AUTHOR=Peng Lihong , Wang Chang , Tian Geng , Liu Guangyi , Li Gan , Lu Yuankang , Yang Jialiang , Chen Min , Li Zejun TITLE=Analysis of CT scan images for COVID-19 pneumonia based on a deep ensemble framework with DenseNet, Swin transformer, and RegNet JOURNAL=Frontiers in Microbiology VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.995323 DOI=10.3389/fmicb.2022.995323 ISSN=1664-302X ABSTRACT=
COVID-19 has caused enormous challenges to global economy and public health. The identification of patients with the COVID-19 infection by CT scan images helps prevent its pandemic. Manual screening COVID-19-related CT images spends a lot of time and resources. Artificial intelligence techniques including deep learning can effectively aid doctors and medical workers to screen the COVID-19 patients. In this study, we developed an ensemble deep learning framework, DeepDSR, by combining DenseNet, Swin transformer, and RegNet for COVID-19 image identification. First, we integrate three available COVID-19-related CT image datasets to one larger dataset. Second, we pretrain weights of DenseNet, Swin Transformer, and RegNet on the ImageNet dataset based on transformer learning. Third, we continue to train DenseNet, Swin Transformer, and RegNet on the integrated larger image dataset. Finally, the classification results are obtained by integrating results from the above three models and the soft voting approach. The proposed DeepDSR model is compared to three state-of-the-art deep learning models (EfficientNetV2, ResNet, and Vision transformer) and three individual models (DenseNet, Swin transformer, and RegNet) for binary classification and three-classification problems. The results show that DeepDSR computes the best precision of 0.9833, recall of 0.9895, accuracy of 0.9894, F1-score of 0.9864, AUC of 0.9991 and AUPR of 0.9986 under binary classification problem, and significantly outperforms other methods. Furthermore, DeepDSR obtains the best precision of 0.9740, recall of 0.9653, accuracy of 0.9737, and F1-score of 0.9695 under three-classification problem, further suggesting its powerful image identification ability. We anticipate that the proposed DeepDSR framework contributes to the diagnosis of COVID-19.