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Introduction: Chinese indigenous chicken breeds are widely used as food in 
China but their slow growth rate and long farming cycle has limited their industrial 
production.

Methods: In the current study we examined whether the market weights of native 
chicken breeds were related to specific cecal bacteria, serum metabolites and 
inflammatory cytokines. We examined cecal bacterial taxa using 16S rDNA analysis 
along with untargeted serum metabolites and serum inflammatory cytokines.

Results: We found that the cecal microbiota could explain 10.1% of the individual 
differences in chicken weights and identified key cecal bacterial genera that 
influenced this phenotype. The presence of Sphaerochaeta spp. improved growth 
performance via bovinic acid metabolism. In contrast, Synergistes and norank_f_
Desulfovibrionaceae had a negative effect on growth by inducing expression of 
the inflammatory cytokine IL-6.

Discussion: We were able to link specific bacterial genera with growth promotion 
in chickens and this study will allow further development of their use as probiotics 
in these animals.
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Introduction

Growth performance is an important economic trait for broiler chickens and antibiotics 
supplied in feed have been traditionally used to increase the market weight of these animals. 
However, these types of intensive antibiotic-use practices have accelerated the development of 
antibiotic resistance in bacteria and this has become a major public global health concern (Wang 
et al., 2019). Therefore, many countries including China have prohibited the use of antibiotics as 
growth promoters in food animal production and scientists are committed to developing antibiotic 
alternatives for animal growth promotion (Zhang et al., 2022a). One promising alternative is the 
use of probiotics or associated metabolites derived from the chicken gut microbiome (Ayalew et al., 
2022). The gut microbiota that are present in animal gastrointestinal tracts form a diverse, complex 
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and dynamic ecosystem composed of tens of millions of microorganisms 
(Glendinning et al., 2019). These microorganisms play essential roles in 
maintaining animal health and their primary site of residence in birds 
is the cecum (Cui et al., 2021; Zhang et al., 2022b).

There is direct evidence that the cecal microflora of chickens has 
a positive impact on growth performance. For example, sex differences 
in chicken growth performance were related to glycan and lipid 
metabolic functions of cecal bacteria (Cui et al., 2021). Another study 
demonstrated that transplantation of fecal microbiota and prebiotic 
supplementation promoted daily weight gains for chickens (Li et al., 
2016). In particular, the use of the probiotic Lactobacillus plantarum 
P-8 in broiler diets increased adsorption of recalcitrant polysaccharides 
that were converted to a nutrition source and thus improved feed 
efficiency (Borda-Molina et al., 2018). Specific bacteria have also been 
linked to chicken growth traits and these include Microbacterium spp. 
and Sphingomonas spp. in Turpan × White Leghorn hybrids that were 
beneficial to chicken growth while the presence of Slackia spp. 
promoted a growth-inhibiting effect on chickens (Zhang et al., 2022b). 
Studies such as these have indicated that gut microbiota is a potential 
target for regulating growth performance.

Despite established relationships between gut the microbiota and 
chicken growth performance, mechanistic details have yet to 
be formulated. However, intestinal inflammation due to colonization by 
bacterial pathogens has been linked to poor growth performance and 
probiotic treatments can counter these effects (Zhang et al., 2022a). 
Regulation of fat metabolism and improved growth performance have 
also been directly linked to specific cecal microbiota (Zhang et  al., 
2022b). However, more precise mechanistic details are lacking because 
metabolic functional pathway assignments for the key microbiota were 
based on 16S rDNA and metagenomic sequencing that predict, but do 
not prove, functional relationships (Wen et al., 2019; Elokil et al., 2020; 
Darwish et al., 2021; Wen et al., 2021). In contrast, metabolomics have 
been used to fill the information gap between gene and phenotype 
although metabolomics has not been directly applied to chicken growth 
performance (Wu et al., 2018; Liu et al., 2021). Therefore, in the current 
study, we  integrated and interpreted metabolomic information to 
construct a metabolic network of chicken growth traits to gain a new 
perspective and identify underlying biological processes. 
We hypothesized that specific cecal microorganisms in chickens can 
regulate host serum metabolites as well as inflammatory cytokine 
production and thereby affect market weight. We used Qiandongnan 
Xiaoxiang chickens, Guizhou yellow broilers and Wumeng black-bone 
chickens as examples of the most common indigenous chickens used 
for food production in Guizhou Province, China (Xu, 2018). Our goal 
was to link key cecal bacterial taxa to chicken market weight and 
integrate this with serum metabolomic and serum cytokine analyses to 
identify phenotypic regulatory mechanisms. Our results can be used to 
guide design of microbial or probiotic intervention targets that regulate 
market weight. These will help establish new options for the 
development of antibiotic alternatives.

Materials and methods

Animals and sample collection

Two cohorts of indigenous chickens in Guizhou Province, 
China were collected in this study and the experimental cohort 

consisted of 60 Qiandongnan Xiaoxiang chickens that were raised 
to 160 ± 3 days old and 12 with the highest (1.78 ± 0.12 kg, 6 of each 
sex) and the lowest (1.02 ± 0.10 kg, 6 of each sex) body-weights were 
selected for further study. In the validation trail, 79 chickens 
including 55 Guizhou yellow broilers (1.89 ± 0.28 kg, n  = 55, 26 
males and 29 females) and 24 Wumeng black-bone chickens 
(1.61 ± 0.22 kg, 11 males and 13 females) were collected as validation 
cohorts. All chickens in the same cohort were raised in the same 
chicken house and were provided identical commercial diets with 
ad libitum access to water and feed and were managed in the same 
way. Chickens were slaughtered at the age of 160 ± 3d and antibiotics 
were not used for 1 month prior to sample collection. We collected 
24 each of blood and cecal content samples from the experimental 
cohort and 79 each from the validation cohort 
(Supplementary Table S1). Serum was collected from blood 
following centrifugation using standard procedures. Since serum 
was failed to be obtained from blood samples of three Qiandongnan 
Chickens, 21 serum samples (high-market-weight group, n = 12; 
low-market-weight group, n = 9 ) were involved for metabolomics 
analysis. Cecal content samples were collected at the same position 
of the intestinal tract and immediately frozen in liquid nitrogen for 
transport to the laboratory and then stored at −80°C.

Serum and cecal content samples from the experimental cohorts 
were employed for metabonomic and microbiota analysis using ultra-
high-performance liquid chromatography—tandem mass 
spectrometry (UPLC-MS/MS) and 16S rDNA gene sequencing, 
respectively. Serum and cecal content samples from the validation 
cohort were used for cytokine determinations and microbiota analysis 
by enzyme-linked immunosorbent assay (ELISA) and 16S rDNA gene 
sequencing, respectively.

DNA manipulations and sequencing

Total microbial DNA were extracted from 103 cecal content 
samples using the Magnetic Soil and Stool DNA Kit (Tiangen, Beijing, 
China) according to the manufacturer’s protocol. DNA concentrations 
and purity were determined by UV spectroscopy using a NanoDrop-
1000 instrument (Thermo Fisher, Pittsburg, PA, United States) and 
0.8% agarose gel electrophoresis. The V3–V4 region of the bacterial 
16S rRNA gene was amplified with the primer pair 338F(5′-
ACTCCTACGGGAGGCAGCA-3′)and 806R(5′-GGACTACHVGG 
GTWTCTAAT-3′) that were combined with adapter and barcode 
sequences. PCR amplicons were quantified using Quant-iT dsDNA 
HS reagent (Thermo Fisher) and pooled.

High-throughput sequencing analysis of bacterial rDNA genes 
in the purified and pooled samples were performed on an Illumina 
Hiseq  2500 platform (Illumina, San Diego, CA, United  States). 
Trimmomatic software (version 0.33; Bolger et al., 2014) was used 
to filter out primers, low-quality and ambiguous sequences. Cut 
adapt (version 1.9.1; Lindgreen, 2012) was used to identify and 
remove primer sequences. The resulting paired-end reads from the 
clean data sets were assembled into tags using FLASH (version 
1.2.11; Magoc and Salzberg, 2011). The sequence depth of each 
sample was rarefied to 75,007 tags to avoid statistical bias resulting 
from an uneven sequencing depth. USEARCH (version 10.0; 
Edgar, 2013) was employed to cluster tags of >97% identity into 
operational taxonomic units (OTU) and the OTU filtering 
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threshold was set at 0.005% (Bokulich et al., 2013). RDP classifier 
(version 2.2; Wang et  al., 2007) was used to produce OTU 
taxonomic assignments and representative sequences of each OTU 
were compared using the Silva reference database (Release 132, 
http://www.arb-silva.de; Quast et al., 2013) for OTU annotations.

Determination of serum metabolomic 
profiles in Qiandongnan Xiaoxiang 
chickens

An untargeted metabolomic analysis of serum samples from the 
Qiandongnan Xiaoxiang chicken were conducted by a commercial 
company (Shanghai Biotree Biotech, Shanghai, China). The analyses 
were performed using UPLC-MS/MS as previously described (Dunn 
et al., 2011; Cai et al., 2015; Wang et al., 2016). In brief, a Vanquish 
high-performance liquid chromatography (HPLC) system (Thermo 
Fisher) equipped with a BEH amide column (2.1 mm × 100 mm, 
1.7 μm) coupled to an Orbitrap MS Q Exactive HFX mass 
spectrometer (Thermo Fisher) was used for separations. The mobile 
phase consisted of (Solvent A) 25 mM ammonium acetate and 25 mM 
ammonia hydroxide in water pH = 9.75 and (Solvent B) acetonitrile. 
The auto-sampler temperature was 4°C and the injection volume was 
2 μL. The QE HFX mass spectrometer was used for its ability to 
acquire MS/MS spectra on the information-dependent acquisition 
(IDA) mode and was controlled by the Xcalibur acquisition software 
supplied with the instrument. In this mode, the full scan MS 
spectrum was continuously evaluated. The ESI source conditions 
were set as follows: sheath gas flow rate, 30 Arb; Aux gas flow rate, 25 
Arb; capillary temperature, 350°C; full MS resolution, 60,000; MS/
MS resolution, 7,500; collision energy, 10/30/60 in NCE mode, spray 
voltage, 3.6 kV (positive) or −3.2 kV (negative).

The raw data were converted to the extensible markup language 
(mzXML) format using ProteoWizard and processed with an 
in-house program developed using R language and based on XCMS 
for peak detection, extraction, alignment and integration (Smith 
et al., 2006). An in-house MS2 database (BiotreeDB) was used for 
metabolite annotations with a set cutoff of 0.3. Metabolites were 
identified using the HMDB database1 and endogenous metabolites 
were reserved for further construction of metabolite feature modules. 
The internal standard normalization method was employed in this 
data analysis. The final dataset containing peak numbers, sample 
names and normalized peak areas were imported into SIMCA 16.0.2 
(Sartorius Stedim Data Analytics AB, Umea, Sweden) for multivariate 
analysis (Wiklund et al., 2008).

Serum cytokine measurements from 
Guizhou yellow broilers and Wumeng 
black-bone chickens

Commercial ELISA kits (Ziker Biological Technology, Shenzhen, 
China) were used to quantify levels of INF-γ, IL-1β, IL-5, IL-6, IL-17, 
and IL-22 in the sera of the 79 chickens in the validation cohorts 

1 https://hmdb.ca/

according to the manufacturer’s protocol. Detection limits were  
5 pg./mL (IFN-γ), 40 pg./mL (IL-1β), 5 pg./mL (IL-5), 2 pg./mL 
(IL-6), 3 pg./mL (IL-17), and 2 pg./mL (IL-22).

Statistical analyses

Calculation and comparation of α- and 
β-diversity of cecal microbiota

OTUs with relative abundances >0.01% that were present in >10% 
of individuals were used for further analysis. Mothur software (version 
1.31.2; Schloss et al., 2009) was employed to calculate the α-diversity 
of OTUs including Shannon, Simpson, Chao1, Faith’s phylogenetic 
diversity (PD) and ACE indices (Shannon, 1948; Chao, 1984; Faith, 
1992). β-diversity of chicken cecal microbial community between 
high-and low-market-weight chicken groups was calculated using 
principal coordinate analysis (PCoA) based on unweighted UniFrac 
distances using QIIME (Caporaso et al., 2010).

Construction of microbial co-abundance groups
OTUs whose relative abundance was >0.05% and were present in 

>20% of all samples were selected for co-abundance group (CAG) 
construction. SPIEC-EASI package in R was employed to cluster 
CAGs. Interactions between OTUs were calculated based on their 
abundances using the SparCC algorithm with 100 bootstrap replicates 
followed by computing correlation matrices (Friedman and Alm, 
2012). The Spearman’s rank correlation coefficients of pairwise OTUs 
>0.55 were used to classify CAGs. The correlation coefficient values 
were converted to a correlation distance (1-correlation coefficient 
value) and the OTUs were clustered into CAGs using the Ward 
clustering algorithm with a ‘hclust’ function in the SPIEC-EASI R 
package. Permutational MANOVA was applied to detect the statistical 
significance of each CAG clustering using 999 permutations with 
Bray–Curtis dissimilarity. The CAG was deemed acceptable when 
p <  0.005. Wilcoxon rank sum tests were performed to identify 
differences of relative abundance at the CAG level between the high-
market-weight chickens and low-market-weight chickens. The CAG 
network was visualized in Cytoscape V. 3.7.1 (Lopes et al., 2010).

Identification of cecal microbiota associated with 
market-weight in the validation cohorts using 
two-part model

A two-part model was used to identify OTUs which that were 
linked with chicken market-weight in the validation trail (Fu et al., 
2015). Specifically, a binomial analysis was performed to determine 
associations between the presence or absence of an OTU and market-
weight. For a particular OTU, each sample possessed 2 binary features 
(b) that was coded as “1” and “0” when they were detected or not, 
respectively, to determine correlations between the presence of the 
microbe and the market-weight. The binary model was described as 
y = β1 b + e where y, β1, b and e represented the market-weight per 
individual, the estimated effect for the binary effect, a binary feature 
and the residuals, respectively. Secondly, the correlation between OTU 
abundance and market-weight were analyzed using the quantitative 
model but only the subjects that contained the cecal microbiota 
associated with market-weight identified in the binary model were 
used. The quantitative model was expressed as y = β2 q + e, where q 
represented microbial abundance which are usually transformed into 
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log10, β2 represented the estimated effect value of the quantitative 
model and e represented the residual. Combined with the effects of 
the binary model and the quantitative model, a meta-p-value was 
calculated using an unweighted Z-method. According to the 
minimum p-value for the binary model, quantitative model and meta-
analysis, the corresponding allocation coefficient and final p-value was 
obtained. The Z-value was obtained from the Z distribution coefficient. 
Z > 0 represented a positive association between microbe and 
phenotype value and Z < 0 represented a negative association.

Other statistical analyses
We normalized the metabolite dataset though log10 transformation 

of the m/z values and then the module was constructed using a soft 
threshold Pearson correlation analysis (Langfelder and Horvath, 2008). 
This combined a topological overlap distance metric and average 
hierarchical clustering using weighted correlation network analysis 
(WGCNA) in the R package. The Matthews Correlation Coefficient 
(MCC) method of cytoHubba plug-ins in Cytoscape was used to 
identify the hub bacteria in the cecal microbiota network (Chin et al., 
2014). LDA Effect Size (LEfSe) analysis2 was conducted to identify the 
cecal microbiota and serum metabolites that showed significant 
differences between high-and low-market-weight chicken groups 
(p < 0.05 and LDA > 2.0). All p-values of the multiple tests involved in 
this study were corrected by the Benjamini–Hochberg method. A total 
of 100 cross-validation tests were performed as previously described (Fu 
et al., 2015) to assess the proportion of cecal microbiota explaining the 
individual variation of market-weight. A random forest model (Ntree = 
1,000) was employed to determine which OTUs could be  used as 
microbial markers to distinguish high-and low-market-weight chickens 
(Guo et al., 2020). Spearman correlation analysis was used to identify 
relationships between cecal microbiota and serum metabolites or 
inflammatory cytokines.

Results

Experimental cohort (Qiandongnan 
Xiaoxiang chickens)

Differences in cecal microbiota diversity between 
high- and low-market-weight chickens

An analysis of 24 cecal content samples of chickens from the 
experimental cohort generated 1,800,168 high-quality reads (75,007 
reads per sample) and included 727 OTUs that were clustered 
according to 97% sequence identity. These OTUs were annotated to 
16 phyla and 12 were present in all samples and 6 were present at a 
relative abundance >1%. The latter included Bacteroidetes (48.4%), 
Firmicutes (36.9%), Proteobacteria (5.8%), Synergistetes (2.6%), 
Spirochaetes (1.0%) and Actinobacteria (1.6%; Figure 1). The 5 most 
important OTUs for the hub microbiota of the Qiandongnan 
Xiaoxiang chickens were all members of the Ruminococcaceae family 
(Figure  2A). We  then compared the α-and β-diversity of cecal 
microbiota between chickens with high-and low-market-weights. 
The α-diversity analysis indicated that scores for the ACE (Wilcoxon 

2 http://huttenhower.sph.harvard.edu/galaxy

rank sum test, p = 0.03), Shannon (p = 0.01) and PD (p = 0.005) 
indices in the high-market-weight chickens were significantly 
greater than those of low-market-weight chickens (Figures 2B,C; 
Supplementary Figures S1A–C). In contrast, β-diversity comparisons 
using PCoA indicated no significant differences between high-and 
low-market-weight chickens (Figure 2D).

One of our goals was the identification of cecal microbiota clusters 
that were related to market-weight. The gut microbiota is a huge and 
complex micro-ecosystem and the microbiota can directly or indirectly 
affect host physiological functions in the form of co-abundance groups 
(CAGs; Angulo et al., 2019). We therefore clustered the OTUs into 
CAGs based on their interaction network and obtained 261 OTUs after 
filtering that were clustered into 30 CAGs (Figure 3). We compared the 
average relative abundance of each CAG between high-and low-market-
weight chickens and found that only the abundance of CAG17 (p = 0.04) 
was significantly different between the two groups and it was enriched 
in high-market-weight chickens. There were 5 OTUs in CAG17 and all 
belonged to the Clostridiales order (Supplementary Tables S2, S3). In 
particular, OTU234, OTU159 and OTU99 were annotated to 
Eubacterium, Subdoligranulum, and Peptococcus, respectively while 
OTU27 and OTU908 could not be  annotated at the genus level. 
Significantly, differences in the average relative abundance of CAG26 
between high-and low-market-weight chickens was near the level of 
significance (p = 0.08). CAG26 was a Ruminococcaceae-dominated CAG 
in which 8 / 11 OTUs belonged in this family that was enriched in high-
market-weight chickens. OTU73, OTU106, OTU228, OTU829, 
OTU1042, and OTU79 were annotated to Ruminococcaceae UCG-005, 
Ruminococcaceae UCG-010, Ruminococcaceae UCG-014, 
Ruminiclostridium, Negativibacillus and Oscillospira, respectively. 
OTU950 and OTU136 were not annotated to specific bacteria at the 
genus level. These data suggested a beneficial effect of Ruminococcaceae 
on growth performance in chickens via the interaction network. The 
remaining 3 OTUs in CAG26 were OTU137, OTU76 and OTU1666 
that were annotated to CHKCI001 in Lachnospiraceae, 
Christensenellaceae and WCHB1-41, respectively.

Bacterial species with differential abundance 
between high- and low-market-weight chickens

We further identified cecal microbiota members that were enriched 
in high-or low-market-weight chickens at the genus level. LEfSe analysis 
indicated that 17 genera possessed significant differences between the 
two groups. In particular, Treponema_2 and Succinatimonas were 
enriched in the low-market-weight chickens while Ruminococcaceae 
UCG-009, Ruminococcaceae UCG-004 and Ruminiclostridium 5 were at 
high abundance levels for the high-market-weight chickens and 
consistent with the CAG results above. The high-market-weight group 
also contained Oribacterium, GCA-900066575 Defluviitaleaceae 
UCG-011, uncultured_bacterium f Peptococcaceae (order Clostridiales) 
and Odoribacter, Paraprevotella and uncultured bacterium f Rikenellaceae 
(order Bacteroidales). The other 5 genera enriched in the high-market-
weight chickens were represented by the orders Brachyspira, 
Pseudomonas, CHKCI002 and bacterium enrichment culture clone 
R4-41B and Sphaerochaeta (Figure 4A).

We applied a random forest classification analysis to identify the 
biomarker OTUs that might accurately distinguish the high-and 
low-market-weight chickens. We found that the 10 most prevalent 
OTUs could distinguish high-market-weight chickens from 
low-market-weight chickens with an accuracy of 97.92% (AUC value; 
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Figures 4B,C). This group of 10 included 5 OTUs annotated to the 
Ruminococcaceae (OTU176, OTU159, OTU950, OTU933, and 
OTU329) annotated to Ruminiclostridium 5, Subdoligranulum, 
Ruminococcaceae, Faecalibacterium and GCA-900066225, respectively. 

It is noteworthy that OTU176 (Ruminiclostridium 5) possessed the 
highest score as a marker and this OTU also significantly differed 
between high-and low-market-weight chickens in the LEfSe analysis 
(see above).

FIGURE 1

Sankey diagram depicting the bacterial composition of cecal content samples from Qiandongnan Xiaoxiang Chickens at 160 ± 3  days of age (n = 24). 
The colored columns from left to right represent the proportions of bacterial taxa from phylum to genus level.

A B

D

C

FIGURE 2

Hub cecal microbiota of Qiandongnan Xiaoxiang chickens at 160 ± 3  days of age and the difference of α-and β-diversity between chickens in high-  
(H group, n = 12) and low-market-weight (L group, n = 12) groups. (A) The 20 most abundant OTUs in the cecal microbiota network ranked using the 
Matthews Correlation Coefficient (MCC) method. Comparisons of (B) ACE and (C) PD indices between high-and low-market-weight chickens. 
(D) Principal coordinates analysis (PCoA) of microbial communities in cecal content samples based on unweighted UniFrac distances between  
high-and low-market-weight chickens.
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Differential metabolite profiles between high- 
and low-market-weight chickens

A total of 6,944 endogenous metabolites were obtained under 
ESI-and ESI+ modes and following relative standard deviation 
de-noising and annotation, 378 metabolites remained. PCA analysis 
indicated significant differences in the global metabolome between 
high-and low-market-weight chickens (Figure 5A). Specifically, 58 
metabolite features were identified as market-weight-related 
(p < 0.001, FDR < 0.2) and 35 metabolites were enriched in serum 
samples of high-market-weight chickens while 23 metabolites were 
enriched in low-market-weight chickens (Supplementary Table S4).

Correlations between market-weight-related bacteria and host 
serum metabolites indicated that in the high-market-weight group, 
the enriched metabolites were dominated by nucleotide metabolites 
including primary and secondary bile acid metabolites [clustered in 
the turquoise (17/35 metabolites) and brown modules]. We  also 
identified several significant correlations between metabolite 
modules and market-weight-related bacteria at the genus level. The 
turquoise module was found to be  positively correlated with 
Pseudomonas (p = 0.01) and Ruminococcaceae UCG-004 (p = 0.03) 
while negatively correlated with Treponema 2 (p = 0.04). The brown 
module comprising primary and secondary bile acid metabolites was 

positively correlated with Pseudomonas (p =  0.04) but negatively 
correlated with Treponema 2 (p = 0.01). Low-market-weight related 
metabolites were primarily clustered in the blue and gray modules. 
No differential bacteria were related with blue module of metabolites 
while the gray module was significantly negatively correlated with 
Ruminococcaceae UCG-004 (p = 0.05; Figures 5B, 6).

Correlations between differential metabolites 
and differential cecal microbiota

We further explored whether the differential cecal microbiota 
possessed different metabolite profiles between high-and low-market-
weight chickens. The results of differentiation analysis of serum 
metabolites showed that 58 differential metabolites were determined. 
And the results of a correlation analysis based on Spearman 
coefficients employed for 58 different metabolites and 17 different 
cecal microbiota showed that the genus Ruminiclostridium 5 was 
significantly positively correlated with 10 metabolites including the 
amino acids prolylhydroxyproline, 4-hydroxyproline, homo-L-
arginine as well as lipids but significantly negatively correlated with 
adrenochrome. Ruminococcaceae UCG-011 was significantly 
correlated with 27 metabolites and might be one of the reasons the 
Ruminococcaceae were the hub cecal microbiota of Qiandongnan 

FIGURE 3

Co-abundance groups (CAG) in cecal microbiota based on the relative OTU abundance in Qiandongnan Xiaoxiang chickens at 160 ± 3  days of age 
(n = 24). A total of 261 OTUs were clustered into 30 CAGs using permutational multivariate analysis of variance. Asterisks (*) represent significant 
differences of relative OTU abundance in CAGs between high-and low-market-weight chickens. Node sizes are proportional to the average 
abundance of each OTU. The lines connecting two nodes represent SparCC correlations between the connected nodes with the line width 
representing the correlation magnitude. Brown and purple lines represent significantly positive and negative correlations between two OTUs, 
respectively, using an absolute value of correlation coefficient  > 0.55. Unconnected nodes were omitted.
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Xiaoxiang chickens. Interestingly, we found that Treponema 2 was 
significantly enriched in the low-market-weight chickens and was also 
significantly positively correlated with the sex hormone pregnanetriol 
(Figure 7; Supplementary Table S5).

Validation cohort (Guizhou yellow and 
Wumeng black-bone chickens)

Validating correlations of cecal microbiota and 
market-weight

We further verified associations between cecal microbiota and 
market-weight using the validation cohort of 55 Guizhou yellow and 
24 Wumeng black-bone chickens (Supplementary Table S6). The cecal 
microbiota accounted for 10.1% of the variation among individuals 
with different market-weights at threshold of 5 × 10−4 (Figure 8A-B; 
Supplementary Table S7). We  then corrected for two influencing 
factors (breed and sex) and a two-part model was used to identify the 

cecal microbiota associated with market-weight. We  found 15 
bacterial taxa were significantly correlated with market-weight and 
Sphaerochaeta (LDA = 2.53, p = 0.006), Ruminococcus (LDA = 1.86, 
p = 0.031), Marvinbryantia (LDA = 1.70, p = 0.044) and Paludicola 
(LDA = 1.69, p = 0.045) were significantly and positively correlated 
(Supplementary Table S8). Sphaerochaeta was also enriched in the 
cecal microbiota of the high-market-weight chickens in the 
experimental cohort and was significantly associated with the 
conjugated linoleic acid, bovinic acid. Consistent results were obtained 
for Succinatimonas in both experimental cohort and validation cohort. 
Succinatimonas was enriched in the cecal microbiota of low-market-
weight chickens and was significantly positively correlated with 
deoxyuridine (r =  0.63, p =  0.002) and α-linolenic acid (r =  0.43, 
p =  0.049). Additionally, 10 microbiotas including norank_f_
Desulfovibrionaceae (LDA = −4.67, p <  0.001), Parasutterella 
(LDA = −3.25, p <  0.001) and Eubacterium nodatum group 
(LDA = −2.27, p = 0.012) were significantly negatively correlated with 
market-weight in the validation cohort (Figure 8C).

A

C

B

FIGURE 4

Specific OTUs of cecal microbiota related to market-weights of Qiandongnan Xiaoxiang chickens at 160 ± 3  days of age (n = 24). (A) LEfSe analysis of 
cecal microbiota members associated with H group and L group chickens at the genus level. (B) Receiver operating curves (ROC) for H and L group 
chickens. AUC = 97.92, 95% CI = 93.31%–100%. (C) The 10 most abundant OTU biomarkers that could discriminate H and L group chickens identified 
using the Random Forest model. Biomarker OTUs were ranked in descending order of importance relative to the model accuracy.
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Relationships between inflammatory cytokines 
and market-weight

We also examined whether market-weight was affected by the 
presence of the inflammatory cytokines INF-γ, IL-1β, IL-5, IL-6, IL-17, 
and IL-22 (Broom and Kogut, 2018; Sun et  al., 2018). Correlation 
analysis indicated that except for IL-22 (correlation coefficient 0.052), 

the other 5 cytokines were negatively correlated with market-weight 
and only IL-6 was significant with correlation coefficients of −0.235 
(p = 0.037). The cecal microbiota norank_f_Desulfovibrionaceae 
(r =  0.33, p =  0.003) and Synergistes (r =  0.23, p =  0.04) that were 
negatively correlated with market-weight were extremely significantly 
correlated with IL-6 (Figure 8D; Supplementary Table S9).

A B

FIGURE 5

Differentiation of host serum metabolite profiles between H-group (n = 12) and L-group (n = 9) Qiandongnan Xiaoxiang chickens at 160 ± 3  days of age. 
(A) PCA plot of serum metabolite profiles (B) Co-occurrence network of serum metabolite features. The metabolites (nodes) are colored according to 
WGCNA module colors. Only those correlations with |r| > 0.2 between two edges are presented.

FIGURE 6

Correlations between metabolite modules and weight-related bacteria in Qiandongnan Xiaoxiang chickens at 160 ± 3  days of age (n = 21). Each box of 
the matrix indicates the correlation between one metabolite module and a weight-related bacterial taxon at the genus level. The correlation 
coefficients (r) and p-value are listed in the small boxes (*p < 0.05, **p < 0.01, ***p < 0.001). The color gradient represents the values of correlation 
coefficients (red for positive and blue for negative correlations).
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Discussion

The prohibition of antibiotics as growth promotors in food 
animals provides the impetus to develop alternative products to 
control gut bacterial pathogens. The gut microbiota is a key driver of 
growth performance in agricultural animals so these microorganisms 
and their metabolites are important candidate sources of probiotics 
and prebiotics (Ramayo-Caldas et al., 2016; Myer et al., 2017). Their 
use as growth promoters do not contribute to the development and 
spread of antibiotic resistance (Ma et al., 2022). In the current study, 
our experimental cohort (60 Qiandongnan Xiaoxiang chickens) and 
validation cohorts (24 Wumeng black-bone and 55 Guizhou yellow 
chickens) were established to profile phenotypic characteristics of the 
cecal microbiota and link these with market-weight. These indigenous 
breeds are important food sources in Guizhou, China and possess 
distinct phenotypic characteristics. Our goal was to exploit these 
differences and identify common beneficial bacteria that would 
be probiotic candidates.

The Qiandongnan Xiaoxiang chicken was selected for its superior 
meat flavor, small size and strong adaptability. The Guizhou Yellow 
broiler is a Chinese hybrid line (Weining ♀ × New Hampshire × 
Plymouth Rock ♂) that possesses high market weights and tender 
meat while the Wumeng black bone chicken is a meat and medicinal 
chicken breed that is listed in the Poultry Genetic Resources in China 
and possesses black tissues and bones. These indigenous chickens are 
popular with Guizhou consumers so they were chosen as the research 
objects in this study.

We found that Bacteroidetes, Firmicutes, Proteobacteria, 
Synergistetes, and Spirochaetes were the predominant cecal microbiota 
of Qiandongnan Xiaoxiang chickens. These results were similar to 
findings using the commercial breed Guangdong Yellow Broiler 
chickens except Actinobacteria replaced Synergistetes (Wen et al., 2019). 

The five most important OTUs of hub cecal microbiota in 
Qiandongnan Xiaoxiang chickens were annotated to the 
Ruminococcaceae and implicates this family as a core member of the 
cecal microbiota. Ruminococcaceae abundance was also significantly 
greater in high-market-weight chickens and this data combined with 
the CAG results linked this family to enhanced growth performance. 
Ruminococcaceae is one of the earliest described bacteria of the bovine 
rumen and are highly efficient carbohydrate decomposers and central 
to the degradation of resistant starch via fermentation to glucose and 
xylose (Pal et  al., 2021). We  also found that Ruminococcaceae 
UCG-004 was significantly correlated with 27/58 differential 
metabolites and 10 of these were fatty acid metabolites (listed in 
Figure 7 with the prefix PC). Therefore, Ruminococcaceae in the cecum 
might also perform other physiological functions in the basic life 
activities of indigenous chickens. This family is one of the few known 
microorganisms that can transform primary bile acids into secondary 
bile acids (Jiang et al., 2022) and depletion of the Ruminococcaceae in 
human intestinal tracts is a marker for ulcerative colitis (Sinha et al., 
2020). Together, these data implicate the Ruminococcaceae in intestinal 
health maintenance via alleviating intestinal inflammation through 
metabolism of specific fatty acids. These metabolic traits would 
specifically promote growth performance.

In both experimental and validation cohorts, we found a positive 
correlation between Sphaerochaeta and market weight. LEfSe analysis 
indicated that Sphaerochaeta was enriched in high-market-weight 
chickens in the experimental cohort confirming a key role in growth 
promotion. Sphaerochaeta is involved in glucose metabolism via 
glycolysis and the pentose phosphate pathway (Caro-Quintero et al., 
2012) and was significantly positively associated with bovinic acid (a 
polyunsaturated conjugated linoleic acid; CLA isomer; Wang et al., 
2019). CLA can be absorbed and rapidly deposited onto lipids and 
phospholipids in membranes (Kramer et al., 1998) and it possesses 

FIGURE 7

Heatmap depicting correlations between differential serum metabolites and differential species of cecal microbiota in Qiandongnan Xiaoxiang 
Chickens at 160 ± 3  days of age (n = 21). *p < 0.05, **p < 0.01, ***p < 0.001 were calculated using the Spearman’s rank correlation test.
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numerous biological functions including immunity enhancement in 
agricultural animals (Kuhnt et al., 2016). These beneficial effects link 
this genus to chicken growth performance via bovinic acid production.

In contrast to positive effects described above, the presence of 
Treponema and Succinatimonas in the cecum inhibited growth of 
Qiandongnan Xiaoxiang chickens. Treponema was previously 
implicated in altering the average daily gain of piglets in contrast to 
colonization by Prevotella and Mitsuokella (Ramayo-Caldas et  al., 
2016). A study of the Hadza people, a primitive hunting tribe in 
Africa, demonstrated that Treponema were significant dietary fiber 
degraders and this phenotype displayed significant gender differences 
(Schnorr et  al., 2014). Other independent studies on agricultural 
animals have found that Treponema is an important marker of sex 
differences and might be related to alterations in sex hormone levels 
(He et al., 2019; Wang et al., 2021). In this study, we verified that 
Treponema was significantly positively correlated with the sex 
hormone pregnanetriol, indicating that a lower market-weight might 
be related to sexual maturity of the chickens. In the validation cohorts 
we also identified Succinatimonas as another important genus that was 
detrimental to Qiandongnan Xiaoxiang chicken growth. This genus 

of short, Gram-negative bacilli is enriched in cattle fed with grain hay 
(Morotomi et al., 2010). Succinatimonas can utilize only a few sugars 
such as glucose, maltose, dextrin and starch but no other 
carbohydrates, and its metabolites are largely succinic acid and a small 
amount of acetic acid (Morotomi et al., 2010). Excess succinic acid can 
result in diarrhea and thus lead to reduced growth.

Our combined results using the validation cohort indicated that high 
levels of the inflammatory cytokine IL-6 as well as the presence of 
Synergistes and norank_f_Desulfovibrionaceae were detrimental to 
growth. IL-6 levels were significantly positively correlated with these two 
genera and suggest they promote inflammation and this could seriously 
reduce growth performance due to decreased feed intake and abnormal 
digestion and absorption (Jiang et al., 2010; Chen et al., 2021). Probiotics 
such as Lactobacillus can mitigate inflammation in mice by regulating 
cytokine secretion (Lamas et al., 2016). And gut microbiota had positive 
effects in the chicken caecum to promote growth by mitigating intestinal 
inflammatory (Ayalew et  al., 2022). The genus Synergistes is widely 
distributed in the natural environment and are characterized by their 
ability to degrade amino acids and may perform this function in natural 
ecosystems (Godon et al., 2005). Additionally, Synergistes is a normal 

A

C E

B D

FIGURE 8

Correlation of market-weight (body-weight at 160 ± 3  days of age) with cecal microbiota and serum inflammatory cytokines in the validation cohort 
composed of 24 Wumeng black-bone chickens and 55 Guizhou yellow chickens. (A) Variation of market-weight explained by cecal microbiota under 
different significant thresholds. (B) Inter-individual variation in market-weight. (C) Cecal microbiota significantly associated with chicken market-
weight. Associations between cecal microbiota and market-weight are shown as Z scores. Z < 0 and Z ≥ 0 indicates a negative association and a 
positive association, respectively. (D) Correlation between market-weight and 6 inflammatory cytokines. (E) Correlations between the abundance of 
cecal microbiota and host inflammatory cytokines quantified by Spearman correlation with Benjamini–Hochberg corrections. * p < 0.05, ** p < 0.01, 
*** p < 0.005.
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part of human and animal microflora and has been linked to mucosal 
infections (Kumar et al., 2003).

The second genus we linked to decreased growth was the sulfate-
reducer Desulfovibrio that utilize sulfate as the terminal electron acceptor 
for ATP synthesis. H2S production by this genus has also been linked to 
increased inflammation of the intestinal epithelium in humans 
(Verstreken et al., 2012; Murros et al., 2021). Taken together, we identified 
specific cecal microbiotal members that affect the growth performance of 
indigenous chickens via inflammatory cytokine regulation.

Conclusion

Our findings demonstrated that cecal colonization by 
Sphaerochaeta improved growth performance of Guizhou indigenous 
chicken by promoting bovinic acid metabolism. In contrast, 
colonization by Synergistes and norank_f_Desulfovibrionaceae in 
cecum reduced growth performance by inducing the production of 
the inflammatory cytokine IL-6. These results provide novel insights 
into the development of antibiotic alternatives to improve chicken 
growth performance and deepen our understanding of the physiology 
of native Guizhou chicken breeds.
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