AUTHOR=Li Qing-mei , Zhang Dai , Zhang Ji-zong , Zhou Zhi-jun , Pan Yang , Yang Zhi-hui , Zhu Jie-hua , Liu Yu-hua , Zhang Li-feng TITLE=Crop rotations increased soil ecosystem multifunctionality by improving keystone taxa and soil properties in potatoes JOURNAL=Frontiers in Microbiology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2023.1034761 DOI=10.3389/fmicb.2023.1034761 ISSN=1664-302X ABSTRACT=
Continuous cropping of the same crop leads to soil degradation and a decline in crop production, and these impacts could be mitigated through rotation cropping. Although crop rotation enhances soil fertility, microbial community diversity, and potato yield, its effects on the soil ecosystem multifunctionality (EMF) remain unclear. In the present research, we comparatively examined the effects of potato continuous cropping (PP) and rotation cropping [potato–oat rotation (PO) and potato–forage maize rotation (PFM)] on the soil EMF as well as the roles of keystone taxa, microbes abundance, and chemical properties in EMF improvement. It was demonstrated that soil EMF is increased in rotation cropping (PO and PFM) than PP. Soil pH was higher in rotation cropping (PO and PFM) than in PP, while total phosphorus (TP) and available phosphorus (AP) were significantly decreased than that in PP. Rotation cropping (PO and PFM) markedly changed the bacterial and fungal community compositions, and improved the potential plant-beneficial fungi, e.g.,