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Irrigation water is a common source of contamination that carries plant and foodborne 
human pathogens and provides a niche for proliferation and survival of microbes 
in agricultural settings. Bacterial communities and their functions in irrigation water 
were investigated by analyzing samples from wetland taro farms on Oahu, Hawaii 
using different DNA sequencing platforms. Irrigation water samples (stream, spring, 
and storage tank water) were collected from North, East, and West sides of Oahu 
and subjected to high quality DNA isolation, library preparation and sequencing of 
the V3–V4 region, full length 16S rRNA, and shotgun metagenome sequencing using 
Illumina iSeq100, Oxford Nanopore MinION and Illumina NovaSeq, respectively. 
Illumina reads provided the most comprehensive taxonomic classification at the 
phylum level where Proteobacteria was identified as the most abundant phylum 
in the stream source and associated water samples from wetland taro fields. 
Cyanobacteria was also a dominant phylum in samples from tank and spring water, 
whereas Bacteroidetes were most abundant in wetland taro fields irrigated with spring 
water. However, over 50% of the valid short amplicon reads remained unclassified 
and inconclusive at the species level. In contrast, Oxford Nanopore MinION was a 
better choice for microbe classification at the genus and species levels as indicated 
by samples sequenced for full length 16S rRNA. No reliable taxonomic classification 
results were obtained while using shotgun metagenome data. In functional analyzes, 
only 12% of the genes were shared by two consortia and 95 antibiotic resistant genes 
(ARGs) were detected with variable relative abundance. Full descriptions of microbial 
communities and their functions are essential for the development of better water 
management strategies aimed to produce safer fresh produce and to protect plant, 
animal, human and environmental health. Quantitative comparisons illustrated the 
importance of selecting the appropriate analytical method depending on the level of 
taxonomic delineation sought in each microbiome.
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Introduction

Irrigation water quality is a growing concern for agriculture as 
drainage is contaminated with agricultural runoff, wastewater overflows, 
and polluted storm or rainwater runoff, and irrigation waters are a 
potential source of plant and food-borne pathogens resulting in 
economic crop losses and human health risks (Hintz et  al., 2010; 
Uyttendaele et al., 2015; Redekar et al., 2019). The microbial populations 
sharing the same niche may be commensal, symbiotic, or pathogenic. 
Many pathogenic bacteria can survive and proliferate in contaminated 
water and agricultural settings for long duration under favorable biotic 
and abiotic conditions (Ravva et al., 2006; Van der Linden et al., 2013; 
Cevallos-Cevallos et al., 2014). Studies have revealed that contaminated 
water splash can be  a potential carrier of plant and food-borne 
pathogens (Paul et al., 2004; Cevallos-Cevallos et al., 2012) that can 
enter plants through stomata, hydathodes and wounds (Gu G. et al., 
2013). Also, antibiotics introduced through contaminated water are a 
continuing challenge as they may result in high selection pressure for 
antibiotic-resistant bacteria (Szczepanowski et al., 2009; Zhang and Li, 
2011; Luczkiewicz et al., 2015) and can persist even after water treatment.

Because of water scarcity and a simultaneous need to increase food 
production, there has been a shift from freshwater to alternative sources 
of irrigation water such as reclaimed or recycled water. However, 
potential health and environmental impact concerns are associated with 
the use of alternative water sources for irrigating the crops (Qin et al., 
2015). Therefore, uncovering the bacterial composition and its 
associated functions in irrigation water will provide insight into 
formulating new disease management strategies and preventing major 
economic and public health risks. High-throughput sequencing has 
facilitated the identification of complex bacterial communities (Diaz 
et al., 2012) independently of bacterial culture (Tringe and Hugenholtz, 
2008; Rinke et  al., 2014). The bacterial microbiota is identified by 
analyzing the prokaryotic 16S ribosomal RNA (rRNA; ~ 1,500 bp long) 
with nine variable regions interspaced between conserved regions. The 
16S rRNA region selected for sequencing depends on the experimental 
objectives, design, and sample type. Sequencing of variable regions of 
the 16S rRNA gene using the most popular sequencing platforms, such 
as Illumina technology, uncovers the majority of bacterial microbiota 
(Sanz-Martin et al., 2017). Illumina technology only permits sequencing 
of short variable regions of the 16S rRNA gene (Goodwin et al., 2016), 
and therefore, taxonomic assignment of reads at the species level may 
be elusive. Different species within a genus possess different phenotypic 
and virulence characteristics, therefore, accurate speciation of bacterial 
species is of utmost importance for formulating effective disease 
management strategies against pathogenic bacterial communities.

With the advancement in next generation sequencing technologies 
(NGS), 3rd generation NGS technology, Oxford Nanopore enables 
generation of long sequence read lengths, possibly sequencing full length 
16S rRNA genes (Matsuo et al., 2021). Full length sequences covering 
maximum nucleotide heterogeneity and discriminatory power allow 
better identification at the genus and species level. Comparative studies for 
Oxford Nanopore and Illumina 16S rRNA gene sequencing demonstrated 
similar bacterial composition at the genus level, although significant 
differences were observed at the species level (Heikema et  al., 2020). 
However, this technology complicates accurate species classification, 
particularly for bacterial species with a high sequence similarity in the 16S 
rRNA gene, owing to higher sequencing error rates (Laver et al., 2015).

Although Polymorphic marker gene (e.g., 16S rRNA, ITS) based 
analyzes are useful for broad community taxonomical analysis, it did not 

provide functionality nor resolve the complexity of a microbiome. The 
shotgun metagenomic sequencing using advanced Illumina sequencing 
platforms have been proven to be a more reliable approach for these 
purposes (Peng et al., 2021). Metagenomic sequencing is a powerful tool 
for investigating occurrence, abundance, and distribution of ARGs in 
the natural environment and is suitable for discovery of novel ARGs that 
remain unidentified in culture-and amplicon-based analyzes (Schmieder 
and Edwards, 2012; Xu et al., 2015).

This study aimed to investigate bacterial microbiota and associated 
gene function of different irrigation systems, mainly associated with 
wetland taro across the island of Oahu, Hawaii. Mountain streams are 
the major source of irrigation waters used by farmers to irrigate crops. 
The overall goal of this project is to reveal the bacterial microbiota from 
different water source used for irrigation, in addition to field water, 
which is released back into the stream after use, carrying excess fertilizer, 
agricultural waste, ARGs and diverse unidentified bacteria. Bacterial 
communities were investigated based on 16S rRNA amplicon analysis 
using two principally different sequencing technologies and platforms—
Illumina iSeq100 and Oxford Nanopore MinION and their taxonomic 
compositions were compared. The functionality of all the genes in 
complex samples and the distribution of ARGs were also investigated 
using shotgun metagenomic analyses. We aim to compare different 
technologies and approaches considered for microbiome studies such as 
shotgun metagenome, short- and long-amplicon read based to provide 
the desired level of accuracy in resolving the microbial taxonomic 
composition of the samples.

Materials and methods

Sample collection

Irrigation source and associated taro field water samples were 
collected in September–November 2020, across the Island of Oahu, 
Hawaii (Supplementary Table S1). Irrigation water samples—R-S1-E, 
R-S2-W, R-S4-SE, and R-S5-SE—collected from natural streams which 
were sources of irrigation water for taro fields. Two water samples 
R-S7-N (stream emerging from the main reservoir on Oahu) and 
T-S6-N (tank storage water) were sources of irrigation for horticultural 
crops and other agricultural practices. Taro field water samples, R-F1-E, 
R-F2-W, R-F4-SE, and R-F5-SE, associated with R-S1-E, R-S2-W, 
R-S4-SE, and R-S5-SE, respectively, were collected to analyze bacterial 
microbiota. Two water samples, S-S3-N and S-F3-N were collected from 
a spring water source and an associated taro field, respectively. From 
each sampling site, three replicate water samples (2 l per sample; DNA 
from these three replicates were merged for library preparation) were 
collected in sterile glass bottles, submerged 10–15 cm below the water 
surface. Samples were transported in an ice-cooler and processed in the 
laboratory for DNA isolation.

Sample processing

Water samples collected from each site were vacuum filtered using 
the Millipore All-Glass Filter Holder kit (EMD Millipore Corporation, 
Billerica, MA, United States). Collected water from each replicate was 
filtered through Whatman filter membrane to remove coarse to medium 
debris, followed by filtration through a MF-Millipore 8 μm sterile mixed 
cellulose ester (MCE) membrane (Merck Millipore Ltd., Tullagreen 
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Carrigtwohill, Co. Cork, Ireland), and finally, filtered via MF-Millipore 
0.22 μm sterile MCE membrane to trap the maximum bacterial 
community. The 0.22 μm membrane was used for bacterial DNA 
isolation using NucleoMag DNA/RNA Water Kit (MACHEREY-NAGEL 
Inc., Bethlehem, PA, United  States) following manufacturer’s 
instructions, with a few minor modifications to improve the DNA 
quantity and quality. The mechanical lysis was performed in lysis buffer 
MWA1 for 20 min using a vortex at full speed, followed by the addition 
of 25 μl of RNase (12 mg/ml stock solution); the tubes were incubated 
for 15 min at room temperature (RT). A lysate of 450 μl was transferred 
to a 1.5 ml sterile Eppendorf tube and 25 μl of NucleoMag B-beads were 
added, mixed and shaken for 5 min, and kept on a magnetic rack at 
RT. The supernatant was removed, and the pellet was washed twice with 
buffer MWA3, followed by a single final wash with buffer MWA4. The 
magnetic beads were air dried for 15 min at RT; 70 μl RNase free water 
was used to elute DNA from the magnetic beads. Qubit dsDNA HS kit 
and Qubit 4 (Thermo Fisher Scientific, Waltham, MA, United States) 
were used to quantify the genomic DNA. The DNA replicates from each 
sample were pooled, due to low DNA yield from each replicate, for 
downstream processes and stored at −80°C.

Illumina 16S rRNA library preparation, 
sequencing, and analysis

The polymerase chain reaction (PCR) was performed to amplify the 
V3–V4 hypervariable region of 16S rRNA gene following the reaction 
conditions: 94°C for 5 min; 40 cycles at 94°C for 20 s, 58°C for 30 s, and 
72°C for 1 min; and the final extension at 72°C for 3 min. Primers 341F 
(5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGG 
GNGGCWGCAG-3′) and 805R (5′-GTCTCGTGGGCTCGGAGATGTG 
TATAAGAGACAGGACTACHVGGGTATCTAATCC-3′) were used for 
PCR amplification (Herlemann et  al., 2011). The amplified PCR 
amplicons were enzymatically cleaned using ExoSAP-IT (Affymetrix, 
Santa Clara, CA, United States) and quantified using Qubit dsDNA HS 
Kit and Qubit 4. A secondary bead-linked transposome (BLT) PCR was 
performed using i5 and i7 adapters, provided in Nextera DNA Flex 
Library Prep Kit (Illumina, Inc., San Diego, CA, United States), for 
barcode attachment (Supplementary Table S2). Each sample’s library was 
prepared in duplicate. The BLT PCR conditions were initial denaturation 
at 98°C for 3 min, followed by X cycles of 98°C for 45 s, 62°C for 30 s, 
and 68°C for 2 min, with a final extension at 68°C for 1 min. The number 
of cycles of BLT PCR’s (X) was decided based on the amplicon 
concentration from the previous PCR as recommended by the 
manufacturer. Samples with concentrations ranging from 1 to 9 ng/μl 
and 9–21 ng/μl were subjected to 8 and 12 cycles BLT PCR, respectively. 
The amplicon libraries were cleaned using double-sided bead 
purification protocol following the manufacturer’s instructions. The 
purified libraries were quantified, normalized to 1 nM concentration and 
pooled. The pooled library was spiked with 2% using Phix control and 
loaded to Illumina iSeq100 for sequencing with a total of 302 run cycles 
to generate paired-end 150-bp reads. The total data yield was 717 MB 
with Q30 value of 88.1 and 89.6% for Read 1 and Read 2, respectively. 
The obtained raw sequences were submitted in the National Center for 
Biotechnology Information (NCBI) as Sequence Read Archive (SRA) 
under the BioProject ID PRJNA856319. The sequenced data was base 
called and analyzed using BaseSpace sequence hub and EzBioCloud, 
respectively (Yoon et al., 2017). The paired-end reads were used as a 
quality control to filter out low-quality (average quality value < 25) and 

merged using PandaSeq (Masella et al., 2012); primers were trimmed at 
a similarity cut-off of 0.8. The pipeline uses EzBioCloud database for 
taxonomic assignment and sequence similarity was calculated via pair-
wise alignment. The chimeric reads with less than a 97% best hit 
similarity rate were removed using EzBioCloud non-chimeric 16S rRNA 
database through UCHIME (Edgar et al., 2011). The sequenced data was 
clustered using CD-Hit7 and UCLUST with 97% similarity (Li and 
Godzik, 2006). Bacterial diversity was also analyzed and compared 
among the samples. For alpha diversity—OTUs, richness, and diversity 
were calculated, while for beta diversity—principal coordinate analysis 
(PCoA) and UPGMA clustering analyzes were performed. 
Permutational multivariate analysis of variance was performed utilizing 
‘beta set-significance analysis’ in EzBioCloud, to test the significant 
difference between clusters using distance measures of the beta diversity.

Valid reads were normalized for each sample to eliminate the bias 
produced because of variation in total number of reads. The Wilcoxon 
rank-sum test was used to calculate differences between the replicates. 
The differences in relative abundance in phyla and genera among the 
samples were determined using one-way ANOVA (single factor) with 
the least significant difference (LSD) test at α = 0.05.

Oxford Nanopore 16S rRNA library 
preparation, sequencing, and analysis

The genomic DNA of sample R-F1-E and S-F3-N was diluted to 1 ng/
μl, and a total 10 μl gDNA was used for full-length 16S rRNA library 
preparation using 16S Barcoding Kit 1–24 (SQK-16S024; Oxford 
Nanopore Technologies, Oxford Science Park, United  Kingdom) 
according to the manufacturer’s protocol. Ten μl of input DNA (10 ng) 
was mixed well with 25 μl LongAmp hot Start Taq 2 × Master Mix and 
5 μl of nuclease free water, afterward, 10 μl of each 16S barcode was 
added. The PCR was performed using following conditions: Initial 
denaturation at 95°C for 1 min, 25 cycles of 95°C for 20 s, 55°C for 30 s 
and 65°C for 2 min, with a final extension at 65°C for 5 min. Each 
amplified sample was purified and washed with AMPure XP beads and 
70% ethanol, respectively. For each sample, barcoded libraries were 
prepared in duplicate and quantified using Qubit 4; libraries were pooled 
to a desired ratio of 50–100 fmol in 10 μl of 10 mM Tris–HCl (pH 8.0) 
with 50 mM NaCl, and 1 μl of Rapid adapter (RAP) was added. The 
pooled library was loaded on to MinION vR9.4 flow cell and sequenced 
following manufacturer’s instruction. The generated sequencing data 
were monitored in real-time using the MinKNOW software (version 
4.0.20). The obtained FAST5 files were base called using MinKNOW 
(version 4.0.20) embedded with Guppy version 3.2.10 pipeline. The 
attained raw long reads were deposited as SRA data in the NCBI database 
under BioProject ID PRJNA856390. The generated full-length 16S rRNA 
sequence data were analyzed using cloud based EPI2ME (Oxford 
Nanopore) workflow for the identification of microbial community 
composition; EP2ME uses the NCBI GenBank database for taxonomic 
identification. The minimum and maximum read length of 1,500 and 
1,600, respectively, were assigned as a quality control parameter, and 
Blastn was run using parameters max_target seqs = 3 (finds the top three 
hits that are statistically significant) with blast e-value assigned as default 
0.01. Per read coverage was calculated as the number of identical 
matches/query length. All classified reads were filtered for > 77% 
accuracy and > 30% coverage, which removed invalid alignments and 
were normalized for analysis. Results were obtained as comma-separated 
values (CSV) file via web report generated by EPI2ME workflow.
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Metagenomic library preparation, 
sequencing, and analysis

DNA from two samples (R-F1-E and S-F3-N) were used for preparing 
DNA metagenome libraries using NEBNext Ultra DNA Library Prep Kit 
(NEB, Ipswich, MA) following manufacturer’s instructions. The sonication-
based method was used for fragmenting gDNA to the size of 350 bp. The 
obtained DNA fragments were end-polished, A-tailed, and ligated with 
full-length indexing adapters to the ends of the DNA fragments, followed 
by PCR amplification. The PCR products were purified using AMPure XP, 
and libraries were analyzed for size distribution and quantified using 
Agilent 2,100 Bioanalyzer (Agilent, Santa Clara, CA, United States) and 
real-time qPCR, respectively. The quantified libraries were pooled and 
sequenced on an Illumina NovaSeq 6,000 platform to generate paired end 
reads. All the procured reads were submitted in the NCBI database as SRA 
file under BioProject PRJNA856335. The obtained raw reads were 
pre-processed to trim low-quality bases with quality value (Q-value ≤ 38), 
reads with N nucleotides over 10 bp, and reads that overlapped with 
adapters over 15 bp. The obtained clean reads after quality control were 
assembled into scaftigs using MEGAHIT (Li et al., 2015). The quality of the 
assembled data was predicted by N50 length. Scaftigs (≥ 500 bp) were used 
for ORF (Open reading Frame) prediction using MetaGeneMark (Zhu 
et al., 2010) and the ORF’s less than 100 nt were removed. Non-redundant 
gene catalog, generated using CD-HIT (Fu et al., 2012), was further used 
to map clean reads using SoapAligner (Gu S. et  al., 2013). Each 
metagenomic homolog was taxonomically annotated against NR database 
(Buchfink et al., 2015) for classification of microbial community at different 
taxonomic levels. For functional analysis, Kyoto Encyclopedia of Genes 
and Genomes (KEGG), evolutionary genealogy of genes: Non-Supervised 
Orthologous Groups (eggNOG), and Carbohydrate-Active enzymes 
(CAZy) databases were used for mapping functionally annotated unigenes. 
For Antibiotic Resistance Genes (AGRs) analysis, all the unique genes were 
BLASTp against the CARD (Comprehensive Antibiotic Research Database) 
database (e-value ≤ 1e−5). To identify the biologically relevant differences 
between two samples, statistical analyses were performed using STAMP v 
2.1.3 (Parks et al., 2014), employing Fisher’s exact test with Newcombe-
Wilson CI method (0.95 confidence interval) and Benjamini-Hochberg 
FDR correction factors and visualized using extended error bar plots.

Data availability

The obtained raw sequences were submitted in the National Center for 
Biotechnology Information (NCBI) as Sequence Read Archive (SRA) 
under the BioProject IDs PRJNA856319, PRJNA856335 and PRJNA856390.

Results

Short length amplicon-based analysis—
Illumina

The paired end 16S rRNA encoding gene sequences were obtained 
using Illumina iSeq100. After the data was pre-filtered and passed the 
quality check to remove low-quality, non-chimeric and non-target 
amplicons, the total number of valid reads with an average read length 
was computed (Supplementary Table S3) for each sample. Each sample 
was successfully sequenced in duplicate, except sample S-S3-N that 
encountered sequencing biasness in the 2nd replicate run and failed to 
produce enough valid reads. After quality control, an average of 43,599 

and 41,163 valid reads from the first and second replicate run, 
respectively, were obtained. In both the replicates, the highest and lowest 
number of valid reads were observed in sample R-S2-W (61,272 and 
67,325) and R-F4-SE (22,274 and 26,908), respectively.

Based on phylum comparison performed using valid reads 
obtained from two sequencing replicates, no differences were observed, 
therefore the first replicate (barcode1-12) was considered for further 
taxonomic and diversity analysis (Supplementary Figure S1). The valid 
reads generated from each sample were normalized to the least number 
of obtained valid reads (22,274; R-F4-SE) to overcome biasness in 
analysis outcomes. The reads were further clustered into operational 
taxonomic units (OTUs) at 97% identity ranging from 1,410 to 4,897. 
The OTU number remained higher in river stream sources, R-S1-E 
(3,416), R-S2-W (4,059), R-S4-SE (2,817), and R-S5-SE (4,897), 
compared with associated field water, R-F1-E (1,570), R-F2-W (2,753), 
R-F4-SE (1,978), and R-F5-SE (2,946). However, in spring source and 
field water samples, the OTU count remained comparable (Table 1). 
Furthermore, sample T-S6-N had the lowest count of 1,077 identified 
OTUs, followed by sample R-S7-N with 1,410 OTU numbers.

Taxonomic classification at phylum, genus, 
and species levels

Based on Good’s coverage index, the sequencing covered more than 
94% of the taxonomic richness except for sample R-S1-E (92.35%), R-S2-W 
(91.02%) and R-S5-SE (89.97%; Table 1). A total of 18 phyla with relative 
abundance of >1% were compared after being identified in at least one 
sample (Figure 1A). Proteobacteria, a phylum with major plant and food-
borne pathogens, was significantly the most abundant phylum in 12 
different samples (Supplementary Table S4). The relative abundance of 
Proteobacteria was higher in river stream source samples, R-S1-E (76.99%), 
R-S2-W (71.28%), R-S4-SE (83.71%), and R-S5-SE (52.04%), and 
associated field samples, R-F1-E (66.57%), R-F2-W (78.64%), R-F4-SE 
(89.08%), and R-F5-SE (75.70%). Considering samples collected from 
North Oahu, Cyanobacteria was the topmost abundant phylum identified 
from the spring water sample S-S3-N (35.86%) and stored tank water 
sample T-S6-N (58.39%). Bacteroidetes was the most dominant phylum in 
spring water irrigated field with relative abundance of 48.82% and 
interestingly this phylum was also higher in the stream water irrigated field 
sample, R-F1-E (31.63%), whereas it remained < 6.9% of relative abundance 
in other river stream source and associated field water samples. Phylum 
Actinobacteria was relatively higher in the reservoir stream source, R-S7-N 
(26.82%) compared with other samples. Other identified phyla varied in 
their relative abundance among all the samples, as shown in Figure 1A.

The normalized valid reads from all the 12 samples were classified and 
compared at the genus level (Figure 1B). The taxonomic classifier used to 
classify valid reads identified uncultured genera and best hit genera 
classified with high and low confidence values, while the rest remained 
unclassified at a taxonomic level (genus–species). The genera within the 
family Comamonadaceae were classified as significantly most abundant 
among all the other identified genera and named as Comamonadaceae_uc 
by the taxonomic classifier (Supplementary Table S5). The taxonomic 
classifier could not differentiate the genera within the family 
Comamonadaceae owing to low confidence value in assigning the best hit 
to the reference database—indicating that short amplicon reads might not 
be efficient in classifying valid reads with high accuracy. The abundance 
of Comamonadaceae_uc was relatively higher in natural stream sources 
and associated field samples. Prochlorococcus was the most abundant 
genus identified in samples T-S6-N (58.3%) and S-S3-N (35.65%) 
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collected from North Oahu. Spring field water sample S-F3-N was 
dominated by the genus Flavobacterium with relative abundance of 
37.14%, while 16.99% Flavobacterium abundance was calculated in 
sample R-F1-E—the abundance remained < 1% in all the other river 
stream and associated field water samples. The classified reads at the genus 
level, with a relative abundance of < 1%, ranged between 22.32–61.87% 
among all samples, indicating diverse microbiota associated with different 
samples. The percentage of valid reads that remained unclassified varied 
between 4.83% (T-S6-N) and 21.55% (R-S4-SE) among all the samples 
(Supplementary Table S6).

At the species level, valid reads that remained unclassified among all 
the 12 samples ranged from 11.2% (T-S6-N) to 62.23% (R-F4-SE; 
Supplementary Table S6). A total of 34 species classified at species level 
using EzBioCloud with relative abundance of more than 1%, only three 
species, Flavobacterium fontis, F. hydatis and F. shanxiense, remained 
classified with a high confidence value—indicating that the short length 
reads-based approach for classifying at species level is an inadequate 
approach for attaining species level resolution (Supplementary Figure S2).

Alpha and Beta diversity analyzes

Non-parametric analysis of diversity indices, such as ACE, CHAO, 
and Jackknife, indicated higher bacterial diversity in river stream 
compared to associated field water samples, followed by sample S-F3-N, 
S-S3-N, R-S7-N, and T-S6-N (Table 1). The higher Shannon diversity 
indices of river stream source field water indicated an increased 
abundance and bacterial community than associated field water; 
however, a negligible difference between spring source S-S3-N (4.34) 
and field water S-F3-N (4.35) was observed (Table 1). The Shannon 
diversity calculated for sample T-S6-N and R-S7-N was 2.88 and 4.97, 
respectively. Taken together, natural stream source water contaminated 
with fertilizer runoff, wastewater runoff and other agricultural waste 
showed higher diversity in the bacterial community.

To compare the relationship between bacterial communities in all the 
samples at the genus level, Principal Coordinate Analysis (PCoA) and 
unweighted pair group method with arithmetic mean (UPGMA) clustering 
based on the Bray–Curtis dissimilarity index were performed. The beta 
diversity indices, based on PCoA, revealed clear distinctions between 
different water samples forming three distinctive clusters (Figure 1C). 
Cluster one was formed exclusively by natural stream sources and 

associated with wet taro field water samples irrespective of the sampling 
site except for sample R-F1-E. The second distinctive cluster was formed 
by water samples collected from North Oahu, S-S3-N, T-S6-N, and R-S7-N, 
except S-F3-N. Interestingly, the 3rd cluster was formed by field water 
samples R-F1-E and S-F3-N indicating a close association between their 
bacterial communities, despite having been surveyed from different 
geographical locations and irrigated by different water sources (spring and 
river sources). PERMANOVA analysis revealed the significant difference 
between cluster 1 and 2 (value of p = 0.009) and cluster 1 and 3 (value of 
p = 0.021), however, no significant difference observed on pairwise 
comparison of cluster 2 and 3 (value of p = 0.101; Supplementary Table S7).

Furthermore, UPGMA clustering revealed a similar clustering 
pattern in the dissimilarity of relative abundance of the bacterial 
communities (Supplementary Figure S3). To unravel the close microbial 
association between R-F1-E and S-F3-N, these two samples were further 
sequenced to obtain full length 16S RNA and metagenomes using 
Oxford Nanopore MinION and Illumina NovaSeq, respectively, for 
amplicon and functional analyzes.

Full length 16S RNA amplicon analysis—
Oxford Nanopore MinION

Samples R-F1-E and S-F3-N were sequenced in duplicate to attain 
confidence and reliability in the obtained data (Supplementary Table S8). 
Replicate 1 of sample S-F3-N failed to sequence and no reads were 
generated; nevertheless, the other replicate generated 87,818 reads with 
~ 1,500 bp length. In contrast, sample R-F1-E sequenced in two repeats 
validly sequenced 1,27,647 and 5,57,290 reads ranging from 1,500 to 
1,600 bp length, and the comparative analyzes between replicates at the 
genus and species levels were comparable, comprising almost similar 
bacterial composition (Supplementary Figure S4). Therefore, for 
further comparative analysis, reads from one sequencing replicate of 
sample R-F1-E were used.

Taxonomic classification at phylum, genus, 
and species levels

At the phylum level, sample R-F1-E showed Bacteroidetes and 
Proteobacteria with relative abundance of > 1%, while sample S-F1-E was 
dominated with 3 phyla-Bacteroidetes, Proteobacteria and Verrucomicrobia 

TABLE 1 List of total number of OTUs and calculated diversity analysis.

Sample OTUs ACE CHAO Jackknife Shannon Simpson Phylogenetic 
Diversity

Good’s Coverage of 
Library (%)

R-F1-E 1,570 2,712.05 2,458.62 3,062.1 3.97 0.12 1,635 96.57

R-S1-E 3,416 5,924.43 5,273.62 6,074.57 5.35 0.08 4,165 92.35

R-S2-W 4,059 6,950.62 6,139.12 7,115.85 6.21 0.03 4,241 91.02

R-F2-W 2,753 3,513.98 3,231.47 3,649 5.17 0.08 3,230 95.98

S-S3-N 2,153 3,149.55 2,905.06 3,240.36 4.34 0.14 2,378 96.14

S-F3-N 2,157 3,526.22 3,221.37 3,746.8 4.35 0.1 1,435 95.49

R-S4-SE 2,817 4,123.62 3,730.12 3,994.1 5.28 0.04 3,516 94.86

R-F4-SE 1,978 2,408.57 2,214.96 2,521 4.42 0.11 2,473 97.56

R-S5-SE 4,897 7,684.84 6,782.04 7,219.57 6.86 0.01 4,739 89.97

R-F5-SE 2,946 4,257.84 3,804.92 4,166.01 4.91 0.09 3,116 94.56

T-S6-N 1,077 1,656.5 1,522.44 1,763.94 2.88 0.34 1,106 97.93

R-S7-N 1,410 1,818.37 1,697.27 1,859.62 4.97 0.02 1,359 97.99

https://doi.org/10.3389/fmicb.2023.1039292
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Klair et al. 10.3389/fmicb.2023.1039292

Frontiers in Microbiology 06 frontiersin.org

(Figure 2). Classification at the genus level uncovered a total of 11 and 6 
genera from samples R-F1-E and S-F3-N, respectively, with relative 
abundance >1% (Figure 2). The most abundant genus classified in both the 
samples was Limnohabitans belonging to the family Comamonadaceae. 
Within the family Comamonadaceae, the genera Arcobacter, Curvibacter, 
Limnohabitans, and Rhodoferax were identified in both samples, with an 
additional two genera—Hydrogenophaga and Pelomonas—exclusively in 
sample R-F1-E with > 1% relative abundance. Furthermore, genus Aquirufa 
was recognized in sample S-F3-N with relative abundance of 25.71%, while 
8.86% remained in sample R-F1-E. The bacterial genera classified with 
relative abundance of < 1% in total comprised 33.21 and 22.41% of bacterial 
community in sample R-F1-E and S-F3-N, respectively.

At the species level, 16 and 11 species were classified from samples 
R-F1-E and S-F3-N, respectively, with > 1% relative abundance 
(Figure 2F). Samples R-F1-E and S-F3-N were dominated with species 

Limnohabitans parvus II-B4 and Aquirufa anthreingensis, respectively. 
Four species belonging to genus Limnohabitans—L. australis, L. curvus, 
L. parvus II-B4, and L. planktonicus—were identified in both the samples 
with variable abundance. Furthermore, 73.38 and 72.06% of the bacterial 
diversity was composed of the bacterial population identified with 
relative abundance > 1% in samples R-F1-E and S-F3-N, respectively. 
Full length amplicon reads that remained unclassified in samples R-F1-E 
and S-F3-N were 1.1 and 0.82% of the total analyzed reads, respectively.

Taxonomic classification comparison with 
short and long reads 16S rRNA-based data sets

Short and full length 16S rRNA amplicon reads were obtained 
using Illumina iSeq100 and Oxford Nanopore MinION sequencers. The 
taxonomic classification results at phylum, genus and species levels 

A

C

B

FIGURE 1

The distribution heatmap of bacterial (A) phylum and (B) genus detected with relative abundance > 1% among all the water samples sequenced using 
Illumina iSeq100, an amplicon sequencing platform and analyzed on EzBioCloud. The heatmap was generated using displayR. (C) Principal Coordinate 
Analysis (PCoA) clustering based on Bray–Curtis dissimilarity index was analyzed at genus level bacterial structure to visualize the variation in bacterial 
community structures among 12 different samples, forming three distinctive clusters. Cluster 1 (blue circle) shows close microbial communities of river 
streams and associated field samples, irrespective of geographical location. Cluster 2 (red circle) represents close microbial association between samples 
collected from North Oahu. Cluster 3 (gray circle) shows close microbial association between sample R-F1-E and S-F3-N.
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were compared with different input reads (10, 20, 30, 40, and 50 K), 
randomly extracted from total obtained valid reads–for samples R-F1-E 
and S-F3-N (Figure 3).

At phylum level classification, Illumina sequenced samples R-F1-E 
and S-F3-N identified a greater number of phyla than MinION at 
different input reads (Figure 3A). In sample R-F1-E, an increase in the 
number of identified phyla was observed from 10 to 20 K reads 
sequenced using Illumina (25 and 28, respectively) and MinION (13 and 
15, respectively). With an increase in Illumina and MinION reads from 
30 to 50 K, a uniform number of phyla were identified, except for 
Illumina sequenced input read of 50 K (Figure 3A). A similar trend in 
the number of identified phyla was observed in sample S-F3-N, with an 
exception that uniformity in the number of identified phyla (31) was 
observed in Illumina sequenced reads from 30 to 50 K (Figure 3B). 
However, MinION sequenced input reads of 30 to 40 K identified 16 
phyla with a slight increase to 18 at 50 K reads. Proteobacteria and 

Bacteroidetes were two major phyla identified in sample R-F1-E with 
> 1% relative abundance, sequenced using both the techniques 
(Figure  3A). However, in sample S-F3-N, total 5-Actinobacteria, 
Bacteroidetes, Parcubacteria_OD1, Proteobacteria and, 
Verrucomicrobia and 3-Bacteroidetes, Proteobacteria and 
Verrucomicrobia were identified with relative abundance > 1% from 
Illumina and MinION sequenced reads, respectively, at different input 
reads (Figure 3B). The number of genera and the genera classified with 
relative abundance > 1% and remaining unclassified reads formed a 
uniform trend using both short-and long-amplicons at different input 
reads. The number of genera identified using Illumina input reads from 
10 to 50 K ranged from 339 to 675 for sample R-F1-E, whereas ranged 
from 338 to 561 for sample S-F3-N (Figures 3C,D). In contrast, MinION 
sequenced reads identified comparatively fewer genera ranging from 
311 to 627 and 265 to 581 for sample R-F1-E and S-F3-N, respectively 
(Figures 3C,D). However, most genera classified using short amplicon 
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FIGURE 2

Comparison of sample R-F1-E and S-F3-N sequenced using Illumina iSeq100 (short amplicon reads), Oxford Nanopore MinION (long amplicon reads), and 
Illumina NovaSeq (shotgun reads) for the classification of phylum (A, D, and G, respectively), genus (B, E, and H, respectively), and species (C, F, and I, 
respectively) with relative abundance > 1%. “Others” in the plots represents reads classified with < 1% relative abundance and reads that remains unclassified.

https://doi.org/10.3389/fmicb.2023.1039292
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Klair et al. 10.3389/fmicb.2023.1039292

Frontiers in Microbiology 08 frontiersin.org

reads were identified with low confidence values against the database, 
whereas long amplicon reads had comparatively better resolution for 
classified genera (Figures  3C,D). For both samples, the unclassified 
reads were fewer than 8 and 2% of the total input reads using short and 
long amplicon reads, respectively.

The number of species classified using long amplicon reads was 
higher than when using short amplicon reads (Figure 3). The number of 
identified species ranged from 619 to 1,421 and 551 to 1,306 for MinION 
sequenced samples R-F1-E and S-F3-N, respectively (Figures 3E,F). 
Whereas Illumina sequenced samples R-F1-E and S-F3-N identified 
species ranging from 464 to 1,089 and from 408 to 722, respectively 
(Figures 3E,F). At the species level classification, ~50% and ~ 33% of the 
total input reads remained unclassified using short amplicon reads for 
sample R-F1-E and S-F3-N, respectively, whereas long amplicon reads 
were classified with high accuracy comprising > 98% classified reads 
(Figures 3E,F). In sample R-F1-E and S-F3-N, the species identified with 
relative abundance > 1%, utilizing long amplicon reads at different 
inputs comprehends > 70% of the identified bacterial microbiota.

In term of relative abundance, almost similar abundance patterns 
were obtained with each technique when 10–50 K reads were used as an 
input data—indicated that minimum input of 10 K reads from either 
Illumina iSeq100 or Oxford Nanopore MinION, can provide similar 
resolution with 5 times more input reads. However, with respect to the 
number of classified phyla, Illumina provided better outcomes compared 
to Oxford Nanopore, and there was no dramatic increase in number of 

phyla when the input reads were increased from 10 to 50 K by either 
sequencing technology (Figures  3A,B). The analyzes indicated that 
Oxford Nanopore MinION is a better choice for higher resolution at 
genus and species levels (Figures 3C-F). To identify number of genera 
or species, it is important to include higher number of reads (~ > 20 K).

Shotgun metagenome analysis

A total of 5,61,183 and 4,91,726 non-redundant genes were 
identified from sample R-F1-E and S-F3-N, respectively, while sharing 
1,24,661 (12%) unigenes between both. Despite having close microbial 
association indicated by PCoA analysis, the samples R-F1-E and S-F3-N 
were distinctively differentiated based on unique genes composition of 
78 and 75%, respectively.

Taxonomic classification of metagenomics 
(shotgun) data

According to the obtained abundance table of each taxonomic level, 
the bar plots were plotted for the top 10 classified phyla, genera, and 
species (Figures 2G-I). At the phylum level, the most abundant phyla, in 
both the samples, were Proteobacteria, followed by Bacteroidetes with 
relative abundance > 1%. Additionally, Actinobacteria was also classified 
in sample S-F3-N with > 1% relative abundance, differentiating this from 
sample R-F1-E in which seven genera—Curvibacter, Limnohabitans, 
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FIGURE 3

Comparison of (A) total number of classified phyla; (B) the phyla classified with > 1% relative abundance; (C) total number of classified genera; (D) genus 
classified with > 1% relative abundance; (E) total number of classified species; and (F) species classified with > 1% relative abundance from sample R-F1-E and 
S-F1-E sequenced using Illumina iSeq100 and Oxford Nanopore MinION at different input reads ranging from 10 K to 50 K. “ETC (< 1%) represents the 
classified reads at different taxonomic levels with < 1% relative abundance, whereas “unclassified” represents the relative abundance of the reads that 
remains unclassified at taxonomic level.
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Flavobacterium, Pelomonas, Rhodobacter, Pseudarcicella, and 
Novosphingobium—were classified with more than 1% relative abundance, 
whereas only five genera—Limnohabitans, Flavobacterium, Rhodoluna, 
Pesudarcicella, and Novosphingobium—were classified in sample 
S-F3-N. Species level classification revealed 10 species with relative 
abundance of > 1% from both the samples. A high percentage of “others” 
in the metagenomic analysis could result from an incomplete database.

“Others” representing the relative abundance of the reads that 
remain unclassified and classified with relative abundance of < 1% was 
higher at phylum, genus, and species level classification for both the 
samples sequenced using Illumina NovaSeq (shotgun reads) than 
Illumina iSeq100 and Oxford Nanopore MinION (Figure 2). Sample 
R-F1-E represented 40.12, 69.88, and 86.12% of reads as “others” at 
phylum, genus, and species level classification, respectively. Sample 
S-F3-N at phylum, genus, and species level represented 46.25, 69.04, and 
89.53%, respectively, as “others.”

Functional profiling of active bacterial 
community

For better insight into the physiology of a bacterial community, the 
assembled metagenomic protein coding sequences were mapped against 
three functional databases—eggNOG, KEGG, and CAZy 
(Supplementary Figure S5). Both samples (R-F1-E and S-F3-N) revealed 
similarity in annotated gene function profiles and were clustered together.

Annotation based on eggNOG database revealed 
(Supplementary Figures S5A,B) that highest number genes in sample 
R-F1-E were associated with inorganic ion, amino acid, carbohydrate, 
nucleotide, and lipid transport and metabolism, cell motility, and 
transcription with the relative abundance > 1% for each function. 
Whereas in sample S-F3-N, the maximum number of genes were 
associated with seven functions and having > 1% relative abundance—
replication, recombination, and repair, translation, ribosomal structure, 
and biogenesis, nucleotide transport and metabolism, cell wall/
membrane/envelope biogenesis, post-translational modification, 
protein turnover, chaperons, coenzyme transport and metabolism, and 
energy production and conversion.

Most of the genes represented in the KEGG pathway analysis were 
associated with metabolic pathways (Supplementary Figures S5C,D), 
and particularly dominant in the category of amino acid transport and 
metabolism having 28,924 and 19,900 associated genes in samples 
R-F1-E and S-F3-N, respectively. Statistically differential features of 
functional categories based on KEGG analysis between the two samples 
were analyzed using STAMP, indicating metabolism, genetic information 
processing, human diseases, and organismal system dominant in sample 
S-F3-N, whereas environmental information and cellular processing 
were enriched in sample R-F1-E (Supplementary Figure S5D).

As per CAZy database-based analysis, glycoside hydrolases (GH) 
associated genes were most abundant with the relative abundance of 
49.33 and 51.87% in sample R-F1-E and S-F3-N, respectively, followed 
by glycosyl transferase (GT), carbohydrate-binding modules (CBM), 
carbohydrate esterases (CE), auxiliary activities (AA), polysaccharide 
lyases (PL; Supplementary Figure S5E). STAMP analysis revealed GH 
was significantly different with a q-value of 4.37e–3 and was enriched in 
sample S-F3-N (Supplementary Figure S5F). Whereas glycosyl 
transferase (GT), carbohydrate-binding modules (CBM), carbohydrate 
esterases (CE), auxiliary activities (AA), polysaccharide lyases (PL) were 
higher in sample R-F1-E, with no significant differences observed 
among these functions.

Occurrence, abundance, and diversity of 
ARGs

To explore and compare the ARGs profile in sample R-F1-E and 
S-F3-N, all unique genes obtained from the samples were BLASTp 
against the CARD database. This analysis revealed the presence of 83 
and 62 ARGs in sample R-F1-E and S-F3-N, respectively (Figure 4A), 
while sharing 50 ARGs between each other with variable relative 
abundance (Figure  4B). MexK, a resistance nodulation cell division 
(RND) antibiotic efflux pump gene, was the most abundant ARG 
present in both the samples (Figure 4C).

Furthermore, the top 10 most abundant ARGs out of 95 ARGs, 
annotated collectively from both samples, were represented in 
Circos for observing overall proportion and distribution of the 
resistance genes in both samples (Figure 4C). The top 10 ARGs 
were: mexK (multidrug resistance gene), ugd (peptide resistance 
gene), rpoB2 (rifamycin resistance gene), kdpE (aminoglycoside 
resistance gene), golS (multidrug resistance gene), dfrA3 
(diaminopyrimidine resistance gene), mtrD (macrolide resistance 
gene), Streptomyces rishiriensis parY mutant conferring resistance 
to aminocoumarin (Sris_parY_AMU; aminocoumarin resistance 
gene), Bifidobacterium ileS conferring resistance to mupirocin 
(Bbif_ileS_MUP; mupirocin resistance gene), and mtrA (macrolide 
resistance gene). The relative abundance of gene ugd, kdpE, golS, 
and dfrA3 was higher in sample R-F1-E, whereas mexK, rpoB2, 
Bbif_ileS_MUP, and mtrA were relatively higher in sample 
S-F3-N. Interestingly, ARG mtrD and Sris_parY_AMU were only 
conferred to sample R-F1-E and S-F3-N, respectively.

An additional analysis was performed to reveal the dominant 
bacterial phyla possessing the most ARG genes with different 
associated resistance mechanisms. The most abundant resistant 
mechanism associated with the annotated ARGs corresponded to 
RND antibiotic efflux pump, followed by major facilitator 
superfamily (MFS) antibiotic efflux pump, antibiotic target 
alteration (pmr phosphoethanolamine transferase), protein and 
two component regulatory system modulating antibiotic efflux 
(kdpE), antibiotic target replacement (DfrA42_TMP), and ABC 
antibiotic efflux pump. These potential antibiotic mechanisms were 
associated with the ARG that were affiliated with phyla 
Proteobacteria (Supplementary Figure S6).

Discussion

Our study highlighted significant differences and similarities in the 
bacterial communities of different irrigation water systems from 
different geographical locations (North, West, and East) on Oahu, 
Hawaii. Comparative assessment of bacterial communities between 
samples showed distinctive discriminations based on type of water 
system and geographical location. It is striking to note that natural 
stream and associated field water samples were dominated by 
Proteobacteria, regardless of their geographical locations—there was a 
close bacterial association between the samples based on beta diversity 
analysis. These outcomes agreed with the previous studies conducted in 
Brazil (Godoy et al., 2020) and Tokyo (Reza et al., 2018), which revealed 
a dominance of Proteobacteria in river water. Samples collected from 
North Oahu showed close microbial association regardless of different 
water systems, indicating an influence of geographical locations 
(topography, water bodies, climatic conditions, natural vegetation, etc.) 
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in composing the microbial consortia (Aguilar et al., 2020). Field water 
samples R-F1-E and S-F3-N were clustered based on the microbiota 
despite being irrigated by different irrigation systems (spring and 
stream) and different geographical regions (North and East), which 
prompted us to uncover the complex and diverse microbiota at a higher 
taxonomic level (Figure 1). The short amplicon reads generated from 
V3-V4 gene region of 16S rRNA using Illumina iSeq100 was able to 
detect phyla with high accuracy in addition to classification of most 
dominant genera as well. However, some genera within the family were 
not classified with high confidence value and more than 50% of the valid 
reads were unclassified, indicating a limitation of short amplicon reads 
for high resolution and accuracy of classification. A study (Nygaard 
et al., 2020) designed to uncover and compare the microbial consortia 
of indoor dust sequenced using Illumina and Nanopore MinION 
revealed significant differences in microbial composition at genus and 
species levels, with better resolution provided by MinION sequenced 
reads. Therefore, to investigate the microbiota of sample R-F1-E and 
S-F3-N at a higher taxonomic level with better resolution, full length 16S 
rRNA gene region was sequenced using Oxford Nanopore MinION and 
analyzed. Full length amplicon analysis revealed high abundance of the 
genus Limnohabitans that includes planktonic bacteria and classified 
other dominant genera within family Comamonadaceae that remained 
unclassified using short amplicon reads. All the four species within the 
genus Limnohabitans (Hahn et al., 2010; Kasalický et al., 2010) were 
successfully classified with > 1% relative abundance. Additionally, genus 
Aquirufa, a freshwater bacterium, was identified in spring and stream 
field water with relative abundance > 1% and Aquirufa antheringensis 

was the dominant species in spring field water. Another study (Pitt et al., 
2019) also found the higher abundance of A. antheringensis in fresh 
water. The resolution obtained for genus and species level classification 
was better using long amplicon reads with < 2% valid reads that 
remained unclassified (Figure 2).

Furthermore, we  compared the performance of long reads 
(~ 1,500 bp) obtained from Oxford Nanopore MinION with short reads 
(~ 300 bp) obtained from Illumina iSeq100 to assess bacterial taxonomic 
classification at phylum, genus, and species levels with different numbers 
of input reads. Results from this experimental study showed uniform 
trends in classification at phylum, genus, and species levels for samples, 
R-F1-E and S-F3-N, at 10, 20, 30, 40, and 50 K input reads (Figure 3). 
However, when long-and short-read outcomes were compared, 
dissimilarities in relative abundance at all three taxonomic levels were 
observed (Figure 3). Short-read-based taxonomic analysis provided the 
most comprehensive classification at the phylum level compared to 16S 
rRNA full length reads and shotgun metagenome data (Figures 2, 3). 
However, 16S rRNA full length reads clearly illustrated its advantage for 
classification at genus and species levels (Figures 2, 3). In a study (Komiya 
et al., 2022) proposed Oxford Nanopore MinION as a low cost and rapid 
technology for revealing microbial communities with higher resolution 
at the species level which ultimately aids in identifying bacteria potentially 
pathogenic to human health. In our study, with a high number of 
unclassified reads at phylum [39.52% (R-F1-E); 45.82% (S-F3-N)], genus 
[68.04% (R-F1-E); 68.35% (S-F3-N)] and, species [85.37% (R-F1-E); 
89.17% (S-F3-N)] levels, we have not observed any advantages of using 
shotgun metagenome data for taxonomic classification (Figure 2)—this 
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FIGURE 4

Distribution heatmap to represent (A) comparison of relative abundance of a total 95 Antibiotic resistance gene (ARG) profile obtained from sample R-F1-E 
and S-F3-N; (B) comparison of relative abundance of 50 ARGs shared between sample R-F1-E and S-F3-N. All the unique genes from the metagenomic 
assembly were blastp against Comprehensive Antibiotic Resistance Database (CARD). (C) Circos analysis displays the corresponding abundance relationship 
between samples and top 10 identified antibiotic resistance genes (ARGs) along with “others” representing remaining ARGs. Circle chart is divided into two 
parts. The right side of the circle is sample information, and the left side of the circle represents top 10 ARGs. Inner circle with different colors represents 
different ARGs. The scale represents the relative abundance, and the unit is ppm. The left part represents the sum of relative abundance of different samples 
for ARG, while the outer right circle represents the relative abundance of different ARGs in the samples.

https://doi.org/10.3389/fmicb.2023.1039292
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Klair et al. 10.3389/fmicb.2023.1039292

Frontiers in Microbiology 11 frontiersin.org

could be due to the limited and incomplete annotated metagenomic and 
bacterial genome databases currently available (Pignatelli et al., 2008). 
With the advancement and improvement in the Nanopore MinION 
technology, this efficient, cost-effective, and robust technology can 
be employed for on-field microbiome study of environmental samples 
with minimum data requirements (Goordial et al., 2017).

The environmental samples consist of complex and diverse 
microbiota which are better resolved in terms of predication of microbial 
community’s functions. This can be  achieved using shotgun 
metagenomic sequencing with advanced next generation sequencing 
technologies that generates enormous amounts of genomic data 
(Meneghine et al., 2017). However, due to different sequencing protocols 
and annotated databases, metagenome analysis and 16S rRNA gene 
sequencing cannot provide an identical taxonomic classification, as 
observed in our study and in (Peterson et  al., 2021). Metagenomic 
functional analysis revealed the presence of 78 and 75% of unique genes 
in sample R-F1-E and S-F3-N, respectively, while only 12% of the genes 
were shared between both the samples, but interestingly, were annotated 
for comparable gene functional profiles (Supplementary Figure S5). The 
relatively high abundance of genes was related to metabolism of amino 
acids, nucleotides, carbohydrates, coenzymes, lipids, and inorganic ion 
metabolism and transport. ‘Amino acid metabolism’ was enriched in 
both the samples, which may be due to fertilizer residues that provide a 
suitable living environment for microbiota that use amino acids. 
Additionally, environmental samples consist of diverse and abundant 
complex mixtures of carbohydrates requiring different enzymes for 
metabolism, mainly supported by glycoside hydrolases (GH; Berlemont 
and Martiny, 2016). In our study, GH were the most abundant and 
significantly different among all the other identified enzymes in both 
samples (Figures 5E,F). This enzyme assists in the enzymatic processing 
of carbohydrate, ultimately contributing to functioning of an ecosystem, 
global carbon cycling. The metagenomic data also revealed the 
prevalence of a variety of ARGs in both the samples. The ubiquity of 
ARGs in the environmental sample is an emerging concern. A study 
(Pruden et al., 2006) documented the prevalence of ARGs in irrigation 
ditch water and urban/agriculturally impacted river sediments leading 
to the potential spread of ARGs to or from humans. From 95 identified 
ARGs, only 50 genes were shared between both the samples with 
variable abundance depending on the microbial consortia and their 
genome compositions (Figure  4)—the genomic composition can 
be altered through horizontal gene transfer from environment or other 
bacteria mediated by mobile genetic elements such as plasmids, 
transposons, bacteriophages, insertion sequences and integrons (Stalder 
et al., 2012; Rizzo et al., 2013). The most abundant ARG in both the 
samples was MexK, a resistance nodulation cell division (RND) 
antibiotic efflux pump gene which can transport multiple classes of 
antimicrobials, contributing to multidrug resistance (Colclough et al., 
2020). Therefore, uncovering the bacterial components, functional 
analysis, and investigation of the ARGs will resolve the microbial 
complexity and help to formulate better disease management strategies 
for water transmitted pathogens.

Conclusion

The bacterial consortia found in different water source of taro 
irrigation across the island of Oahu, Hawaii revealed that 
Proteobacteria is the most dominant phyla, except for a few samples 

from storage tank and spring water. The most reliable and 
comprehensive taxonomic classifications at phylum and genus/
species levels were observed with input reads obtained from 
Illumina and Oxford Nanopore, respectively. The lack of robust and 
comprehensive annotated metagenome and bacterial genome 
databases contributed to inconclusive classification using shotgun 
metagenome reads, particularly at genus and species levels. 
However, metagenomic data contributed to the understanding of 
gene distribution of microbiomes and their functions, including 
ARGs, associated with different microbial consortia. This study 
provided some appropriate sequencing platforms and pipelines to 
study irrigation water microbiome.
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SUPPLEMENTARY FIGURE 1

Bar plot comparison of phylum level classification, classified with relative 
abundance of >1% in 11 samples- R-F1-E, R-S1-E, R-S2-W, R-F2-W, S-F3-N, R-S4-
SE, R-F4-SE, R-S5-SE, R-F5-E, T-S6-N, and R-S7-N (Replicate 1 and Replicate 2) 
sequenced for short length amplicon using Illumina iSeq100 and analyzed on 
EzBioCloud platform. “Others” represents the reads classified with less than <1% 
relative abundance and remains unclassified in the classification against 
the database.

SUPPLEMENTARY FIGURE 2

Distribution heatmap of bacterial species classified with >1% relative 
abundance among all the 12 water samples—sequenced for V3-V4 region 
of 16S rRNA gene region using Illumina iSeq100 sequencing platform. The 
generated short amplicon reads were analyzed using EzBioCloud 
platform. The heatmap was generated using display R.

SUPPLEMENTARY FIGURE 3

UPGMA (unweighted pair group method with arithmetic mean) clustering of 
water samples based on Bray-Curtis dissimilarity index at genus level. Samples 
were grouped in three distinctive clusters: Cluster 1 (R-F1-E and S-F3-N) 
irrespective of water system or geographical location, Cluster 2 (R-S1-E, R-F2-W, 
R-S2-W, R-F4-SE, R-S4-SE, R-F5-SE, and R-S5-SE) based on irrigation source and 

associated taro field water, and Cluster 3 (S-S3-N, T-S6-N, and R-S7-N) based on 
geographical location.

SUPPLEMENTARY FIGURE 4

Bar plot comparing the (A) genus and (B) species classified with relative 
abundance of >1% in sample R-F1-E (Replicate 1 and Replicate 2) sequenced for 
full length amplicon using Oxford Nanopore MinION and analyzed on EPI2ME 
platform. Input valid reads that were not classified to genus and species levels are 
represented as “Unclassified”, while “ETC (<1%)” represents the bacterial 
population identified with relative abundance of <1%.

SUPPLEMENTARY FIGURE 5

Comparison of samples R-F1-E and S-F3-N for relative abundance and 
statistical differences of annotated gene function profiles based on mapping of 
assembled metagenomic protein coding sequences to three databases: (A,B) 
non-supervised Orthologous groups (eggNOG), (C,D) Kyoto Encyclopedia of 
Genes and Genomes (KEGG), and (E,F) Carbohydrate-Active Enzymes Database 
(CAZy). Statistic al analyses performed using STAMP v 2.1.3 software, employing 
Fisher’s exact test with Newcombe-Wilson CI method and Benjamini-Hochberg 
FDR correction factors, and visualized using extended error bar plots.

SUPPLEMENTARY FIGURE 6

Circos analysis displays the corresponding abundance relationship between 
identified dominant phyla (Proteobacteria and Actinobacteria) along with “other” 
representation of identified phyla and associated resistance mechanism. Circle 
chart is divided into two parts. The right side of the circle is phyla information, and 
the left side of the circle is antibiotic resistance mechanisms. Inner circle with 
different colors represents different antibiotic resistance mechanisms. The scale 
represents the relative abundance, and the unit is ppm. The left part represents 
the sum of relative abundance of different phyla for resistance mechanisms, while 
the outer right circle vice versa.
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