is collated from different sources. Benchmarks on semi-synthetic data: a first semi-synthetic dataset 
is used to benchmark KARGVA against randomly generated non-ARGVs and simulated ARGVs with errors; and three other semi-synthetic datasets are 
used to benchmark KARGVA against false positives. Evaluation on real metagenomics data: KAGVA is applied to real metagenomics data and the results 
are compared with existing ARGV prediction algorithms.
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lengths and k-mer lengths (from 3 to 41 nucleotides). We showed that 
the probability density function is degenerate until k = 11, which is the 
minimum k we allow, and then the 99th percentile quickly approaches 
the unity from k = 23 and higher (Prosperi and Marini, 2021). As the 
ARGV database is only in part non-redundant, there can be cases 
when more than one ARGV exhibits an optimal score not by chance. 
To account for these situations, KARGVA reports all scores that are 
within 5% of the optimal one. Thus, for each sequence read, either no 
classification to ARGV or classification to one or more ARGVs is 
provided, with the statistical summaries.

Concomitantly to the per-read classification, KARGVA updates a 
whole-sample classification, as follows: each time a protein sequence 
query is assigned to one or more ARGVs, its k-mer spectrum is used 
to update the overall k-mer content match for each ARGV in the 
database. There can be also cases when the k-mer content of a read 
significantly overlaps with that of a region of one or more ARGVs 
where no required mutations are present, and the read is still used to 
update the coverage and depth of said ARGV. However, only ARGVs 
whose resistance mutations are confirmed and pass the statistical 
filtering are eligible for output, regardless the overall k-mer matches. 
Thus, after processing all reads, KARGVA outputs sample-level 
coverage and depth summaries for all ARGVs in the database. The 
coverage is quantified as the fraction of k-mers over the total number 
of distinct k-mers in the gene (weighting multiplicity), whilst the 
depth is the average number of times a k-mer is covered.

2.3. Data structures and implementation

Three main relational structures are created by indexing: (1) 
ARGV identifiers linked to k-mers (one-to-many); k-mers containing 
point mutations linked to ARGV identifiers (one-to-many); (2) 
non-mutant k-mers linked to ARGV identifiers (one-to-many); and 
(3) ARGV identifiers linked to all their k-mers along with frequencies 
(many-to-one-to-many). The k-mers are placed in a hash table; 
therefore, there is a unique hash code identifying a unique k-mer. 
However, a unique k-mer can be  found in multiple genes with a 
certain multiplicity. The multiple genes are stored in array lists whose 
pointers are the values of the said k-mer hash table. The k-mer 
multiplicity is stored in secondary hash tables for each AMR gene. The 
code is implemented in Java,5 using legacy data structures (HashMaps 
and ArrayLists) for the aforementioned relations. The number of 
k-mers of the merged databases has been calculated in advance to 
verify that there would not be  problems with hash collisions or 
memory usage, even by doubling the database size, without the need 
to resort to more efficient data structures. KARGVA accepts as input 
both uncompressed and compressed FASTQ files (recognized 
automatically through file extension, or as indicated by the user in the 
command line). The source code is hosted in GitHub6 and publicly 
available at: https://github.com/DataIntellSystLab/KARGVA under 
MIT license. The GitHub folder includes a detailed README with 
information about database version, set up of input parameters (k-mer 
length, number of random queries to determine false positive 

5 https://www.java.com

6 https://github.com/

threshold, ARGV reference file, read file, single vs. multiple ARGV 
scoring per read), and output file description.

2.4. Experimental setup

Four semi-synthetic datasets are made by simulating high-
throughput metagenomic sequencing experiments in different 
settings, and are used for parameter optimization, performance 
evaluation and robustness assessment. Specifically, KARGVA is 
optimized on different values of k (between 21 and 45 nucleotides), to 
determine the best tradeoff between the false positive rate and the false 
negative rate, with respect to non-ARGV sequences, and ARGV 
sequences that may carry non-ARGV mutations, gene rearrangements, 
or sequencing errors.

2.4.1. First simulated dataset
The first simulated dataset consists of FASTQ files made of: (i) 

reads drawn from ARGV databases with non-ARGV mutations or 
sequencing errors up to a 15% rate; (ii) reads from ARGV databases 
with a two-point transposition (with/without reversion), each 50% of 
the read length; and (iii) non-ARG reads, generated uniformly 
at random.

2.4.2. Second simulated dataset (RaBaGe)
The second read set (semi-synthetic) is generated from 5,000 

randomly picked RefSeq (O’Leary et  al., 2016) bacterial genes 
(RaBaGe) that did not match any sequence in MEGARes with a 
BLAST search (e-value = 10), putatively susceptible to all antibiotics.

2.4.3. Third and fourth simulated datasets (BeSu 
and TeSu)

The third semi-synthetic dataset is a specific betalactam-
susceptible (BeSu) dataset obtained from PATRIC (Pathosystems 
Resource Integration Center) web repository (Davis et  al., 2020), 
where an antibiotic susceptibility test is available, made by clipping 
genes of bacterial genomes that (1) are among the top 10% in terms of 
the numbers of different betalactam antibiotics they were resistant 
against; and (2) exhibit medium-high similarity to MEGARes genes 
(BLAST e-value ≤ 0.01, percent identity between 70 and 90%). The 
fourth semi-synthetic dataset is a specific tetracycline-susceptible 
(TeSu) dataset, collated in the same way as BeSu.

In summary, the first dataset is used to assess the classification 
performance on different error rates as well as gene rearrangements; 
while RaBaGe, BeSu, and TeSu are all “negative” datasets according to 
the antibiotic susceptibility testing or (non)match with MEGARes. An 
ARGV classifier should therefore not find antibiotic resistance genes 
in these datasets, unless the genes were present but not expressed. 
RaBaGe covers the spectrum of all genes, while BeSu focus on genes 
that are very similar to ARGVs but present different mutations. With 
all datasets we assess and optimize the false positive rate of KARGVA 
by varying k and gene coverage threshold. The semi-synthetic datasets 
are simulated using InSilicoSeq software (v 1.4.4) with presets for 
Illumina (read length 151; Gourlé et al., 2019).

We finally evaluate KARGVA on real experimental data, using 
metagenomic experiments from samples collected by the MetaSUB 
consortium (Mason et  al., 2016). MetaSUB is an international 
project that collects surface samples from public transportation 
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systems, and collates metagenomic sequencing of urban 
microbiomes with the goal “to build a molecular profile of cities 
around the globe to improve their design, functionality, and impact 
on health.” We replicate in part the work presented by Danko et al. 
(2021), who applied AMRPlusPlus to detect both ARGs and 
ARGVs, and provided an abundance, density and correlation 
analysis among sampled cities’ metagenomes in relation to their 
distance and distribution of resistance genes. To extract the species 
present in each sample, we utilize Kraken2 (Wood et al., 2019) and 
its standard database version as of September 04, 2019. In addition 
to correlation and density maps for sample characteristics by ARGs 
and ARGVs, we fit a random forest (RF) to evaluate how much 
variance in ARGVs is explained by the sample attributes –the city 
of origin, surface material (manually curated, grouping materials 
that are not present in at least five cities and in a total of 25 samples 
into an “other” category), type of sample (air, environmental, and 
unknown), number of total reads per sample, and bacterial species, 
classified with Kraken2. We use R7 with packages caret and ranger, 
optimizing the number of trees and number of splits at each tree 
node via grid search. RF variable importance is evaluated via 
permutation. Prediction performance is assessed through 10-fold 
cross validation, measuring the root mean squared error (RMSE) 
and mean absolute error (MAE).

We further compare KARGVA with AMRPlusPlus 2.0, RGI 5.1.1 
and PointFinder 4.2. AMRPlusPlus is an alignment-based method 
that identifies ARGs as well as candidate ARGVs (that require 
confirmation of mutations) from high-throughput read data using 
MEGARes. RGI is also alignment-based, but it uses protein-translated 
queries and CARD. PointFinder is a hybrid method that uses 
alignment and k-mers. In order to evaluate RGI and PointFinder, the 
raw read files are assembled using metaSPAdes 3.15.3 (recommended 
parameters), after quality control, filtering and adapter trimming 
preprocessing (Nurk et  al., 2017). Furthermore, as PointFinder 
requires to specify an input species, we run it for all the supported 
species, merging its output and removing duplicates. For comparing 
ARGV predictions in this work – since ARGV classification tools may 
use different ontology – we  manually review all the antibiotic 
resistance ontology/prediction annotations of KARGVA, RGI, and 
PointFinder, using MEGARes classes as a common reference. All 
terminology for which we are able to find a correspondence is retained 
(see Supplementary material).

All tests are run on University of Florida’s HiPerGator computing 
cluster8 on nodes with 4 Intel Xeon CPUs at 2.00 Ghz with 
16 GB RAM.

3. Results

3.1. Characteristics of the merged database

The KARGVA ARGV database integrates 1,159 single-point, and 
95 multiple-point ARGVs from CARD (January 2021 release); and 
654 single-point ARGVs from NDARO 3.10, respectively. In 

7 https://www.r-project.org/

8 https://www.rc.ufl.edu/

MEGARes, ARGVs are not provided with information on the variant 
location, but we  are able to align 1,173 MEGARes’ ARGVs with 
CARD, and 147 with NDARO. After merging identical sequences, the 
final KARGVA database includes 1,781 ARGVs. Out of the total, 
95.5% of sequences contain just one point mutation conferring 
antibiotic resistance, 3.3% contain two, 1.1% contain three or four, and 
2.5% contain stop codons. KARGVA reports ARGV annotations in 
accordance with all original database ontologies; in the case of a 
sequence that is present in more than one database, all individual 
annotations are provided together.

3.2. Benchmarks on semi-synthetic data

The first semi-synthetic dataset is used to optimize the k value and 
to assess the single best match performance across different 
sequencing error rates (or more in general as any nucleotide change 
from the original ARGV sequence, including an actual mutation from 
a different bacterial strain). Each simulation comprises 25,000 reads 
of length of 151 bases. Figure 2A displays the accuracy curves (with 
95% confidence intervals drawn across simulations) stratified by k 
value. Numbers are reported in the Supplementary material. Larger k 
values are more accurate at lower error rates, and vice-versa. The best 
tradeoff is given by k = 9 amino acids (i.e., 27 nucleotides), yielding 
accuracies well over 80% for error or base change rates up to 2.5%. 
Figure 2C illustrates the distribution of scores for the single best match 
across all experimental configurations, stratified by the classification 
correctness. The distributions clearly indicate that the proposed score 
has very high discriminative ability, yielding a median (IQR) value of 
0.83 (0.59–0.99) for the correctly identified genes vs. 0.41 (0.21–0.60) 
for the wrongly/non-identified entries. As explained, more than one 
ARGV can have optimal score, so we can evaluate all best scoring 
ARGVs. Figure 2B shows the performance of our method using the 
best k and the top scoring matches. The accuracy is 99.2% for error 
rates up to 1, 93.5% at 2.5, 79.8% at 5, 50.3% at 10, and 26.9% at 15%. 
For 2-point gene rearrangements, the overall accuracy is 98.2%. Note 
that the accuracy statistics are calculated on ARGV (either with a 
given error rate or 2-point rearrangement) upon the false positive 
testing, which filters out the non-ARGV reads randomly generated. 
Our method correctly identified 100% of random reads. Thus, the 
accuracy is indeed a sensitivity with ideal 100% specificity.

The other three semi-synthetic datasets help us determine the 
robustness of KARGVA with respect to false positive rate on more 
realistic bacterial metagenomics data. For RaBaGe, we select over 
5,000 genes with length >500 nucleotides that meet the antibiotic 
susceptibility criteria, and generate 500,000 reads, for BeSu we obtain 
4.2 million reads, while for TeSu 355,170 reads. We  benchmark 
KARGVA over multiple parameter combinations, varying the minimal 
required gene fraction coverage between 0.00 and 0.95, and 
considering k equal to 7, 9, 15 (i.e., 21, 27, 45 nucleotides). For each 
parameter configuration and dataset, we calculate the false positive 
score (FPS), measured as # of detected ARGVs/# of reads. As shown 
in Figure 3, even at low coverage thresholds and small k values, the 
FPS is low. With any coverage fraction and k = 7, the FPS is 3.7 × 10−4 
in RaBaGe, 1.5 × 10−4 in BeSu, and 1.7 × 10−4 in TeSu. With the most 
conservative coverage of 0.95 and k  = 15 (i.e., long conserved 
stretches), FPSs is 2 × 10−6, 3.8 × 10−6, and 1.1 × 10−5 for RaBaGe, BeSu, 
and TeSu, respectively. We  then set the KARGVA to default 
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configuration with coverage of 0.8 and k = 9, which yields FPS rates all 
below 5 in 100,000, specifically 4 × 10−6, 4.5 × 10−5, and 4.2 × 10−5 for 
RaBaGe, BeSu, and TeSu. We  expect real metagenomics data to 
be in-between the “easy” (RaBaGe) and “hard” (BeSu, TeSu) negative 

datasets, and therefore we estimate the expected KARGVA FPS on 
metagenomics data to be in the [10−5, 10−6] range when used with 
default settings. We also test RGI and PointFinder on these three 
negative datasets. RGI shows a worse FPS, yielding at least twice false 

A B C

FIGURE 2

KARGVA performance on semi-synthetic data (varying error/nucleotide change rates and gene rearrangements) in identifying genes of bacteria 
conferring antibiotic resistance through point mutations. (A) shows performance for a single best match, stratified by parameter k value; (B) shows 
performance after k optimization, using all optimal best scoring matches; (C) shows box-and-whisker plot distribution of algorithm’s scores on all test 
configurations, stratified in accordance with ground truth. Shaded areas and whiskers represent 95% confidence intervals. Numbers used for this figure 
are provided in the Supplementary material.

FIGURE 3

Assessment of KARGVA’s false positive rate on semi-synthetic data by varying k-mer length and gene coverage threshold. The X-axis represents the k 
value (in amino acids, e.g., k = 9 means 27 nucleotides), the Y-axis represents the gene coverage portion (%), and the bubble size represent the false 
positive counts. RaBaGe, BeSu, and TeSu are synthetic datasets assembled by random bacterial genes (RaBaGe), and PATRIC genome fragments exhibit 
ingmedium-high similarity to MEGARes betalactamase (BeSu) or tetracycline (TeSu) genes.
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positives than KARGVA. Over RaBaGe, BeSu, and TeSu, RGI FPSs are 
6 × 10−6, 9 × 10−5, and 1.2 × 10−4, while PointFinder shows the best FPSs 
with 4.8 × 10−7, 3.3 × 10−6, and less than 2.8 × 10−6, i.e., no findings over 
TeSu. Note that both RGI and PointFinder are run on contigs 
assembled by metaSPAdes, and not on the original read sets.

3.3. Evaluation on real metagenomics data

Next, we run KARGVA, AMRPlusPlus, metaSPAdes+RGI and 
metaSPAdes+PointFinder on the metagenomics global data (surface 
samples from public transportation) from the MetaSUB project. The 
MetaSUB FASTQ files available for public download are filtered for 
human DNA. Of 4,305 paired short read files, 3,758 come with a 
matched metadata record and belong to a city with at least 25 samples, 
and can thus be  processed (i.e., provide an output) by all the 
algorithms we used. Table 1 shows sample/isolate characteristics for 
the MetaSUB files selected and analyzed, considering the top-10 cities 
in terms of total number of samples, with summaries of the top-5 most 
frequent species as classified by Kraken2, and the mean, median 
(interquartile) number of ARGs detected by AMRPlusPlus and of 
ARGVs detected by KARGVA. Figure  4 shows the relationships 
between species abundance and city, considering the top-5 species. 
Out of 5,053 unique species detected, 22 make the top-5. Cutibacterium 
acnes is the most abundant in terms of average per-sample reads in 
eight of the top-10 cities. Of note, a considerable fraction of the reads 
(28–55%) cannot be  assigned to a species using the standard 
Kraken2 database.

In order to assess the reliability of ARGV findings, we compare in 
detail the ARGV detection by KARGVA with respect to that of 
AMRPlusPlus, RGI, and PointFinder. In Figure 5, we calculate ARGV 
counts for all algorithms overall (i.e., total number of ARGVs, 
independently from the class) and per-class. Through the ontology/
annotation mapping described in the methods, we  identify 11 
MEGARes classes that can be  predicted by all three algorithms: 
amingoglycosides; betalactam; fluoroquinolones; fusidic acid; 
lipopeptides; macrolide, lincosamide and streptogramin (MLS); 
mupirocin; oxazolidnone; rifampin; sulfonamides; and tetracyclines. 
For this reason, the per-class comparison must be  limited to the 
classes all algorithms can predict. Of note, while by design KARGVA 
has a single MEGARes class assigned to each prediction, RGI and 
PointFinder might have multiple, i.e., multiple output terms can match 
the same MEGARes class in a sample. We therefore allow RGI and 
PointFinder to count multiple times if the annotation terms of their 
predictions match with more than one class (see 
Supplementary material). Overall, KARGVA finds 43,846 ARGVs, 
~4.8 times more than PointFinder (9,185) and ~6.8 more than RGI 
(6,472). KARGVA retrieves the highest number of ARGVs in 8 out of 
11 considered classes, the exceptions being aminoglycosides (highest: 
PointFinder), MLS (highest: RGI), and Oxazolidinone (highest: 
PointFinder). Although it is not possible to directly transpose the FPS 
from the synthetic datasets to the MetaSUB results, we expect RGI to 
find more false positives then the other two algorithms, and 
PointFinder to be the most conservative. For a reference, AMRPlusPlus 
yields over 100,000 ARGVs that need SNP confirmation; KARGVA, 
RGI, and PointFinder are all well below this value.

We then analyze how KARGVA’s ARGVs relate to the ecological 
characteristics of the samples and the ARG distributions. Using the 

top-10 city set, the per-sample median and mean number of retrieved 
ARGs by AMRPlusPlus (mean range: 2–31.5; median range: 5.18–
71.53) are comparable to the retrieved ARGVs by KARGVA (mean 
range: 2–13; median range: 3.9–91.7), and they are strongly correlated 
(Spearman’s correlation for mean and median, respectively: 0.63; 
0.89). Note that we cannot achieve a perfect replication of the original 
ARG analysis presented by Danko et al. (2021), since the original 
MetaSUB analysis used MEGARes 1.0.1 and Bowtie 2.3.0. Instead, 
we apply filtering criteria on the cities based on sample size, and use 
the most up-to-date AMRPlusPlus 2.0 pipeline, which employs 
MEGARes 2.0 and BWA, along with specific preprocessing 
(Trimmomatic) and post-processing (Bedtools, SNPfinder), finalizing 
with the ResistomeAnalyzer. Nonetheless, there is consistency in the 
overall output, with more positive identifications expected, since 
MEGARes 2.0 contains more genes than the prior release.

By stratifying the distribution of ARG and ARGV findings per city 
and antibiotic class, we check if there are relevant correlations between 
city and class or between classes. Figure 6 shows: the per-city ARG and 
ARGV (panels B and E) distributions, the per-city ARG and ARGV 
(panels A and D) class profiles – defined as the fraction of the per-class 
counts over the total counts of a city – and the per-class correlation 
(Spearman) based on the 10 city profiles. Large fractions of ARG 
counts per-city come from MLS, betalactam, and aminoglycoside 
classes, while the highest fractions of ARGV counts come from 
fluoroquinolones. The class-to-class correlation structures are different 
between ARGs and ARGVs. For instance, fluoroquinolones and 
lipopeptides, as well as MLS and aminoglycosides ARGs are found 
often together, while the correlation is low in ARGVs, where 
fluoroquinolones and aminoglycosides tend to cluster apart from the 
others. Of note, there are differences among the ARG/ARGV classes 
reported. Some resistance classes, such as Oxazolidinone, are not 
present as ARGs, since MEGARes and KARGVA annotations have 
only a partial overlap.

After correlation and density analysis, we fit the RF model to 
predict the number of ARGVs per samples given the city of origin (24 
cities), surface material, type of sample, total reads, and bacterial 
species (5,054 species by Kraken2). Using 250 trees and varying the 
number of attributes considered at each split, performance varies from 
34.6 ± 1.41 (RMSE) and 14.2 ± 1.41 (MAE) with 2 splits per node, to 
12 ± 2.3 (RMSE) to 4.3 ± 0.38 (MAE) with 5,089 splits per node, i.e., 
considering all the variables at each split like in a regular decision tree 
bagging algorithm. Both RMSE and MAE can be considered very high 
compared to the median numbers of ARGVs found in each sample, 
i.e., 2–13 across all cities. In terms of variable importance, the number 
of ARGs holds the highest predictive value, which matches the high 
univariate correlation of this feature with the number of ARGVs, 
followed by bacterial species (top-3 are: Rahnella spp. Y9602, 
Chlamydia spp.  2742.308, and Chlamydia gallinacea); the first 
non-species variable is the number of reads, ranked 24th.

3.4. Data processing speed

In regards to data processing speed, we compared KARGVA 
and AMRPlusPlus on a benchmark obtained by clipping a 
MetaSUB sample (haib17CEM4890_H2NYMCCXY_SL254773) to 
12.5, 6.25, and 3.125 million read pairs (approximatively 8, 4, and 
2 GB). KARGVA processes on average 1GB of FASTQ data in 
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00:02:30 hh:mm:ss with processing times of 00:04:31, 00:09:37, 
and 00:17:52 for, respectively, 2, 4, and 8 GBs inputs. Importantly, 
KARGVA memory usage is extremely contained, requiring less 
than 512 MB RAM regardless of the FASTQ size (with 150–300 bp 
read lengths). We noticed the processing time linearly increasing 
with file size and the difference between processing compressed 
vs. uncompressed files is minimal. On the other hand, 
AMRPlusPlus is about six times slower, with processing times of 
00:31:16, 01:01:31, and 01:59:26 for, respectively, 2, 4, and 
8 GB inputs.

4. Discussion

KARGVA is a fast, multi-platform software for detection of ARGVs 
from metagenomic high-throughput sequencing experiments. Its ARGV 
database integrates multiple sources and is the largest available to date, 
with full linkage to the original sources and their respective ontologies 
for annotation of resistance class and mechanisms. Our method confirms 
the detection of resistance mutations, a step that is not included in 
AMRPlusPlus 2.0 and it is available only for RGI and PointFinder, which 
however require assembled genomes or genes. KARGVA can thus 

TABLE 1 Summary of MetaSUB study data stratified by city (top-10 by number of isolates, others aggregated).

City No. of 
samples

Top-5 species Mean;
Median (IQR) 

no. of ARGs per 
sample

Mean;
Median (IQR) 
no. of ARGVs 
per sample

Median (IQR)
% of unaligned 

reads per sample

Hong Kong 770 Cutibacterium acnes; Bradyrhizobium sp. 

BTAi1; Micrococcus luteus; Cupriavidus 

metallidurans; Janibacter indicus

21.28;

17 (9, 28)

3.9;

2 (2, 3)

33.02 (26.59,42.87)

London 635 Cutibacterium acnes; Staphylococcus simulans; 

Micrococcus luteus; Kocuria rosea;

Staphylococcus aureus

18.57;

4 (1, 14)

23.85;

2 (2, 4)

42.18 (32.85, 48.41)

New York City 493 Cutibacterium acnes; Pseudomonas stutzeri; 

Micrococcus luteus; Stenotrophmonas sp. 

LM091; Kocuria indica

36.92;

20 (9, 41)

25.01;

4 (2, 23)

28.14 (18.42, 43.07)

Ilorin 264 Pseudomonas stutzeri; Cutibacterium acnes; 

Pseudomonas balearica; Bradyrhizobium sp. 

BTAi1; Acinetobacter sp. ACNIH1

57.9;

31.5 (9.75, 75.75)

36.5;

13 (2, 56.5)

43.38 (25.79, 55.16)

Singapore 179 Cutibacterium acnes; Bradyrhizobium sp. 

BTAi1; Micrococcus luteus; Bradyrhizobium sp. 

SK17;

Kocuria rosea

18.58;

9 (4, 17.5)

12.75;

2 (2, 4)

43.19 (32.68, 54.12)

Tokyo 148 Cutibacterium acnes; Bradyrhizobium sp. 

BTAi1; Cupriavidus metallidurans;; 

Bradyrhizobium sp. SK17; Moraxella osloensis;

40.29;

13.5 (6, 32.5)

26.23;

2 (2, 8)

32.53 (22.33, 55.41)

Barcelona 116 Acinetobacter junii; Staphylococcus aureus: 

Enterococcus faecium; Cutibacterium acnes; 

Salmonella enterica

71.53;

10 (2.75, 24.5)

91.7;

4 (2, 15)

36.49 (18.89, 59.49)

Stockholm 110 Cutibacterium acnes; Bradyrhizobium sp. 

BTAi1; Micrococcus luteus; Pseudomonas 

stolaasi;

Kocuria rosea

5.18;

2 (0, 6)

2.07;

2 (2, 2)

54.55 (48.58, 58.99)

Porto 107 Cutibacterium acnes; Staphylococcus simulans; 

Staphylococcus epidermis; Cupriavidus 

oxalaticus;

Staphylococcus aureus

5.8;

2 (0, 6)

23.52;

2 (2, 2)

53.11 (45.77, 61.76)

Fairbanks 95 Cutibacterium acnes; Staphylococcus 

epidermidis; Micrococcus luteus; Moraxella 

Osloensis; Staphylococcus haemoliticus

26.44;

13 (4, 35.5)

7.59;

2.5 (2, 15)

43.55 (25.61, 55.05)

Other 

(aggregated)

841 Pseudomonas stutzeri; Cutibacter iumacnes; 

Bradyrhizobium sp. BTAi1; Acinetobacter 

woffii; Moraxella osloensis

32.58;

11 (4, 25)

20.02;

2 (2, 5)

45.44 (32.16, 53.57)

We report the five most frequent bacterial species from each location (based on per sample prevalence), along with the median percentage of unclassified samples, as found by Kraken 2.0. 
Antibiotic resistance genes (ARGs) are identified using AMRPlusPlus 2.0, while ARGVs are identified using KARGVA. IQR, interquartile range.
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be used to complement ARG characterization software that does not 
handle ARGVs, and in particular with KARGA, with which shares 
strong similarities in the algorithm, command-line options, and 
output formats.

On semi-synthetic data, KARGVA has high accuracy in presence of 
non-resistance gene mutations, high error rates, and gene 
rearrangements. The multiple matching strategy increases ARGV 
detection accuracy, can report ARGVs that share high genetic similarity, 
and deal with configurations of resistance mutations not reported in 
literature. For instance, if a gene G develops resistance either through 
mutations {A, B, C} or {B, C, D}, and one sample presents with {A, C, D}, 
its k-mers align to G and pass the statistical assessment. However, one 
possible issue with this approach is that – even if sequences are collapsed 
– the ARGV database can still store the same ARGV twice or more if 
there are different laboratory-confirmed configurations of resistance 
mutations, e.g., using the example above, there would be two entries of 
for gene G considering both {A, B, C} and {B, C, D} mutations separately.

We also show that KARGVA presents very low false positive rates 
with respect to bacterial genes not necessarily involved in 
antimicrobial resistance, as well as specific mutant chromosomal 
genes that were found in antibiotic-susceptible samples. Although the 
semi-synthetic data are designed in a rigorous manner, the availability 
of standardized benchmark datasets from real experiments is 
auspicated, as discussed by Marini et al. in regards to ARG classifiers 
(Marini et al., 2022).

A limitation of the software is that the data structures, from a 
computational point of view, are not memory efficient. While the 
triple hash table design guarantees most search operations in 
constant time, there is considerable memory overhead in the 
padding of Java types/classes and legacy data structures (e.g., the 
String type and HashMap class). Also, the file parsing/writing is 
made with a standard BufferedReader and BufferedWriter, simply 

optimizing the buffer size, and the whole program is implemented 
serially. The KARGVA database is small, therefore the impact on 
processing times and memory usage is minimal, and KARGVA is 
about 6.5 times faster than AMRPlusPlus, independently from the 
FASTQ file size. Nonetheless, since new antibiotics and new 
ARGVs are discovered every year, it is advisable to foresee more 
efficient parsing and k-mer handling, considering also succinct 
data structures and parallelization (Marchet et al., 2020). Also, 
porting the software to mobile architectures – iOS or Android, 
and ARM chipsets – is warranted, given the growth of 
miniaturized, portable, point-of-care sequencing, like Nanopore 
MinION (Oliva et al., 2020). Since KARGVA is written in Java, the 
porting to mobile should not be a challenge (although consumer-
grade applications have 512 MB or 1 GB memory limit depending 
on the operating system version), aside needs of optimization, and 
device overheating issues (Milicchio and Prosperi, 2021). The 

FIGURE 4

Average per-sample frequency of bacterial reads, considering the 
top 10 cities per number of sample, and the top-5 species per city. 
The color key represents the prevalence in [0, 1] scale of each 
species.

FIGURE 5

ARGVs detected in the MetaSUB metagenomics datasets (n = 3,758 
with available metadata) by KARGVA, RGI, PointFinder, both overall 
and per class.
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FIGURE 6

Correlation heatmaps (fraction of counts per antibiotic resistance class over the city total) and density plots of antibiotic resistance genes (ARGs, Panels 
A–C) and ARG variants (ARGVs, Panels D–F), among the top-10 cities and resistance types using the MetaSUB annotated samples (n = 2,917).

periodic discovery of new ARGVs not only impacts algorithmic 
design, but also requires development legacy, by maintaining the 
curation of data repositories and of software releases. KARGVA 
utilizes three different sources – CARD, NDARO, MegaRES – that 
are strongly supported. For instance, MegaRES has been recently 
updated to v.3.0. with a more advanced characterization of ARGVs 
(Bonin et  al., 2022), including SNP confirmation. The new 
MegaRES is now being deduplicated and merged with the other 
sources by the KARGVA developers for future release.

In the re-analysis of the MetaSUB data presented in Danko 
et al. (2021), we confirm authors’ findings relative to percentages 
of unclassified reads (41% with Kraken2, in line with our results). 
We also confirm that – as ARG and ARGV databases grow – there 
is the expected increase in detection of antimicrobial resistance in 
the samples. The ARGV profiles retrieved by KARGVA seem more 
similar across cities than the ARG profiles by AMRPlusPlus. 
We  find a strong correlation between number of ARGs and 
ARGVs found among samples; however, the median number of 
retrieved ARGVs is much larger than ARGs, even though ARG 
databases contain more gene entries. KARGVA substantially 

improves the ARGV finding rate with respect to other algorithms 
in the majority of the considered classes.

In accordance with Danko et  al. (2021), we  find very low 
concordance between geographic distance among cities and 
distribution patterns of ARG/ARGVs, Further analysis adding the 
surface layer does not shed more insights, since there is high 
heterogeneity in the ARGV city-surface profile pairs. We cautionary do 
not want to draw any conclusion regarding ARGV patterns among 
cities, as we expect major unmeasured confounders, and we do not 
have a reference evolutionary history. The same in fact holds also if 
analyzing ARGs. To our knowledge, there are no established models to 
draw evolutionary relationships for metagenomes. Phylogenetic and 
phylodynamic trees at the species level could be inferred by assembling 
core genomes, possibly excluding any ARG or resistance mutation to 
remove bias from convergent evolution, although findings might not 
be insightful given that samples have been collected at the global level 
within a small time period –usually such analyses are meaningful for 
regional outbreaks (Prosperi et al., 2013). Nonetheless, Danko et al. 
(2021) were able to predict successfully geographic origin of samples 
using machine learners. Besides city-specific trends in taxa prevalence, 
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ARG/ARGV patterns among cities might be associated to a plethora of 
factors, from population habits (diet, hygiene), ecological (cleaning 
schedules of public transportation system, characteristics of the users, 
e.g., youth, office workers, commuters from rural areas), public health 
practices (antibiotic usage guidelines and stewardship), in a mixture of 
common causes, mediators, and common effects for 
antibiotic resistance.

In conclusion, KARGVA provides reliable characterization of 
ARGVs, suitable for large metagenomics studies as well as targeted 
whole genome sequencing, and fills a current toolset and operational 
gap in a field where only a few limited options are available, with high 
potential for translational applications.
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