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The real-time polymerase chain reaction (PCR), commonly known as quantitative

PCR (qPCR), is increasingly common in environmental microbiology applications.

During the COVID-19 pandemic, qPCR combined with reverse transcription (RT-

qPCR) has been used to detect and quantify SARS-CoV-2 in clinical diagnoses and

wastewater monitoring of local trends. Estimation of concentrations using qPCR

often features a log-linear standard curve model calibrating quantification cycle

(Cq) values obtained from underlying fluorescence measurements to standard

concentrations. This process works well at high concentrations within a linear

dynamic range but has diminishing reliability at low concentrations because

it cannot explain “non-standard” data such as Cq values reflecting increasing

variability at low concentrations or non-detects that do not yield Cq values at

all. Here, fundamental probabilistic modeling concepts from classical quantitative

microbiology were integrated into standard curve modeling approaches by

reflecting well-understood mechanisms for random error in microbial data.

This work showed that data diverging from the log-linear regression model

at low concentrations as well as non-detects can be seamlessly integrated

into enhanced standard curve analysis. The newly developed model provides

improved representation of standard curve data at low concentrations while

converging asymptotically upon conventional log-linear regression at high

concentrations and adding no fitting parameters. Such modeling facilitates

exploration of the effects of various random error mechanisms in experiments
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generating standard curve data, enables quantification of uncertainty in standard

curve parameters, and is an important step toward quantifying uncertainty in

qPCR-based concentration estimates. Improving understanding of the random

error in qPCR data and standard curve modeling is especially important when

low concentrations are of particular interest and inappropriate analysis can

unduly affect interpretation, conclusions regarding lab performance, reported

concentration estimates, and associated decision-making.

KEYWORDS

quantification cycle, threshold cycle, amplification efficiency, PCR efficiency, non-
detects, uncertainty

1. Introduction

The standard curve is a mathematical cornerstone for
estimating concentrations of target genes from the fluorescence
data measured in real-time polymerase chain reactions. It
is essentially an empirical linear calibration between log-
concentration of target genes and the quantification cycle (Cq)
at which measured fluorescence reaches some threshold after
adjusting for background fluorescence (Rutledge and Côté, 2003;
Bustin et al., 2009). Under idealized but sometimes practically
relevant conditions (i.e., high concentrations, accurately quantified
standards, precisely controlled dilution, low variation in Cq values
among technical replicates), simply mapping Cq values to point-
estimates of concentration using a standard curve can be accurate.
Numerous alternative methods have also been developed to extract
information from raw fluorescence curves of individual reactions
(Ruijter et al., 2013), often with the explicit goal of eliminating the
need for standard curves (Rutledge and Stewart, 2008a) to address
potential errors or streamline analysis when it is not practical to
evaluate a standard curve for every target gene. Nonetheless, it has
been asserted that “the standard curve remains the most reliable
and robust approach to estimate PCR assay efficiency that is broadly
accepted by the community” (Svec et al., 2015) and that “the
efficiency of a PCR assay is best assessed using tenfold or fivefold
serial dilutions of the target nucleic acid, that is, the “Standard
Curve Method” (Bustin et al., 2020).

If rigorously quantified standards with high target gene
concentrations were readily available and environmental samples
consistently yielded correspondingly large quantities of extracted
genes, the standard curve method could be adequate—especially
when the analyst is only interested in order-of-magnitude relative
differences. However, this is not always the case as exemplified by
sentinel surveillance of infectious diseases such as COVID-19 via
wastewater-based epidemiology methods relying on qPCR or RT-
qPCR (Chik et al., 2021; Gawlik et al., 2021). In such applications, it
may be useful to be able to interpret qPCR data from samples with
as few as one or two target genes per reaction or to track increases
in concentration as little as 10% (log101.1 ≈ 0.04). This highlights
several problems: (1) there is inherently greater variability in PCR
results at low concentrations (Karrer et al., 1995), (2) there is
a preponderance of non-detects at low concentrations, such as
when a sampled sewershed reflects low levels of pathogen shedding
and/or high levels of dilution, and (3) there is not presently a means
to quantitatively describe uncertainty in qPCR-based concentration

estimates to distinguish small but meaningful differences from
random noise. Digital PCR (Quan et al., 2018) is an alternative
to qPCR in such situations, but the question remains how to
extract as much value as possible from qPCR data indicative of low
concentrations of target genes when such data occur.

The greater variability of Cq values around the log-linear
standard curve at low concentrations leads to questions about
whether widely scattered data are outliers, which range of data
to include in standard curve fitting, and how to interpret
results indicative of low concentrations. If Cq values are
known to inherently diverge from the log-linear pattern at low
concentrations, then dismissing such divergent data as outliers is
inappropriate—it discards valid data when it is the data analysis
approach that is flawed. One empirical solution has been to
exclude all data from highly diluted standards on account of
their being outside the linear dynamic range of the calibration.
Furthermore, a limit of quantification (LOQ) may be determined
below which the concentration of target genes cannot be measured
with acceptable precision and accuracy (Forootan et al., 2017). This
also has the effect of discarding valid data when it is the data
analysis approach that is flawed. Tellinghuisen and Spiess (2019)
proposed a weighted least squares regression approach that mutes
the contribution of low-concentration data to model fitting to
account for greater variation in Cq values at low concentrations and
improve estimation of standard curve coefficients but the method
cannot be applied to standard curve data including non-detects.

Non-detects are PCR reactions resulting in no evidence of
amplification, either because none occurred or there was too
little amplification to reach the threshold within the completed
number of cycles (McCall et al., 2014). They do not yield Cq
values and therefore cannot be reflected in typical linear regression
models. Omitting non-detects for mathematical convenience or
substituting them with arbitrary Cq or concentration values would
be a biased approach to handling non-detects in qPCR, as has been
established for handling non-detects in chemistry (Helsel, 2006).
Microbiological non-detects are often interpreted as censored data
(e.g., concentrations below some detection limit), but Chik et al.
(2018) showed the bias in applying modeling approaches tailored
for analysis of censored data to microbiological non-detects that
are fundamentally not censored data. In the context of qPCR,
some non-detects may be right-censored Cq values if an insufficient
number of PCR cycles was completed (e.g., Cq > 40 if only 40
cycles were completed), but other interpretations of non-detects
must be considered. McCall et al. (2014) proposed that non-detects
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are missing data (amplification failures) rather than reactions
lacking any target genes to amplify. PCR reactions containing
target genes but failing to result in detection due to some error in
preparation or execution of the PCR reaction would be indicative
of a poorly controlled method (as is amplification occurring in
no template controls). In contrast, reactions lacking target genes
to amplify are widely recognized to occur when they are prepared
from sources with low concentrations. Digital PCR is predicated on
the belief that aliquots in which no amplification occurs contained
no target genes (Quan et al., 2018). This leads to calculation of
the gene concentration at which the observed pattern of presence–
absence results is most probable (i.e., the most probable number
or MPN) according to a Poisson process. Likewise, the limit of
detection theory that non-detects should ideally occur 5% of the
time given a standard diluted to three target genes per PCR reaction
assumes that non-detects are aliquots containing no target genes
according to a Poisson process (Bustin et al., 2009).

It is desirable to advance the data analysis methodology of
qPCR to seamlessly describe both the linear dynamic range and
the behavior of Cq at low concentrations—including non-detects.
Rather than arbitrarily excluding valid data at low concentrations
from data analysis or flagging them as unreliable, the goal
should be to extract as much meaning from all data as possible.
Furthermore, qPCR is currently subject to numerous guidelines
aimed at generating results that are deemed reliable (e.g., Bustin
et al., 2009; Ministry of the Environment, Conservation and Parks
[MECP], 2021), but the degree of reliability of a given result is
not quantified. For example, it should be possible to describe
how precise an estimated concentration or standard curve model
parameter is with interval estimates. This can be achieved through
probabilistic modeling and, given the microbial context of qPCR,
should align with established approaches to interpreting other types
of quantitative microbiology data and the mechanisms behind
observed variability (e.g., Student, 1907; McCrady, 1915; Fisher
et al., 1922; Eisenhart and Wilson, 1943; Nahrstedt and Gimbel,
1996; Schmidt et al., 2022). Linear (or log-linear) regression,
coupled with a parametric assumption about the distribution of
residuals, is a type of probabilistic model; however, log-linear
regression has chiefly been used as a means to an end in qPCR to
fit a deterministic calibration curve rather than as a probabilistic
model (with one exception being Tellinghuisen and Spiess, 2014).
Probabilistic approaches could resolve a fundamental oversight
of biostatistical qPCR models grounded in idealized theories of
chemical kinetics and multiplicative effects (e.g., Rutledge and Côté,
2003; Rutledge and Stewart, 2008a; Ruijter et al., 2009; Boggy and
Woolf, 2010; Svec et al., 2015)—microorganisms are not chemicals
and small numbers of them (or their genes) should not be modeled
as such because they are discrete objects. While it is possible to have
0.25 target genes per reaction on average among a set of replicates,
it is not possible to amplify and detect a quarter of a target gene in
a single reaction.

The goal of this study was to enhance standard curve modeling
so that it (1) accounts for Cq values at low concentrations that
have inflated variability and diverge from the log-linear trend, (2)
seamlessly incorporates non-detects, and (3) includes uncertainty
analysis for all model parameters. Integration of foundational
standard curve theory supporting use of log-linear regression
with probabilistic description of random errors including the

Poisson-distributed initial number of target genes in each reaction
was explored and led to development of an “enhanced standard
curve model.” Mathematical tools are developed for model fitting
and Bayesian uncertainty analysis of standard curve model
parameters, and these are applied to analysis of simulated and
experimental datasets. Incorporation of this modeling into qPCR-
based concentration estimates and quantification of uncertainty in
such estimates is beyond the scope of this model development work
and analysis of standard curve data. Extensive application of the
newly developed standard curve model to explore experimental
design and implications upon inter-lab comparison is also beyond
the scope of this work; however, the results and discussion
yield practical insights that can enhance qPCR standard curve
analysis, especially when the conventional log-linear model
remains in everyday use.

2. Describing and modeling random
errors in qPCR standard curve data

Conventional standard curve analysis relating Cq to a dilution
series of standards with known concentrations is grounded
in log-linear regression. Linear (or log-linear) regression is a
useful statistical tool to model complex phenomena and gain
empirical understanding of them in absence of detailed theory
of mechanisms leading to the variability and correlation in
observed data. Quantitative microbiology, however, often involves
probabilistic modeling grounded in mathematical description of
well-understood mechanisms leading to the random variability
in observed data. This section harmonizes aspects of these
two approaches to advance upon conventional standard curve
modeling in qPCR with description of underlying probabilistic
mechanisms. The model development is presented sequentially,
beginning with rudimentary deterministic models, enfolding
contemporary log-linear regression, and then embodying
fundamental microbiological principles in an enhanced
standard curve model that seamlessly explains behavior of
qPCR at low concentrations that conventional standard curve
modeling simply cannot.

2.1. Deterministic modeling of Cq

Rutledge and Côté (2003) provided a useful mechanistic
derivation of the log-linear relationship in conventional standard
curve modeling, though Rutledge and Stewart (2008a) subsequently
applied a sigmoidal model with the goal of eliminating the need
for standard curves. The derivation is summarized in this section
as a starting point for model development to sequentially address
some over-simplifications (sections “2.2. Log-linear regression
modeling of Cq,” “2.3. Incorporating Poisson variation into qPCR
data analysis,” and “2.4. Random amplification error”). This is
followed by discussion of why waning amplification efficiency
before reaching the fluorescence threshold does not necessarily
invalidate use of the standard curve method.

If a PCR starts with N0 target genes that are successively
duplicated through repeated cycles, then the number of amplicons
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FIGURE 1

Deterministic log-linear standard curve model with amplicon
detection threshold Nq = 1010 and amplification efficiency E
having values of 1, 0.9, and 0.8. The corresponding intercept values
are 33.22, 35.87, and 39.17, respectively.

after c cycles is Nc = N0 × 2c. Supposing an amplicon detection
threshold of Nq amplicons (and equivalence to some fluorescence
threshold), Cq is the fractional number of cycles needed to reach
this number, modeled as Eq. 1 given Nq = N0 × 2Cq. Critically, a
fractional number of cycles is not physically meaningful: it is a log-
linear interpolation between the cycles before and after reaching
the threshold. For example, if N0 = 1 and Nq = 1 000 000,
then Cq is conceptually between 19 (N19 = 524 288) and 20
(N20 = 1 048 576) and can be interpolated as Cq ≈ 19.93. Eq. 1
has a y-intercept (log10Nq/log102) corresponding to the number of
fractional cycles needed to reach Nq when N0 = 1 and a slope of
approximately−3.3219 with respect to log10N0.

Cq =
log10Nq

log102
−

1
log102

× log10N0 (1)

The presumption of perfect doubling of amplicons in
each cycle may be generalized by adding a parameter for
amplification efficiency (E) so that cycles initially achieve (1+ E)-
fold amplification. If exponential amplification persists for at least
Cq cycles, then Nq = N0 × (1+ E)Cq and this can be rearranged
as Eq. 2. Expressing this model in terms of an intercept and
slope yields the conventional log-linear standard curve (Eq. 3). An
estimate of amplification efficiency is commonly back-calculated
from the slope using E = 10−1/Slope

− 1, assuming precisely
controlled standards and dilutions. Reducing the exponential
amplification efficiency increases the intercept (by increasing
the number of cycles needed to reach Nq) and leads to a
slightly steeper slope as shown in Figure 1. These equations are
deterministic because there is no random variation in the value of
Cq corresponding to a particular value of N0.

Cq =
log10Nq

log10 (1+ E)
−

1
log10 (1+ E)

× log10N0 (2)

Cq = Intercept + Slope × log10N0 (3)

Although amplification efficiency is known to wane eventually,
leading to the plateauing of qPCR fluorescence curves, the
persistence of exponential growth until the threshold has been
disputed (Rutledge and Stewart, 2008b). However, this assumption

is not strictly necessary for the above model and less restrictive
mechanistic criteria may be described. Separation of Cq values
must be established by initial exponential growth persisting until
the number of amplicons is greater than the largest tested initial
number of target genes (N0). If this is not the case, waning
amplification efficiency will lead to reduced separation of Cq values
at high concentrations and an upper limit on the linear dynamic
range. At higher numbers of amplicons, the separation in Cq
values established by exponential amplification is retained so long
as all curves have the same shape—even if waning amplification
efficiency leads to sub-exponential amplification. The fluorescence
threshold can be set within this sub-exponential region, but not so
high that divergence toward reaction-specific plateaus affects the
separation of Cq values. Within this region, Cq is not necessarily
the number of cycles of exponential growth needed to get to the
threshold; the intercept behaves as a tuning parameter to quantify
the number of cycles required to amplify a single target gene to
the fluorescence threshold whether all of those cycles featured
exponential amplification or not.

2.2. Log-linear regression modeling of
Cq

The need to analyze standard curve data using a probabilistic
approach rather than a deterministic one is exemplified by
variation in Cq values among replicates at a particular standard
concentration. Log-linear regression is widely used and supported
by the log-linear deterministic model in the section “2.1.
Deterministic modeling of Cq,” but random scatter in Cq values
about the fitted line and its implications are rarely addressed. This
section emphasizes potential mechanisms and modeling of this
variation. Presuming that the initial number of target genes (N0)
is known and that amplification proceeds deterministically until
Cq, error can arise from how Cq is determined from fluorescence
data or from well-to-well variation in amplification efficiency.
Determination of Cq from fluorescence data involves evaluating
background fluorescence for each well and potentially each cycle
and using relative fluorescence measurements to represent the
portion of the fluorescence attributed to amplifying target genes.
Normalization may also be used to correct for well-to-well variation
in the capacity to detect fluorescence. Any imprecision in individual
fluorescence readings or how they are adjusted would affect the
precision of the relative fluorescence readings between which Cq is
interpolated. Variation in amplification efficiency could contribute
to scatter in Cq values because reactions with lower amplification
efficiency would take longer to reach the threshold. However, the
effect could diminish at higher concentrations as less amplification
is needed to reach the threshold. These errors are mechanistically
described as “Cq residual error” because deviations from a fitted
regression model are called residuals.

If the error in determining Cq for each well is normally
distributed with mean zero and standard deviation σ (called
“Cq residual standard deviation” herein), then the result is the
conventional log-linear regression model often used in standard
curve fitting together with mechanistic interpretation of the
random error component. Specifically, Eq. 4 builds probabilistically
upon Eq. 3 using N

(
µ, σ2) notation for a normal distribution with
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mean µ and variance σ2. This model carries on with constant
variance σ2 to values of N0 much less than 1 target gene per
reaction and cannot explain non-detects that do not yield Cq
values at all.

Cq ∼ N
(
Intercept + Slope× log10N0, σ

2) (4)

2.3. Incorporating Poisson variation into
qPCR data analysis

The log-linear regression standard curve model (Eq. 4) relates
Cq to an integer initial number of target genes (N0) rather than
a standard concentration λ. The discordance in contemporary
qPCR theory associated with assuming N0 = λ has diminishing
effect at high concentrations, which is why conventional log-
linear regression works well in a linear dynamic range but not
at low concentrations. At low concentrations, random variation
(random sampling error) in the number of discrete objects in an
aliquot of known volume from a source of known concentration
becomes important. Assuming that volume is carefully controlled,
that standards are precisely quantified and diluted, and that target
genes are randomly dispersed in these standards, this variation
should follow a Poisson distribution (Eq. 5). This error is denoted
herein as “reaction random sampling error” because it applies to the
initial number of target genes in a PCR reaction. A separate form of
random sampling error describing variation in the integer number
of instances of the target gene contained in a sample collected from
the environment (e.g., prior to processing and extraction) is outside
the scope of this work.

N0 ∼ Poisson (λ) (5)

This variation is sometimes acknowledged in qPCR data
analysis literature, but it is generally not reflected in approaches
to standard curve fitting. The weighted regression approach of
Tellinghuisen and Spiess (2019) suppresses excess variation at low
standard concentrations due to this error but does not account for
non-detects (N0 = 0) that cannot yield Cq values and therefore
cause the function Cq = a+ b × logN0 to not have a variance
with which to assign weights. Their variance formula is accurate
for concentrations at which non-detects are improbable (e.g.,
>7 gc/rxn) if a zero-truncated Poisson distribution is assumed,
but it misrepresents the effect of Poisson variation at lower
concentrations. Rather than using the idea of Poisson-distributed
N0 to develop a patch to least squares regression, this research
formally conditions a probabilistic regression model (Eq. 4) on
Poisson-distributed N0 (Eq. 5) using hierarchical probabilistic
modeling. Addressing the discrete nature of genes as well as
the Poisson-distributed variation in the initial number of target
genes contained in an aliquot of diluted standard leads to an
enhanced standard curve model. All random errors that pertain
to preparation of environmental samples for qPCR but not to
standard curve experiments using standards with extracted or
synthetic genes are outside the scope of this work. This model
reflects non-detects (Cq = ND) arising from an N0 of zero but
not from amplification failures or running an insufficient number
of cycles.

Figure 2 contrasts 95% probability intervals of Cq (conditional
on detection) as a function of continuous concentrations of gene
copies per reaction (gc/rxn) with and without reaction random
sampling error. The contemporary log-linear regression standard
curve model goes off to concentrations below 1 gc/rxn with
homogeneous variance and cannot explain non-detects. Reaction
random sampling error, on the other hand, leads to (1) increased
variability of Cq values at lower concentrations, (2) wells initially
containing zero target genes that cannot yield Cq values and are
therefore non-detects, and (3) Cq values not being able to greatly
exceed the intercept. The effect of this random sampling error
appears below 30 gc/rxn in this example, but it would be evident at
higher concentrations with smaller values of Cq residual standard
deviation σ. With equal numbers of technical replicates at each
tested concentration, non-detects lead to progressive sparsity of
numeric data below about 3 gc/rxn. Cq values cannot greatly exceed
the intercept because N0 = 1 is the smallest non-zero initial
number of target genes.

The enhanced standard curve model combining Eqs. 4,
5 facilitates analysis of standard curve data without arbitrary
decisions about which Cq values arising from low standard
concentrations should be included in standard curve model
fitting. It also facilitates simulation of standard curve data
(section “3.1. Simulation of standard curve data”), straightforward
evaluation of probabilities and parameter estimates (section
“3.2. Numerical integration to compute probability intervals or
maximum likelihood estimates”), and evaluation of uncertainty in
fitted standard curve model parameters (section 3.3. Parametric
uncertainty analysis of standard curve parameters”). In addition
to enabling computation of the variability in Cq given a standard
concentration λ (in gc/rxn), this model is a first step toward
evaluating the uncertainty in qPCR-based concentration estimates
(Figure 3). Notably, this model includes essentially the same
parameters as log-linear regression (e.g., intercept, slope, and
the largely unreported residual standard deviation σ). Usually,
increasing the complexity of a model increases the number of
parameters and the need for supporting data. No parameters are
added in this case because it replaces the assumption that N0 = λ

with a Poisson distribution having only one parameter (λ).

2.4. Random amplification error

Like the initial number of target genes in a reaction (N0), the
number of amplicons after c PCR cycles (Nc) must also be a non-
negative integer. For example, if N0 = 1 and E = 0.9, then a
1.9-fold increase is expected in each cycle, but it is impossible to
have 1.9 amplicons after the first cycle. Instead, there would be a
90% chance of amplifying to two amplicons and a 10% chance of
remaining with only one, which yields 1.9 amplicons on average. If
this solitary target gene in the well did not amplify in the first cycle,
it is as if the first cycle did not exist in terms of advancing toward
detection, so Cq is raised by one cycle. The number of amplicons
after c cycles may be modeled recursively as a discrete-time Markov
chain initialized with N0 and the transition matrix for cycle c can
be populated using Eq. 6. Modeling this “random amplification
error” using a binomial distribution presumes that each target
gene present either duplicates or fails to duplicate with probability
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FIGURE 2

Comparison of standard curve models with and without Poisson-distributed reaction random sampling error given intercept 36, amplification
efficiency E = 0.9, and Cq residual standard deviation σ = 0.25. Non-detects are illustrated as likely below 3 gc/rxn, and the 95% probability
interval for the enhanced standard curve model (with reaction random sampling error) is conditional on detection.

equal to amplification efficiency E that cannot exceed 100%. The
resulting value of Cq may then be modeled using Eq. 7 given a
value of c corresponding to a large value of Nc that remains within
the exponential phase. Addition of this error adds no parameters
to the standard curve model because each binomial distribution
depends only on the already specified input Nc−1 and amplification
efficiency E that was already in the model.

Nc − Nc−1 ∼ binomial (Nc−1,E) (6)

Cq− c ∼ N
(
Intercept + Slope× log10Nc, σ

2) (7)

Figure 4 provides an illustrative example of random
amplification error with N0 = 1, E = 0.9, and three cycles
(because algebraically exploring the effect of random amplification
error with numbers of cycles typical of qPCR is intractable). The
mean number of amplicons after three cycles is 6.859 (i.e., 1.93)
as expected, but there is substantial random variation. There
is a 47.8% chance that there will be 8 amplicons after three
cycles and a 1% chance that there will only be two amplicons.
The difference between these outcomes in terms of Cq is 2.16
because 2 × 1.92.16 = 8. Random amplification error diminishes
as the initial number of target genes or number of amplicons
increases, meaning that it becomes trivial for larger values of N0
and, in the cth cycle, for large Nc−1. Thus, its effect on variability
in Cq is similar to reaction random sampling error in that it is
relatively inconsequential at high concentrations and becomes
progressively more important at low concentrations. For example,
three cycles with N0 = 10 and E = 0.9 are likely to yield
between 57 and 78 amplicons (not shown), which would have
an effect of only 0.49 on the value of Cq. This is related to the
diminishing relative standard deviation (RSD) of the binomial
distribution in Eq. 6 (RSD =

√
(1− E)/(Nc−1 × E)) as Nc−1

increases.

2.5. Additional random errors affecting
standard curve data

The foregoing development of an enhanced standard curve
model and its ensuing application are grounded in the assumption
that N0 ∼ Poisson(λ) and that λ is precisely known. Specifically, it
focuses on modeling the relationship between Cq and the nominal
concentration of gene copies per reaction (λ) but does not address
the accuracy of λ or validity of the Poisson distribution describing
random sampling error in wells. Noting that assumptions and
limitations are central to model development, additional error
mechanisms that are not modeled herein are described below.

There are many mechanisms through which λ may
be imprecisely known, including (1) error in the nominal
concentration of the undiluted standard, (2) volumetric error
in the dilution series, and (3) losses in the dilution series. All
of these errors lead to biased concentration estimates. If the
concentration of the undiluted standard is higher than indicated,
Cq would be reduced and non-detects would be less common than
anticipated at nominal concentrations near and below 1 gc/rxn.
Conversely, if the concentration of the undiluted standard is
lower than indicated, Cq would be increased and non-detects
may become unexpectedly common at nominal concentrations
near and above 1 gc/rxn. Systematic dilution errors would lead
to a compounding error that makes the nominal concentration of
more diluted standards more inaccurate (e.g., if a nominal 2-fold
dilution is actually a 1.9-fold or 2.1-fold dilution). Consistent
losses among dilutions (e.g., due to microorganisms or target
genes not successfully discharged from the pipette tip) would
also lead to a compounding error akin to dilution error. For
example, a 2-fold dilution with 2% losses is effectively a 2.04-fold
dilution (2/0.98). Over-dilution and losses will lead to nominal
concentrations that are over-stated, increase Cq values, decrease
amplification efficiency estimates, and lead to unexpectedly
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FIGURE 3

Probability intervals describing variability in Cq as a function of gene copies per reaction also give a visual approximation to begin quantitatively
understanding the uncertainty in qPCR-based concentration estimates. The displayed standard curve model includes Poisson-distributed reaction
random sampling error and has intercept 36, amplification efficiency E = 0.9, and Cq residual standard deviation σ = 0.25.

FIGURE 4

Tree diagram illustrating all possible outcomes of amplifying N0 = 1 target gene through three PCR cycles and a distribution of resulting numbers
of amplicons after three cycles with E = 90% amplification efficiency. The conditional probability associated with each arrow may be calculated
using the binomial distribution shown. In terms of 1.9-fold amplification, the difference between having 2 or 8 amplicons after three cycles is 2.16
Cq on average.

common non-detects near and above 1 gc/rxn. Conversely,
under-dilution leads to nominal concentrations that are under-
stated, decreases Cq values, increases amplification efficiency
estimates, and leads to unexpectedly rare non-detects near and
below 1 gc/rxn. It is therefore important to regularly ensure
accurate calibration of pipettes to prevent biased estimation
of PCR efficiency and associated quantification of target genes
arising from insufficiently controlled standard curve data.
Unknowingly using an inadequately calibrated pipette or misusing
a pipette functionally calibrates qPCR to improperly quantified
standards so that both absolute and relative quantification
would be biased.

The assumption of a Poisson distribution for well-random
sampling error (Eq. 5) is firmly grounded in theory (Student, 1907),
but extraneous sources of variation can lead to over-dispersion
(Schmidt et al., 2014). These can include spatial heterogeneity in
the standard (poor mixing) or non-constant losses or volumetric
error in the transfer to the well. A final potential cause of over-
dispersion would be clustering of target genes. Target genes that
are bound in groups within an otherwise homogeneous and
accurately quantified source (i.e., not just having spatially varying
concentration due to poor mixing) are known to invalidate the
Poisson assumption. This can inflate variability in N0 relative to
a Poisson model, thus increasing the variability in Cq values and
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increasing the probability of non-detects at specific concentrations.
In the analogous context of dose–response models (Schmidt,
2015) in which doses are assumed to be accurately quantified
and aggregates are assumed to break up following consumption,
clustering would create an illusion that a pathogen is less infectious
than it really is by reducing the probability of infection for specific
doses. This issue could compromise quantitative reliability of
digital PCR because MPN calculations used to interpret arrays
of presence–absence results are usually predicated on a Poisson
model. Presuming that these issues can be adequately addressed
in well-controlled standard curve experiments, modeling of over-
dispersion with respect to the Poisson distribution is outside the
scope of this work.

3. Methods for using the developed
probabilistic models in simulation
and model-fitting

Following the model development discussion in the section
“2. Describing and modeling random errors in qPCR standard
curve data” that focused on representing the foundational
theory of standard curve modeling and adapting it to reflect
physically meaningful random error mechanisms, this section
addresses the more mathematical topic of how to use these
models. Tasks addressed include simulation of standard curve
data, computation of probability intervals, model fitting using
maximum likelihood estimation, and Bayesian methods to evaluate
parameter uncertainty.

3.1. Simulation of standard curve data

In mechanistically derived models, Monte Carlo simulation
can be useful to explore the anticipated effects of various error
mechanisms or to contrast alternative experimental designs or
data analysis approaches. The models developed in the section
“2. Describing and modeling random errors in qPCR standard
curve data” can be used to simulate Cq values given values of
model parameters Intercept, E, and σ as well as concentration λ.
A custom function in R (R Core Team, 2020) with which data can
be simulated is provided in the Supplementary content along with
an illustrative example of its use.

3.2. Numerical integration to compute
probability intervals or maximum
likelihood estimates

To compute probability intervals graphically illustrating
variability in Cq values or fit model parameters to available
data using maximum likelihood estimation, it is necessary to
algebraically characterize the distribution of Cq. Reflecting reaction
random sampling error in the log-linear regression model adds
complexity to evaluation of the distribution of Cq. Specifically,
the model becomes hierarchical because Eq. 4 is conditional on a
value of N0 that is also random according to Eq. 5. Computing the

unconditional (or marginal) distribution of Cq requires summation
of all non-zero values of N0 and their respective probabilities,
which must be done numerically. The resulting probability density
function (Eq. 8) describes only the numeric values of Cq while
Eq. 9 describes the non-numeric outcome that Cq is undetermined
when N0 = 0, resulting in a non-detect (Cq = ND). The
cumulative distribution function (Eq. 10) is calculated using the
standard normal cumulative distribution function 8 (.) and has a
maximum value of 1− e−λ due to non-detects. Derivation of these
equations is provided in the Supplementary content, as is an R
function with which to perform these calculations. Consideration
of random amplification error in this study is limited to theoretical
development and simulation because numerical integration is
intractable.

f
(
Cq
)
=

∞∑
N0=1

e−λλN0

N0!
×

1
√

2πσ

exp

{
−

[
Cq−

(
Intercept + Slope · log10N0

)]2

2σ2

}
(8)

P
(
Cq = ND

)
= P (N0 = 0) = e−λ (9)

F
(
Cq
)
=

∞∑
N0=1

e−λλN0

N0!
×8

(
Cq−

(
Intercept + Slope · log10 N0

)
σ

)
(10)

Equation 10 is useful to compute probability intervals for Cq,
particularly if it is made conditional on detection by dividing
it by 1− e−λ. A 95% probability interval such as the ones
displayed in Figures 2, 3 can be calculated for each of a range
of concentrations by determining the Cq values corresponding
to 2.5% and 97.5% cumulative probability. Eq. 8 is useful for
maximum likelihood estimation to determine the values of model
parameters that maximize the probability of a set of observed data
(R scripts are provided in the Supplementary content). Because
non-detects arising from reactions containing no target genes
depend on concentration λ (Eq. 9) but not on properties of the
PCR, they have no effect on estimation of the fitted standard
curve model parameters (i.e., they appear only as constants in the
likelihood function used for inference of standard curve model
parameters). Non-detects may therefore be omitted from standard
curve fitting (but not analysis of environmental data) because
it is mathematically justifiable to omit them. This differs from
just arbitrarily omitting them because they are incompatible with
log-linear regression.

3.3. Parametric uncertainty analysis of
standard curve parameters

Ideally, science should not be based solely on providing
estimates of values inferred from data but should indicate how
good the estimates are or what range of other values could
be supported by the data. Parametric uncertainty in estimated
parameters of probabilistic models may be fully represented using
Bayesian Markov chain Monte Carlo (MCMC) and software such as
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OpenBUGS (3.2.3 rev 1012; Lunn et al., 2000). The Bayesian process
merges observed data and subjective beliefs about parameters
(represented by prior distributions) to express uncertainty in
the values of estimated model parameters in the form of a
posterior distribution. Relatively uninformative priors are often
used in absence of well supported subjective beliefs so that the
posterior distribution is most strongly influenced by the objective
information from the data. Because posterior distributions are
often difficult to evaluate algebraically, MCMC is used to draw a
set of values representing this posterior distribution. The 2.5th and
97.5th percentiles of the generated parameter values can then be
used to define a 95% credible interval in which the analyst is entitled
to believe that the true value of the parameter is contained with
95% chance. This section details Bayesian analysis of uncertainty
in the parameters of the enhanced standard curve model applying
MCMC in OpenBUGS (see model code in Supplementary content).
Random amplification error was not implemented in OpenBUGS
due to limitations in the model specification step that precluded
incorporation of Eq. 6.

Analyses performed herein included a log-uniform prior on the
amplicon detection threshold (0 < log10Nq < 15), a uniform
prior on amplification efficiency (0 < E < 1), a log-uniform
prior on the Cq residual standard deviation (−5 < log2σ < 1).
The upper bound for Nq of 1015 corresponds to approximately
50 two-fold amplifications of a single target gene. This relatively
uninformative prior favors smaller values of Nq but corresponds to
a uniform prior on the intercept (conditional on a particular value
of amplification efficiency E). Restricting amplification efficiency
to E < 1 reflects that it is not theoretically possible to amplify
a single target gene more than once in a single PCR cycle
and is otherwise relatively uninformative. This prior can have
a substantial effect on estimation of E when conventional log-
linear regression would give an estimate near or above 100%.
Dilution errors (too little diluent and/or pipetting excess standard)
and inhibition at high concentrations are known mechanisms
for amplification efficiency estimates exceeding 100%. The prior
on Cq residual standard deviation (σ) slightly favors smaller
values, but it is wide enough to be relatively uninformative in
most cases. Cq values typically vary to some extent at high
concentrations and a standard deviation of Cq values below
0.5 has been proposed as a performance criterion (Ministry
of the Environment, Conservation and Parks [MECP], 2021).
Default updating algorithms were used with a burn-in of 10,000
iterations and thinning to every 100th of the next 100,000
iterations to ensure that the generated sample provided a good
representation of the posterior distribution. History plots indicated
rapid convergence and excellent mixing, and each analysis took
about 2 min.

4. Application of model to analysis
of simulated standard curve data

For illustrative purposes, an analysis was carried out with
101 data simulated (i.e., randomly generated using the developed
models) using concentrations that are equally spaced in logarithmic
scale between 0.01 and 1000 gc/rxn (Supplementary Table 1).
Simulation of realistic dilutions with many technical replicates

FIGURE 5

Data simulated (A) with and (B) without random amplification error
(RAE). Data were generated using intercept 36, amplification
efficiency E = 0.9, and Cq residual standard deviation σ = 0.25,
and the 95% probability interval was calculated using the same
model without including random amplification error. An extreme Cq
value highlighting effects of random amplification error is circled.

at each dilution has less illustrative value because of overlapping
points in plots. Data were simulated both with and without random
amplification error using an intercept of 36, amplification efficiency
E = 0.90, and Cq residual standard deviation σ = 0.25. The
same Poisson-distributed values of N0 and normally distributed
Cq residual error were used in each scenario so that results
differ only in the inclusion or exclusion of random amplification
error. The purpose of this simulation experiment was to (1)
illustrate the effect of random amplification error relative to only
reaction random sampling error and (2) compare alternative model
fitting techniques.

Figure 5A shows the data simulated without random
amplification error (with non-detects plotted as Cq = ND to allow
their illustration). Figure 5B likewise shows the data simulated
with random amplification error. Both figures show the 95%
probability interval for Cq conditional on detection computed
using the model without random amplification error. The similarity
of the two graphs shows the subtlety of random amplification error
relative to reaction random sampling error, with differences almost
imperceptible above 10 gc/rxn. By chance, only one observation
falls outside the 95% probability interval in each figure, which is
not a particularly improbable result for 67 detections. In Figure 5B,
however, the simulated Cq value at 1.58 gc/rxn (circled) is well
above the upper bound of the probability interval. This datum had
N0 = 1, and non-amplification of a solitary target gene in the
first cycle is known to raise Cq substantially. The probability of
such a high Cq value given only reaction random sampling error
is < 0.001.
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Three alternative parameter estimation approaches were
applied to each simulated dataset for illustrative purposes, with
results summarized in Table 1. These included (1) log-linear
regression with all obtained Cq values, (2) log-linear regression
with only obtained Cq values at concentrations above the highest
concentration with a non-detect, and (3) maximum likelihood
estimation using the enhanced standard curve model (which does
not reflect random amplification error).

Critically, when log-linear regression was fit to all Cq
data with non-detects omitted (approach 1), the intercept was
under-estimated and both the amplification efficiency and Cq
residual standard deviation were substantially over-estimated.
Applying log-linear regression to Cq values at inappropriately
low concentrations can lead to amplification efficiency estimates
>100% as shown. This result was anticipated because the regression
is being applied to data including Cq values at concentrations
below 1 gc/rxn that depart markedly from the log-linear trend.
One approach to eliminate this effect is to only apply log-linear
regression to Cq values from dilutions with concentrations above
the highest concentration at which a non-detect was obtained
(approach 2). This approach yields more appropriate intercept and
amplification efficiency estimates by excluding any non-linearity,
but the Cq residual standard deviation is still over-estimated
because log-linear regression cannot explain increasingly variable
Cq values as the concentration nears 1 gc/rxn. Values of the
coefficient of determination (R2) are shown for the regression
methods, as recommended (Bustin et al., 2009). The Cq residual
standard deviation (σ) quantifies the consistency of Cq values
obtained at high concentrations, while R2 quantifies the linearity of
the collection of data. Notably, R2 can be a misleading performance
metric when comparing standard curves with different ranges of
tested concentrations: a wider range with poorer consistency of Cq
values may yield a higherR2 value than a narrower range with better
consistency of Cq values.

Logically, maximum likelihood estimation with the enhanced
standard curve model (approach 3) yields some of the best
parameter estimates because it applies the model used to simulate
the data in reverse (except for exclusion of random amplification
error). Reversibility is a key feature of probabilistic models that
allows them to be used to simulate data given parameters or
estimate parameters given data (Schmidt et al., 2022). This method
yields the lowest estimates of Cq residual standard deviation
(σ) because it accounts for the excess variation in Cq at low
concentrations that is introduced by reaction random sampling
error. The maximum likelihood estimates for the Figure 5B data
include a higher estimate of the Cq residual standard deviation
than for the Figure 5A data, possibly to accommodate the inflated
variation in Cq and one particularly high value attributed to
random amplification error.

Bayesian Markov chain Monte Carlo was also applied to both
simulated datasets. Figure 6 shows a scatterplot of results for
amplification efficiency E and Cq residual standard deviation σ

because these are the two parameters for which the maximum
likelihood estimates differ the most between the datasets with
and without random amplification error (Table 1). These results
show that the amplification efficiency with which the data were
simulated (E = 0.9) is well within the quantified uncertainty for
each dataset. There is, however, particular divergence in estimation
of the Cq residual standard deviation (σ = 0.25). Analysis of

data simulated with random amplification error using a statistical
procedure that does not include it leads to over-estimation of σ.
However, this approach is less biased than the conventional log-
linear regression model (Table 1). Continued work to incorporate
random amplification error into data analysis and model fitting
may be warranted to resolve this bias.

5. Application of model to analysis
of experimental standard curve data

Standard curves may be evaluated for two reasons: to
evaluate performance metrics such as a limit of detection or
limit of quantification or to provide calibration that facilitates
estimation of the concentration of samples that were not
prepared from standards. Standard curves targeting evaluation of
a limit of detection or limit of quantification may include large
numbers of technical replicates prepared from dilutions with low
concentrations (sometimes below 1 gc/rxn) but do not always
include high concentrations. Standard curves prepared for plate-
specific calibration may have fewer technical replicates and a wide
range of concentrations that may not include concentrations near
1 gc/rxn. To provide a useful illustrative example reflecting both
extremes, a standard curve of the N1 region of the SARS-CoV-2
nucleocapsid gene using a standard with synthetic RNA transcripts
(#COV019, EDX, USA) was prepared. Specifically, the standard
was serially diluted (2x) in 20 ng/µL Poly(A) (#10108626001,
Roche, Germany) and TE buffer (#BP2473100, Fisher Scientific,
USA) with concentrations ranging from 200 to 0.39 gc/rxn. The
assay for the N1 target followed the CDC 2019-nCoV Real-
Time RT-PCR Diagnostic Panel (Centers for Disease Control and
Prevention [CDC], 2020) with primers and probes purchased
from Sigma-Aldrich (USA). TaqPathTM 1-Step RT-qPCR Master
Mix, CG (A15299, ThermoFisher, USA) was used. Nine technical
replicates for each standard and six no-template controls (NTCs)
were plated on a 96-well plate (Supplementary Table 2). qPCR
was run on the OPUS system (Bio-Rad, USA) with conditions
outlined in Supplementary Table 3. Based on the developed model
it was anticipated that there would be (1) low variability in Cq
at high concentrations, (2) increasing variability in Cq at low
concentrations, (3) non-detects starting to appear near 3 gc/rxn,
(4) some Cq values deviating from the log-linear pattern below
1 gc/rxn, and (5) no Cq values more than perhaps 3σ above the
intercept.

Figure 7 shows the results of this standard curve experiment
as well as the log-linear regression standard curve model fit by
the instrument software to all Cq values (omitting only the non-
detects). The Cq values at concentrations below 1 gc/rxn do not
clearly diverge from the log-linear trend and there are several
data that are more than 1 cycle above the intercept of 37.88
obtained using conventional log-linear regression omitting non-
detects. Such results may be attributable to the small number
of detections at low concentrations and excess variation due
to random amplification error. Maximum likelihood estimation
was applied to these data using the enhanced standard curve
model. The resulting parameter estimates were an intercept of
38.35, amplification efficiency of 0.8593, and Cq residual standard
deviation of 0.4363. In contrast, the parameter estimates obtained
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TABLE 1 Comparison of estimates of the intercept, amplification efficiency (E) and Cq residual standard deviation (σ) using alternative model fitting
approaches and data simulated with and without random amplification error.

Modeling approach Figure 5A data
(no amplification error)

Figure 5B data
(with amplification error)

Model used for simulation
(with or without random amplification error)

Intercept = 36.00
E = 0.9000
σ = 0.2500

Intercept = 36.00
E = 0.9000
σ = 0.2500

Approach 1:
Log-linear regression omitting non-detects

Intercept = 35.42
E = 1.0328
σ = 0.7181
R2
= 0.9569

Intercept = 35.38
E = 1.0457
σ = 0.7769
R2
= 0.9490

Approach 2:
Log-linear regression including only Cq values for concentrations
above highest non-detected gc/rxn

Intercept = 35.95
E = 0.9179
σ = 0.4138
R2
= 0.9744

Intercept = 36.02
E = 0.9084
σ = 0.4319
R2
= 0.9726

Approach 3:
Maximum likelihood estimation using enhanced standard curve
model

Intercept = 35.98
E = 0.9124
σ = 0.2433

Intercept = 35.93
E = 0.9214
σ = 0.2984

FIGURE 6

Scatterplot of posterior distributions quantifying uncertainty in amplification efficiency and Cq residual standard deviation estimated from datasets
simulated with and without random amplification error (Figures 5A,B, respectively). The data were simulated with E = 0.9 and σ = 0.25.

by log-linear regression with non-detects omitted are 37.88, 0.9476,
and 0.5899, respectively. This analysis flagged the datum with
Cq = 40.46 as an extreme value (because the modeled probability
of a Cq higher than this at 0.78 gc/rxn was <10−6). Small numbers
of wells yielding Cq values that are difficult to explain are not
uncommon in practice, and it is desirable to provide a statistical
basis for excluding such results in absence of a known error.
The analysis was repeated with this value excluded, leading to an
estimated intercept of 38.18, amplification efficiency of 0.8906, and
Cq residual standard deviation of 0.3072. The latter parameter was
particularly affected by excluding the datum in question.

Figure 8 includes 95% probability intervals calculated using the
maximum likelihood estimates of the model parameters with the
one extreme datum excluded. With these probability intervals, it
is evident that there are a few somewhat improbable Cq values,
but none are so glaring as the one datum that was excluded.

Bayesian Markov chain Monte Carlo analysis (not shown) of the
data excluding the one high Cq value was carried out to quantify
uncertainty in each estimated parameter of the enhanced standard
curve model using 95% credible intervals: the results are an
intercept of 38.18 (37.95–38.40), amplification efficiency of 89.06%
(84.93%–93.79%), and Cq residual standard deviation of 0.3072
(0.2533–0.4038).

6. Discussion

Quantitative inference about target gene concentrations via
qPCR has often been grounded in log-linear regression to establish
a standard curve. This borrows concepts from analytical chemistry,
which often depends on linear calibration models to relate observed
signals to concentrations of interest. Within a linear dynamic
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FIGURE 7

Empirical standard curve data for synthetic N1 target of SARS-CoV-2 using nine technical replicates at each two-fold dilution between 0.39 and
200 gc/rxn. The log-linear regression standard curve model fitted by the instrument software is shown.

FIGURE 8

Empirical standard curve data for synthetic N1 target of SARS-CoV-2 using nine technical replicates at each two-fold dilution between 0.39 and
200 gc/rxn. 95% probability intervals (solid gray) and the median (dashed gray) were computed using maximum likelihood estimates for the
enhanced standard curve model with one datum excluded as an extreme value.

range comprised exclusively of relatively high concentrations that
do not generate non-detects or particularly inflated variability
in Cq, this approach is dependable. However, conventional
standard curve analysis requires exclusion of problematic data at
low concentrations (e.g., non-detects and data exhibiting excess
variation in Cq or non-linearity) for model fitting. There is also
a lack of trust in extrapolation of the standard curve to high Cq
values and lack of clarity about handling of non-detects when it
is applied to estimate concentrations in environmental samples. In
many cases it is easier to dismiss these “non-standard” data than to
tackle the statistical problem of inference from data that the log-
linear regression model cannot explain. However, scenarios where

low concentrations abound and small changes in concentration
(e.g., 10% rather than an order of magnitude) are important—
such as wastewater-based epidemiology for SARS-CoV-2 (e.g., Chik
et al., 2021)—demand advances in standard curve modeling at low
concentrations. Such work can aid public health decision-making
by helping to determine the sensitivity to detect a meaningful
change in concentration on one hand or if an observed change
can be explained by random variation alone on the other. This is
particularly true in cases where, for whatever reason, digital PCR is
not being used and in which explicitly quantifying the uncertainty
of qPCR may help data users in their choice of appropriate
methodology.
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Building on conventional qPCR theory and foundational
quantitative microbiology theory involving Poisson processes,
this work mechanistically describes the non-linear pattern and
increased variability of Cq values observed at low concentrations
as well as non-detects. Critically, the developed model is not
an empirical model that requires large amounts of data to
describe phenomena with more numerous fitted parameters and
that may have limited application outside intensely studied case-
specific scenarios. The enhanced standard curve model is a
mechanistic model developed from theoretical principles that
should be no less broadly applicable than the MPN approach
to estimating concentrations and adds no case-specific fitting
parameters. This model describes why non-detects and changing
patterns of Cq values occur at low concentrations, facilitates
model fitting without arbitrary decisions about which data to
exclude from linear modeling, and enables characterization of the
uncertainty in fitted parameters for which only point estimates have
typically been provided.

With continued efforts to validate and develop this type of
modeling framework (including packaging tools to improve their
accessibility to practitioners), this approach can unlock additional
value in qPCR-based quantification outside of the linear dynamic
range, whether it is applied to estimating gene concentrations
in various water matrices or more generally quantifying gene
abundances in other contexts. Moreover, it can aid quantification
of the uncertainty in all qPCR-based results rather than merely
reporting point-estimates mapped from a linear standard curve
model. It provides a path forward to improve qPCR data quality
by developing guidelines for standard curve experiment design and
inter-lab comparison. It also provides a foundation from which
to explore additional random errors in qPCR such as losses in
the concentration/purification and extraction processes that may
depend on matrix effects and a means to extract as much value
as possible out of available data. These activities will improve the
utility of qPCR to generate epidemiologically meaningful trends in
the context of wastewater monitoring of SARS-CoV-2 and other
pathogens and to quantify exposures in microbial risk assessments
to advance the protection of public health. More generally, it will
improve the quantitative value of qPCR beyond detecting order-of-
magnitude relative differences.
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