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A prerequisite for prebiotic chemistry is the accumulation of critical building

blocks of life. Some studies argue that more frequent impact events on the

primitive Earth could have induced a more reducing steam atmosphere and thus

favor widespread and more efficient synthesis of life building blocks. However,

elevated temperature is also proposed to threaten the stability of organics

and whether life building blocks could accumulate to appreciable levels in the

reducing yet hot surface seawater beneath the steam atmosphere is still poorly

examined. Here, we used a thermodynamic tool to examine the synthesis affinity

of various life building blocks using inorganic gasses as reactants at elevated

temperatures and corresponding steam pressures relevant with the steam-

seawater interface. Our calculations show that although the synthesis affinity of

all life building blocks decreases when temperature increases, many organics,

including methane, methanol, and carboxylic acids, have positive synthesis affinity

over a wide range of temperatures, implying that these species were favorable to

form (>10−6 molal) in the surface seawater. However, cyanide and formaldehyde

have overall negative affinities, suggesting that these critical compounds would

tend to undergo hydrolysis in the surface seawaters. Most of the 18 investigated

amino acids have positive affinities at temperature <220◦C and their synthesis

affinity increases under more alkaline conditions. Sugars, ribose, and nucleobases

have overall negative synthesis affinities at the investigated range of temperatures.

Synthesis affinities are shown to be sensitive to the hydrogen fugacity. Higher

hydrogen fugacity (in equilibrium with FQI or IW) favors the synthesis and

accumulation of nearly all the investigated compounds, except for HCN and

its derivate products. In summary, our results suggest that reducing conditions

induced by primitive impacts could indeed favor the synthesis/accumulation

of some life building blocks, but some critical species, particularly HCN and

nucleosides, were still unfavorable to accumulate to appreciable levels. Our
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results can provide helpful guidance for future efforts to search for or understand

the stability of biomolecules on other planets like Mars and icy moons. We

advocate examining craters formed by more reducing impactors to look for the

preservation of prebiotic materials.

KEYWORDS

origin of life, primitive Earth, impact events, abiotic synthesis, steam atmosphere,
building blocks of life

1. Introduction

How life originated on the Earth (or beyond) has been a long-
lasting puzzle for decades (Haldane, 1929; Oparin and Morgulis,
1938). The origin of life relies on several environmental factors,
including the availability of various molecular building blocks, such
as amino acids, sugars, and nucleotides. Apart from this, chemical
emergence of life is also believed to require high levels of key
reactive compounds, including cyanide (HCN and CN−), urea
[CO(NH2)2], and formaldehyde (HCHO). Cyanide is thought to
be one essential base to form nucleobases and other N-bearing
biomolecules in the primitive ocean (Sanchez et al., 1967; Yadav
et al., 2020; Pérez-Fernández et al., 2022), thus constituting a
critical starting point for the “RNA World” hypothesis; urea is
suggested to be a useful reagent for prebiotic phosphorylation
reactions (Lohrmann and Orgel, 1971; Powner et al., 2009), whereas
formaldehyde – a major hydrolysis product of cyanide – is believed
to be a critical starting material for the synthesis of sugars on
primitive Earth (Orgel, 1998).

There are two major sources commonly put forward for the
molecules aforementioned on the primitive Earth: endogenous
synthesis and extraterrestrial delivery (Chyba and Sagan, 1992).
The former mainly includes synthesis processes in various high-
energy environments, including the hydrothermal alteration of
ultramafic rocks (e.g., McCollom and Seewald, 2007; Cardace
et al., 2015; McDermott et al., 2015; Ménez et al., 2018), the
heating or radiation of the primitive atmosphere and surface waters
(Stribling and Miller, 1987; Kobayashi et al., 1998; Parkos et al.,
2018; Li et al., 2022; Zang et al., 2022), and the lightning [e.g.,
the widely known Urey-Miller experiment; (Miller, 1953)]. The
latter source, extraterrestrial delivery, is primarily via the impact
of extraterrestrial materials (meteorites, comets, and interplanetary
dust particles) on the early Earth, which was much more
frequent than today (Ryder, 2002). These extraterrestrial materials,
particularly carbonaceous chondrites and comets, can contain
substantial levels of various organic compounds (Kvenvolden
et al., 1970; Cronin and Chang, 1993; Furukawa et al., 2019).
Additionally, people suggested that shock-induced synthesis of
various organics molecules could happen during large impact
events (Bar-Nun et al., 1970; Furukawa et al., 2009; Goldman et al.,
2010; Martins et al., 2013; Sugahara and Mimura, 2015; Takeuchi
et al., 2020).

Although life relies on liquid water, polymerization reactions
that lead to functional biomolecules (e.g., polynucleotides,
polypeptides) are largely dehydration processes. That is one major
challenge for the origin of life studies as one usually needs very
high reactant concentrations for chemical evolution to happen

in simulative experiments–for example, molar level of HCN used
in synthesis reactions (Orgel, 1998; Yadav et al., 2020) vs. the
<10−6 molar concentrations that have been estimated for the
primitive ocean (Miyakawa et al., 2002). Earlier simulation studies
had assumed a reducing primitive atmosphere where synthesis
and accumulation of organic compounds would be more favored
(Miller, 1953). For example, photochemical synthesis of HCN
is shown to have appreciable yields in a relatively reducing
atmosphere rich in CH4, C2H2, or CO (Schlesinger and Miller,
1983; Rimmer and Rugheimer, 2019). However, chemical analyses
of ancient zircons implied that redox state of the early mantle was
similar to the modern (Trail et al., 2011) and thus the early volcanic
gas should be less reducing or weakly oxic, similar to the modern.
Photochemical models further suggested that hydrogen escape
to the space would only allow a weakly to moderately reducing
atmosphere on the early Earth, with a partial pressure of H2,g
inferior to 10−2 bar (Kuramoto et al., 2013; Hao et al., 2019). These
results contradict the proposed view of highly reducing atmosphere
enabling pervasive abiotic synthesis on the primitive Earth.

Recently, several studies pointed out that a reducing
atmosphere could rather be periodically induced by impacts
on the primitive Earth (Hashimoto et al., 2007; Genda et al.,
2017a,b; Schaefer and Fegley, 2017; Parkos et al., 2018; Zahnle
et al., 2020). In the proposed scenario, reducing impactors would
tend to equilibrate with the induced steam atmosphere and release
high levels of reducing gasses, such as H2, CH4, and NH3 (Zahnle
et al., 2020; Pearce et al., 2022). It was further estimated that
photochemistry in this reducing atmosphere would generate high
levels of reactive species critical to prebiotic chemistry, such as
HCN (Benner et al., 2020; Pearce et al., 2022). However, the impact
events led to not only a more reducing atmosphere but also a hot
surface environment. For instance, impact simulations suggested
that a large impactor (corresponding from 100 to 250 km in
diameter) would generate a steam atmosphere (>100◦C) lasting
for 1 to 100 years (Segura et al., 2002; Zahnle et al., 2020; Pearce
et al., 2022). Under these circumstances, surface waters presumably
in equilibrium with the steam atmosphere would also be hot.
Whether or not photochemically synthesized life building blocks
could accumulate to high concentrations in the reducing yet hot
surface waters has not been carefully examined in the previous
models.

Generally, increasing temperature would imply a much faster
hydrolysis rate of the building blocks of life. For example, under
neutral pH conditions, the half-life time of HCN decreases from
several years at ambient temperatures to mere hours at 100◦C
(Miyakawa et al., 2002). However, the net reaction of synthesis
and hydrolysis processes would be governed by the thermodynamic
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driving force. Indeed, previous studies already suggested that
some small organics could reach thermodynamic equilibrium with
geologically abundant gaseous species under elevated temperatures
(Shock, 1988, 1990; Lazcano and Miller, 1994; Franiatte et al., 2008).
In this study, we applied thermodynamic calculations to assess
the chemical affinities for synthesis/degradation of the building
blocks of life under the simulative post-impact conditions. We
focused on the surface seawater where photochemically synthesized
organics and the relevant reactive compounds from the atmosphere
would precipitate and dissolve. Thus, the surface seawater might
steadily reach equilibrium with the impact-induced reducing and
hot atmosphere.

The organics studied here were selected so as to represent the
main groups of biomolecules (amino acids, sugars, nucleobases,
and nucleosides) and also include some of the major organics
found in meteorites, comets, and interplanetary particles (Hayes,
1967; Pizzarello et al., 2006; Goesmann et al., 2015; Aponte
et al., 2020; Glavin et al., 2020; Oba et al., 2022) (summarized in
Supplementary Table 1). We have also considered some critical
compounds used in prebiotic synthesis [cyanide (Yadav et al., 2020),
formaldehyde, and urea], as well as common metabolic materials
[methanol (Russell and Nitschke, 2017), glycolic acid, and pyruvic
acid]. Methane is also considered here since it was thought to be
a critical greenhouse gas keeping the early Earth warm under the
faint young Sun (Feulner, 2012).

2. Materials and methods

2.1. Post-impact surface conditions

As mentioned above, large impact events could induce a
reducing steam atmosphere lasting for years or longer. Thus, in
this study, we focused on simulating post-impact surface waters
beneath the steam atmosphere (Table 1). Specifically, we chose to
model a wide range of temperatures (100–340◦C, allowing a steam
atmosphere above the hot surface seawater) and, correspondingly,
the atmospheric pressure as the saturation pressure of water vapor.
The atmospheric composition (except for H2O) was adopted from
Zahnle et al. (2020); the H2O vapor pressure is assumed to be
in equilibrium with liquid water. The surface water’s redox state
was assumed to be dominated by the diffusion of H2,g from the
atmosphere, i.e., by H2,g partial pressure and solubility in the
water. The surface seawater pH would be largely controlled by
equilibration with the atmospheric CO2 (and other acidic gasses,
such as HCl) as well as alteration of the impactor (Kadoya et al.,
2020). The partial pressure of acidic gases and the extent of the
water-rock interaction, which are key parameters to estimate the
pH, are poorly constrained and might evolve in time and space.
Given these uncertainties, we decided to study a wide range of
pH (2–12) in the models, thus encompassing various potential
scenarios.

2.2. Abiotic synthesis reaction affinities

Gibbs free energy (Gr) of a reaction:

aA + bB 
 cC + dD (1)

is defined as

4Gr = 4G◦r + 2.303RTlog10Q, (2)

where R is ideal gas constant (8.314 J/(mole·K), T is temperature
in Kelvin (=273.15+ ◦C), and Q is reaction quotient {A}

a
× {B}b

{C}c × {D}d

({X} refers to the activity/fugacity of species X). When the reaction
reaches equilibrium, it turns into a special case:

4G◦r = − 2.303RTlog10K, (3)

where K is the reaction constant at a given temperature and
pressure. The reaction affinity is defined as:

Ar = − 2.303RTlog10
Q
K

. (4)

The actual value of Ar represents the maximum amount of energy
released (Ar > 0) or required (Ar < 0) for the reaction to reach
thermodynamic equilibrium (Ar = 0). Therefore, if Q > K, Ar is
negative and the overall reaction tends to move backward; if Q < K,
Ar is positive and the overall reaction tends to move forward; if
Q = K, Ar is zero and the reaction is at equilibrium.

Here, we calculated the reaction affinities of abiotic synthesis
reactions (Supplementary Table 2). We first calculated the
reaction quotient by using the partial pressures of gaseous
bases from Zahnle et al. (2020) and assuming the activity of
the product as 10−6. The selection of the product activity is
arbitrary here for better comparison between different organics
and also reflects the fact that chemical evolution reactions
usually requires appreciable levels (>10−6 molal) of dissolved
bases. Reaction constants for the abiotic synthesis reactions
under both ambient and hydrothermal conditions were calculated
using the Deep Earth Water (DEW) model [(Sverjensky et al.,
2014); free access online],1 which was built on the revised
Helgeson-Kirkham-Flowers (HKF) equation of state for aqueous
species (Shock et al., 1997). We then used the calculated
affinity to evaluate whether the synthesis/stability of 10−6 molal

1 http://www.dewcommunity.org/

TABLE 1 Model settings for the impact calculations.

Environmental
parameter

Settings Consideration and
references

Temperature 100–340◦C Temperature allowing the
condensation of steam atmosphere
to liquid water ocean

Total pressure
(predominantly as
H2O,g)

Saturation pressure
of water

A global water ocean in
equilibrium with steam atmosphere

pCO2,g 1 bar Zahnle et al., 2020

pCO,g 10−3 bar Zahnle et al., 2020

pH2,g 100.9 bar Zahnle et al., 2020

pNH3,g 10−2.5 bar Zahnle et al., 2020

pN2,g 1 bar Zahnle et al., 2020

pH 2–12 A wide range representing different
hydrothermal settings (Gulmann
et al., 2015; Seewald et al., 2015)
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product is thermodynamically favorable (positive affinity) or
not (negative affinity) in hot surface seawater after impact
events. For protonated organics (e.g., HCOOH and HCOO−),
we firstly calculated the pKa(s) of the protonation reaction(s)
and then used Henderson-Hasselbalch Equation to calculate
speciation for a given pH (Supplementary Figure 1). The reported
affinity for protonated species will be the sum of percentage of
different protonated species multiplied by their corresponding
affinities, e.g., Atotal = A∗HCOOH

[HCOOH]
[HCOOH] + [HCOO−] + A∗HCOO−

[HCOO−]
[HCOOH] + [HCOO−] . Its Internally consistent thermodynamic
properties (G, H, S, Cp, and HKF parameters) of the organics come
from a compilation of previous studies (Shock and Helgeson, 1990;
Shock et al., 1992; Schulte and Shock, 1993; Plyasunov and Shock,
2001) and are summarized here in Supplementary Table 3.

It is notable that we considered separately two C sources in
all synthesis reactions: CO and CO2. In the primitive atmosphere,
CO could come from volcanic outgassing and photo-dissociation
of CO2; the latter might reach photochemical equilibrium in a
steady state (Kasting, 2014). However, such gaseous equilibrium
does not translate to the thermodynamic equilibrium of their
aqueous species in surface waters due to the kinetic barrier of CO2
reduction under ambient conditions. A similar example is the co-
existence of H2 and O2 in modern and early atmospheres (Kasting,
1993), which certainly did not reach thermodynamic equilibrium
with liquid H2O under ambient conditions (Hao et al., 2019).
Here, we also calculated the thermodynamic equilibrium constant
for the reaction: CO2,g + H2,gCOg + H2O and compared with
the reaction quotient calculated by the reference composition in
Table 1 (Supplementary Figure 2). The comparison clearly shows
that CO2 and CO are not in aqueous equilibrium, and there is
a reduction tendency of CO2 to generate CO by H2. Therefore,
using CO and CO2 separately as C source in abiotic synthesis
reactions does not necessarily result in same affinity values, and in
this study, the synthesis affinity value with CO would be generally
lower than CO2 due to the addition of positive affinity for the
above-mentioned reaction.

3. Results

3.1. C1 species

According to our calculations, the affinity of cyanide synthesis
to reach 10−6 molal level from either CO or CO2 as carbon source
is overall negative under a wide range of temperature and pH
conditions investigated in this study (Figure 1). Synthesis affinity
using CO as carbon base (Figure 1A) is generally lower than using
CO2 (Figure 1B). It is notable that the affinity decreases with
increasing temperatures but increases at elevated pHs.

Unlike cyanide, our calculations suggest that synthesis
affinities of methane and methanol are positive under the
explored temperature conditions (Figures 2A, B). However,
the synthesis affinity of formaldehyde is overall negative
(Figure 2C), like cyanide. Comparing the three C1 organics,
there is a steadily decreasing trend of synthesis affinities along
with increasing oxidation state of C, i.e., synthesis affinity:
CH4 > CH3OH > HCHO. However, the synthesis affinity of

formic acid + formate, which has the most oxidized C, is overall
positive (Figures 3A, B), inconsistent with the observed trend.
Like cyanide, synthesis affinity of C1 organics decreases at high
temperatures but increases at elevated pHs (for formic acid).
Moreover, abiotic synthesis of these C1 organics using CO as the
carbon source has an overall lower affinity than using CO2.

3.2. C2–C3 species

Similar to formic acid, acetic acid and propanoic acid have
positive synthesis affinities (to reach 10−6 molal) at almost the
whole range of temperature and pH (Figures 3C–F). Moreover,
synthesis affinities are overall lower using CO (Figures 3C, E) as
the carbon source than CO2 (Figures 3D, F). Furthermore, the
elevation of pH results in increasing reaction affinity. However,
comparing the absolute affinity values of these carboxylic acids, the
elongation of alkane chain seems to result in increasing affinities
at relatively low temperatures (< 260◦C) but decreasing affinities
at high temperatures (>260◦C). At T > 300◦C and pH < 8, the
synthesis affinity of propanoic acid even turns negative.

Synthesis affinities of glycolic and pyruvic acids show a similar
trend to the above-mentioned carboxylic acids, i.e., decrease at
high temperatures and low pHs (Figure 4). However, the affinities
are overall smaller than those of acetic and propanoic acids,
respectively, and become negative at relatively lower temperatures
(>140◦C for glycolic acid and >220◦C for pyruvic acid compared
with >330◦C for acetic acid and >310◦C for propanoic acid, at
pH = 7). Moreover, pH seems to have a more pronounced effect
on the synthesis affinities of glycolic and pyruvic acids than acetic
and propanoic acids.

3.3. Amino acids

Here, synthesis affinities of five selected amino acids (to reach
10−6 molal) were plotted as functions of temperature and pH
(Figure 5), with the rest displayed in the Supplementary Figures 3–
6. Among them, glycine, alanine, aspartic acid, and serine are
major amino acids found in meteorites (Aponte et al., 2020;
Glavin et al., 2020), and lysine, despite trace or no detection in
meteorites, represents another type of amino acid with two amine
groups. These five amino acids have overall negative synthesis
affinities at elevated temperatures and the affinity increases at lower
temperatures. Among them, the affinity of serine turns positive at
temperature close to 100◦C and pH > 7, whereas other four at
temperature <180◦C. For these five amino acids, the effect of pH on
their affinities varies slightly: for glycine, alanine, and serine, their
affinity increases at alkaline pHs but remains constant at acidic pHs;
for aspartic acid, its affinity increases steadily from acidic pHs to
alkaline pHs; for lysine, the affinity increases when pH increases or
decreases with the minimal value at pH∼7, possibly reflecting joint
effects of –NH2 and –COOH groups.

For better comparison and presentation purposes, we
have calculated and compared the synthesis affinities of 18
proteinogenic amino acids excluding S-containing species
at neutral pH (temperature dependent, calculated by DEW
model as well; Supplementary Figure 1). The result shows that
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FIGURE 1

Synthesis affinity of cyanide (HCN,aq + CN-) using (A) CO,g and (B) CO2,g as the carbon source.

FIGURE 2

Synthesis affinity of (A) methane (CH4,aq), (B) methanol (CH3OH,aq), and (C) formaldehyde (HCHO,aq) using CO,g (in red) and CO2,g (in blue) as the
carbon source. Given that these species are not protonated/deprotonated at the range of pH investigated here, pH has no effects on the results.

the synthesis affinities decrease with increasing temperature
and nearly all amino acids have negative synthesis affinities
at T > 220◦C (Figure 6). At T < 220◦C, however, most of
the amino acids have positive synthesis affinities with the order:
phenylalanine > leucine∼isoleucine∼glutamine > valine∼tyrosine
> tryptophan∼lysine > ∼proline∼glutamic acid∼alanine
∼asparagine > aspartic acid∼glycine∼threonine. In contrast,
serine, histidine, and arginine have negative synthesis affinities
across a large range of temperatures. Like other organics mentioned
above, synthesis affinities values using CO as the carbon source are
slightly lower than CO2.

3.4. Sugar, nucleobases, and nucleosides

Nearly all the investigated sugar, nucleobases, and nucleosides
have negative synthesis affinities (to reach 10−6 molal) at a
wide range of temperature and the affinities increase with
lower temperatures (Figure 7). Among them, deoxythymidine,
deoxyribose, and thymine have positive affinities at relatively low
temperatures, i.e., <140◦C. Generally, nucleobases and sugars have
similar synthesis affinity values, which are higher overall than the

affinities of nucleosides. Like other organics, the affinities have
slightly lower values using CO than CO2 as the C source.

4. Discussion and implications

4.1. Sensitivity of organic synthesis
affinity to environment settings

Given that the abiotic synthesis reactions are essentially
reduction of inorganic carbon (either CO2 or CO) by hydrogen,
the hydrogen fugacity in the steam atmosphere would be expected
to significantly affect the synthesis affinities. The above affinities
were calculated by assuming the redox state constrained by a
fixed partial pressure of H2,g modeled by Zahnle et al. (2020)
(Supplementary Figure 7). However, as also discussed in previous
studies, the hydrogen pressure in the steam atmosphere might
vary significantly depending on the composition of the impactor
as well as the size of the impactor relatively to the ocean
volume (i.e., reductant/oxidant flux ratio). More reducing impactor
objects, like iron meteorites, would generate (at least locally) a
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FIGURE 3

Synthesis affinity of formic [HCOOH,aq + HCOO-; (A,B)], acetic [CH3COOH,aq + CH3COO-; (C,D)], and propanoic [C2H5COOH,aq + C2H5COO-;
(E,F)] acids using (A,C,E) CO,g and (B,D,F) CO2,g as the carbon source.

more reducing atmosphere with higher hydrogen levels (Parkos
et al., 2018; Zahnle et al., 2020; Pearce et al., 2022). Moreover,
big impactors would consume more oxidants in the surface
environments and induce larger-scale and longer-term reducing
atmosphere (Segura et al., 2002; Parkos et al., 2018; Zahnle et al.,
2020). In extreme cases, if pretty big impactors deplete the oxidants
in the surface environments, the hydrogen level in the post-impact
atmosphere might be predominantly buffered by the reducing
mineral assemblages in the impactor, e.g., Fayalite (Fe2SiO4)-
Quartz (SiO2)-Iron (Fe) (FQI) or Iron (Fe)-Wüstite (FeO) (IW) or
else (Zahnle et al., 2020).

Here, we calculated the partial pressure of H2,g constrained
by the equilibria of FQI and IW (Supplementary Figure 7) and
then, examined the abiotic synthesis affinities of the selected
organics using CO2 as the C source under various hydrogen
fugacities (Figures 8, 9). We also compared the results with Fayalite
(Fe2SiO4)-Magnetite (Fe3O4)-Quartz (SiO2) (FMQ) buffer, a more
oxidizing mineral assemblage relevant with Earth’s differentiated
mantle (Trail et al., 2011) and hydrothermal vent systems (Trail
and McCollom, 2023). Our results suggest that the affinities
are indeed highly sensitive to the hydrogen fugacity in the
atmosphere, and higher hydrogen fugacity greatly favors synthesis
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FIGURE 4

Synthesis affinity of glycolic acid [CH2OHCOOH,aq + CH2OHCOO-; (A,B)] and pyruvic acid [CH3COCOOH,aq + CH3COCOO-; (C,D)] using (A,C)
CO,g and (B,D) CO2,g as the carbon source.

FIGURE 5

Synthesis affinity of glycine (A,B), alanine (C,D), aspartic acid (E,F), serine (G,H), and lysine (I,J) using CO,g (A,C,E,G,I) and CO2,g (B,D,F,H,J) as the
carbon source.

of the studied compounds. For example, formaldehyde, which
has negative synthesis affinities in a wide range of temperatures
under the referenced redox condition (Figure 2C), becomes
thermodynamically favored to form and accumulate (to >10−6

molal) at high hydrogen fugacities constrained by FQI and IW
(Figure 8A). Similarly, abiotic synthesis of 10−6 molal cyanide
becomes favorable at high hydrogen fugacities (FQI and IW) and

high pH (>11) (Figures 8B, C). Glycine—which has the lowest
synthesis affinity among amino acids studied under reference
redox condition (Figure 6)–becomes strongly favored to form and
accumulate to >10−6 molal under a wide range of temperatures
and pHs at high hydrogen fugacities (FQI and IW; Figures 9A, B);
all amino acids can therefore be expected to have strongly positive
synthesis affinities at high hydrogen fugacities. Similarly, abiotic
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FIGURE 6

Synthesis affinity of proteinogenic amino acids excluding S-containing species using (A) CO,g and (B) CO2,g as the carbon source. In the
calculations, pH was set neutral, which is also temperature-dependent.

FIGURE 7

Synthesis affinity of sugar, nucleobases and nucleosides using (A) CO,g and (B) CO2,g as carbon source.

synthesis of most nucleosides, sugars and nucleobases (to 10−6

molal) becomes thermodynamically favorable at high hydrogen
fugacities constrained by FQI and IW, except for adenine, guanine,
adenosine and guanosine (Figures 9D, E).

However, at relatively low hydrogen fugacity constrained by
FMQ, all the life building blocks considered in Figures 8, 9
have lower synthesis affinities compared with reference hydrogen
fugacity, and are thus less favorable to form/accumulate. This
redox state is close to the one in some hydrothermal systems
on the Hadean Earth (Trail and McCollom, 2023), which was
proposed to be one candidate environment for the emergence of
life. Although we have not fully considered possibly different water
chemistry in the hydrothermal systems, our results agree roughly
with the early proposal that amino acids are not thermodynamically
favorable to accumulate to levels higher than 10−8 molal in
natural hydrothermal fluids (Amend and Shock, 1998). Thus, if
the organics were synthesized locally around the crater(s) in the
primitive ocean and diffused along the concentration gradient to
the open ocean, they might tend to be degraded in the more

oxidizing hydrothermal vents, which is the major sink for organic
matter in the modern ocean (Lang et al., 2006). Previous studies
once proposed that the mixing between hydrothermal fluid and
seawater would favor the abiotic synthesis of some biomolecules
(e.g., Shock and Schulte, 1998; Shock and Canovas, 2010; Amend
et al., 2013). A re-evaluation of this hypothesis under primitive
settings is complicated given the unknown fluid chemistries and
beyond the scope of our study here. Above all, reducing capacity
(i.e., hydrogen) of the post-impact atmosphere has a significant
effect on the synthesis affinities of organics in the primitive Earth,
and beneath a more reducing steam atmosphere (at FQI or IW
buffer), nearly all of life building blocks are favorable to form.

The post-impact water-rock interaction would not only induce
a reducing atmosphere, but also elevate the water pH (Kadoya
et al., 2020) and generate secondary minerals (Schoonen and
Smirnov, 2016) inside and around the craters. Our calculations
suggest a positive effect of pH on the synthesis affinity from
neutral to alkaline pHs. Abiotic synthesis of cyanide even becomes
thermodynamically favorable at pH > 11 under more reducing
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FIGURE 8

Synthesis affinity of (A) formaldehyde, (B–D) cyanide at different redox states [(B), FQI; (C), IW; (D), FMQ] using CO2 as the carbon source.

FIGURE 9

Synthesis affinity of (a–c) glycine, (d–f) sugars, nucleobases, and nucleosides at different redox states [(a,d), FQI; (b,e) IW; (c,f), FMQ] using CO2 as
the carbon source.
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atmospheres (Figures 8B–D). Such alkaline and reducing settings
might be achieved in the surface waters around the craters. Our
findings are also consistent with the previous proposals suggesting
that alkaline waters were favorable for the accumulation of cyanide
on primitive Earth (Toner and Catling, 2019). Moreover, previous
studies also suggested that mineral adsorption could enhance the
stability of life building blocks against potential threats like heating
or UV radiation on the primitive Earth (Mignon et al., 2009; Hazen
and Sverjensky, 2010; Grégoire et al., 2016). Such minerals are
common product of the aqueous alteration of impactors (Rubin
and Ma, 2017) and might enhance the stability of the abiotically
synthesized building blocks of life against UV radiation in the
shallow areas.

4.2. Stability of critical building blocks of
life beneath the impact-induced steam
atmosphere

Origin of life requires the accumulation of various inorganic
and organic species as building blocks for chemical evolution. For
example, HCN and HCHO were proposed to be the critical starting
materials for the synthesis of nucleobases and sugar (Orgel, 1998;
Yadav et al., 2020) and many origin-of-life experiments/hypotheses
rely on high concentrations of these two compounds (Sanchez et al.,
1967; Patel et al., 2015; Pérez-Fernández et al., 2022). Previous
studies have proposed various pathways to form HCN and HCHO
(Cleaves, 2008; Toner and Catling, 2019). Among them, the largest
source was evaluated to be gaseous photochemistry in primitive
atmosphere (Cleaves, 2008; Ferus et al., 2017; Pearce et al., 2022),
especially after impact events (Parkos et al., 2018; Benner et al.,
2020; Zahnle et al., 2020), when a more reducing atmosphere
greatly improves synthesis efficiency (Tian et al., 2011; Pearce et al.,
2022). Then, those photochemically generated building blocks of
life would precipitate out of the steam atmosphere and accumulate
in the ocean(s) for polymerization reactions (Benner et al., 2020).

However, according to our calculations, it is
thermodynamically unfavorable to synthesize/accumulate
appreciable levels (>10−6 molal) of HCN and HCHO, beneath a
steam atmosphere after the impacts in the reference atmospheric
composition. HCN is favored to form at higher hydrogen fugacities,
which is also true for HCHO if the water is highly alkaline. Rainout
fluxes of HCN and HCHO synthesized by photochemistry or
lightning in the atmosphere would also compete with hydrolysis
in surface waters; the steady-state level of HCN and HCHO would
depend on the relative rates of rainout and hydrolysis. Previous
experiments demonstrated rapid hydrolysis of HCN (Miyakawa
et al., 2002) and HCHO (Kopetzki and Antonietti, 2011), with
half-life times that are less than a day temperatures above 100◦C.
Previous studies have reported rainout flux of HCN in the post-
impact steam atmosphere as 1012–1014 molecules/m2/s (Stribling
and Miller, 1987; Parkos et al., 2018; Zahnle et al., 2020). Given the
hydrolysis kinetics data of HCN from Miyakawa et al. (2002), the
steady-state level of HCN in the surface water would be <10−9

molal at 100◦C and pH = 6 (<10−13 molal at 200◦C and pH = 6;
higher temperatures would imply faster hydrolysis and thus lower
steady-state concentrations of HCN). These levels of HCN are
several orders of magnitude lower than the concentrations used

in prebiotic synthesis experiments, e.g., concentrations of 10−2

molal and above used previously (Sanchez et al., 1967; Yadav
et al., 2020; Pérez-Fernández et al., 2022). These results echo the
previous suggestion that abiotic synthesis of biomolecules (amino
and hydroxy acids or nucleosides) would be primarily constrained
by the availability of starting bases including HCN and aldehydes
in hot fluids (Schulte and Shock, 1995), even beneath a reducing
steam-atmosphere after impacts. Meanwhile, strongly reducing
atmospheres induced by large and more reducing impactors might
favor the accumulation of critical bases for the synthesis reactions.
Water bodies with high evaporation rates on land could also favor
molecular condensation (Pérez-Fernández et al., 2022), but would
be confronted with photodegradation processes (Cleaves, 2008;
Todd et al., 2022).

4.3. Implications for life-searching efforts
on other planetary bodies

In the solar system, Mars and some icy moons are believed
to have (or have had) liquid water bodies and thus, represent the
most promising places when looking for signs of extant or past
alien life. An important target for life-searching efforts on these
planetary bodies is organics, especially biomolecules. Mars, due
to its proximity to the asteroid belts and its thin atmosphere,
has been bombarded more heavily than Earth during its history
(Hartmann and Neukum, 2001; Cox et al., 2022), and impactors
might have delivered considerable fluxes of organics to its surface
(Frantseva et al., 2018). Many craters are well preserved on Mars
and have been selected in various landing missions as targets for
in situ exploration. Our results suggest that some key building
blocks of life, including HCN, HCHO, some amino acids, and
nearly all nucleosides and sugars, could not be thermodynamically
favorable to accumulate to a considerable level (>10−6 molal) for
chemical evolution under relatively oxidizing conditions, but more
reducing impactors together with alkaline conditions would favor
abiotic synthesis and accumulation of most building blocks of life.
These results may not be directly applicable to early Mars where
crustal and atmospheric compositions were possibly different from
early Earth, however, the general trend observed here should hold
true. Direct observations of impactor material on the surface of
planetary bodies through remote sensing methods are scarce since
impactors cannot be well preserved in high-velocity impacts that
create impact craters and basins. However, searching for reduced
impactor material is possible via in situ imaging and measurements
of the elemental or isotopic signatures. Here, we propose that
during current and future Martian missions, the mission team
should consider using the rover payload to (1) investigate impacted
materials with likely more reducing impactor and (2) search
for alkaline mineral assemblages that could be inducive of the
accumulation and preservation of organics or biosignatures.

There are several icy moons in the solar system that show
strong signs of the presence of subsurface ocean, such as Enceladus,
Europa, Ganymede, and Titan (National Academies of Sciences,
Engineering, and Medicine, 2022). Even more excitingly, the
flyby analyses of the Enceladus plume revealed signals of various
organics (Waite et al., 2009), including some complex O- and
N-bearing species (Magee and Waite, 2017; Postberg et al., 2018).
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These observations place Enceladus among the most probably
planetary bodies to find extraterrestrial life. There are also studies
suggesting ongoing hydrothermal activity in the subsurface ocean
of Enceladus (Hsu et al., 2015) and the hydrothermal heat flux
might have been stronger in the past considering the progressive
cooling of its core. However, the redox state of the hydrothermal
systems on early Enceladus was suggested to be close to the FMQ
buffer (Glein et al., 2008), and our current results suggest that
formaldehyde, HCN, some amino acids, and nucleobases are not
thermodynamically favorable to accumulate (>10−6 molal) under
these conditions, even at the high pHs proposed for Enceladus’
ocean (Glein et al., 2018). Considering that Enceladus ocean
water contains lower levels of other reactants involved in the
synthesis reactions (i.e., CO2 and N2) (Waite et al., 2009; Glein
et al., 2018), our results for the early Earth should be applicable
to the Enceladus ocean as well. Given that Enceladus lacks an
atmospheric source for these molecular compounds, they would
tend to be completely degraded given the 100 s Ma to four Ga
proposed history of Enceladus ocean (Ćuk et al., 2016; Neveu
and Rhoden, 2019), as recently shown in a kinetic study about
amino acids (Truong et al., 2019). Therefore, in situ origin of life
in the subsurface ocean of icy moons might be threatened by the
continuous hydrolysis of critical building blocks for the synthesis
of biomolecules like sugar and nucleotide, in the hydrothermal
systems.

5. Conclusion

In this study, we conducted thermodynamic calculations to
evaluate the potential of abiotic synthesis of various building
blocks of life beneath a simulative post-impact steam atmosphere.
Our results show that the abiotic synthesis affinities generally
decrease at elevated temperatures, and using CO as the C
source would result in slightly higher synthesis affinities. Among
the investigated compounds, many species, including cyanide,
formaldehyde, several amino acids (e.g., aspartic acid, serine,
and histidine), sugars, nucleosides, and nucleobases are not
thermodynamically favored to form/accumulate to appreciable
levels (>10−6 molal) in a wide range of temperatures. However,
other organics would have positive affinities, especially in
temperatures lower than 220◦C and/or alkaline pHs. Our sensitivity
tests also suggested that the reducing capacity of the atmosphere
would have a significant effect on the abiotic synthesis: at
higher hydrogen fugacity in equilibrium with FQI or IW buffers,
abiotic synthesis of nearly all building blocks of life (except
HCN, adenine, guanine, adenosine and guanosine) becomes
thermodynamically favorable, but at lower hydrogen fugacity
in equilibrium with FMQ, the abiotic synthesis becomes less
favorable than under the reference redox conditions. Thus,
although impact events could induce a hydrogen-rich atmosphere,
accumulation of some critical building blocks of life, e.g., HCN,
formaldehyde, and their derivates, and might still be hard to
achieve, unless in an atmosphere induced by a very large and
reducing impactor. Finally, we suggest that craters generated
by more reducing impactors could potentially be ideal sites
in the search for biomolecules and biosignatures on other
planets like Mars.
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