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Motivation: In the field of microbiome analysis, there exist various statistical 

methods that have been developed for identifying differentially expressed 

features, that account for the overdispersion and the high sparsity of 

microbiome data. However, due to the differences in statistical models or test 

formulations, it is quite often to have inconsistent significance results across 

statistical methods, that makes it difficult to determine the importance of 

microbiome taxa. Thus, it is practically important to have the integration of the 

result from all statistical methods to determine the importance of microbiome 

taxa. A standard meta-analysis is a powerful tool for integrative analysis and it 

provides a summary measure by combining p-values from various statistical 

methods. While there are many meta-analyses available, it is not easy to 

choose the best meta-analysis that is the most suitable for microbiome data.

Results: In this study, we  investigated which meta-analysis method most 

adequately represents the importance of microbiome taxa. We  considered 

Fisher’s method, minimum value of p method, Simes method, Stouffer’s 

method, Kost method, and Cauchy combination test. Through simulation 

studies, we showed that Cauchy combination test provides the best combined 

value of p in the sense that it performed the best among the examined 

methods while controlling the type 1 error rates. Furthermore, it produced 

high rank similarity with the true ranks. Through the real data application of 

colorectal cancer microbiome data, we demonstrated that the most highly 

ranked microbiome taxa by Cauchy combination test have been reported to 

be associated with colorectal cancer.
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Introduction

Since the roles of the microbiome in human body sites and their importance arise, there 
have been many studies focusing on revealing differentially expressed microbiome taxa in 
a variety of cancer types and diseases (Hayes et al., 2018; Osman et al., 2018; Qian et al., 
2018; Dong et al., 2019; Ramsheh et al., 2021). In the meanwhile, there are certain common 
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characteristics among microbiome datasets that make analyses 
difficult: overdispersion and high sparsity (presence of zero 
counts; Sohn and Li, 2018; Xia et al., 2018). To account for these 
characteristics, many statistical methods have been developed. 
DESeq2 and edgeR are widely used methods to find differentially 
expressed features in the field of RNA-Seq data analysis, and 
account for overdispersion of the dataset using a negative binomial 
distribution modeling strategy (Robinson et al., 2010; Love et al., 
2014). MetagenomeSeq was developed to account for sparsity 
using a distinct normalization method, known as cumulative sum 
scaling (CSS) and using a zero-inflated model (Paulson et  al., 
2013). ZIBseq and ZINB are methods that account for the sparsity 
through incorporating zero-inflated beta model and zero-inflated 
negative binomial model, respectively (Peng et al., 2016; Xia et al., 
2018). There also are methods that use centered log-ratio (CLR) 
transformation to account for the compositional nature of relative 
abundance data in analysis (Gloor et al., 2017).

Microbiome analysis methods are broadly classified into two 
classes: taxa-level method and community-level method (Plantinga 
et al., 2017). Taxa-level method performs analyses in terms of each 
taxon, and includes aforementioned methods. The community-level 
method accounts for phylogenetic distances between representative 
sequences. MiRKAT, the microbiome regression-based kernel 
association test, uses kernels that incorporate microbiome-wise 
similarity matrix that can be  calculated from various distances 
(Zhao et al., 2015). MiSPU, the microbiome-based sum of powered 
score, uses the idea of the sum of powered score (SPU) to be applied 
to microbiome datasets through variable weighting of representative 
sequences (Wu et al., 2016). OMiAT, optimal microbiome-based 
association test, is an approach that integrates SPU and MiRKAT by 
taking the minimum value of p from the two methods (Koh et al., 
2017). TMAT, the phylogenetic tree-based microbiome association 
test, uses log-transformed read count per million (CPM) and tests 
whether an internal node of a phylogenetic tree is associated with 
the outcome, using the phylogenetic tree structure (Kim K. J. et al., 
2020). All the methods introduced above are used to find the 
differentially expressed (DE) features. There have been studies that 
attempted a comprehensive review of these statistical methods (Xia 
and Sun, 2017; Pollock et al., 2018; Nearing et al., 2022). However, 
it is not easy to tell which is the best method among the individual 
DE method because each method is specialized for the specific 
characteristics of microbiome data. Furthermore, the significance 
results provided from different statistical methods tend to 
be inconsistent. In other words, a DE feature from one method does 
not necessarily be a DE feature from the other method (Khomich 
et al., 2021). Thus, several studies summarized the inconsistent 
results obtained from different statistical methods by using a Venn 
diagram that represented commonly significant features under a 
certain significance level (Chen et  al., 2015; You et  al., 2018; 
Nazarieh et al., 2019; Wang et al., 2019; Kim S. I. et al., 2020). In 
addition to the significance, the ranking of DE features is also 
inconsistent between the methods.

In this study, we  combine the value of ps from different 
statistical methods to determine the importance of DE features. 

Rather than focusing on an individual method, our focus lies in 
combining different test results from a set of multiple methods. 
There exist many methods for combining value of ps, depending 
on whether value of ps are independent (Fisher, minimum value 
of p, Simes, Stouffer) or correlated (Kost, Cauchy). The most 
common method is Fisher’s method that uses a chi-square 
distribution to calculate the combined value of p (Fisher, 1925). 
The method using the minimum value of p can also be taken to 
maximize the power (Tippett, 1931; Casella and Berger, 2017). 
Simes method for combining value of p is similar to the minimum 
value of p method, but uses ordered value of ps to determine the 
significance (Simes, 1986). Stouffer’s method takes the inverse 
standard normal cumulative distribution function (CDF) of value 
of ps so that the statistic follows a normal distribution (Stouffer 
and Suchman, 1949). Kost method accounts for the correlation 
between p-values by modifying the chi-square distribution of the 
Fisher’s method (Kost and McDermott, 2002). Cauchy 
combination test accounts for the correlation between p-values by 
using Cauchy distribution, which makes the distributional 
changes in the tail limited in the existence of p-value correlation 
(Liu and Xie, 2020). The combined p-values were then used to 
rank the importance of microbiome.

In this study, we  investigate the most appropriate p-value 
combination method in the analysis of microbiome dataset in terms 
of significance testing and ranking DE features. Simulation settings 
were designed to assess: (i) the type 1 error and power of differentially 
expressed feature discovery, (ii) rank similarity between the true 
ranks and ranks determined by combined p-values.

In our empirical studies, we only considered the genus level. 
Many differential abundance analyses have been conducted only 
at the genus level, due to the limitation in microbiome annotation 
and not enough high resolution provided by 16 s rRNA sequence 
to classify species. Popular microbiome databases, including Silva, 
and Greengenes databases, recommend not to use the annotation 
at the species level (Ritari et  al., 2015; Dueholm et  al., 2020). 
Although databases such as NCBI and EzBioCloud EzTaxon 
provide more accurate annotations than Silva and Greengenes at 
the species level (Kim et al., 2012; Schoch et al., 2020), uncultured 
and unidentified species still exist and are often filtered out in the 
differential abundance analyses. Additionally, the microbiome 
resolution provided by 16 s rRNA is limited because the length of 
highly variable region is short for accurately classifying species 
except for few species. Therefore, analysis was conducted in the 
genus level at this study.

Materials and methods

Microbiome datasets

Baxter’s colorectal cancer data
Stool samples obtained through the Great Lakes-New England 

Early Detection Research Network were used in this study (Baxter 
et al., 2016). Raw sequencing data and metadata are available at 
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NCBI Sequencing Read Archive (SRA) with the accession number 
SRP062005. A total of 314 samples with 187 normal and 127 
colorectal cancer (CRC) were available.

Experimental procedures were previously reported as follows 
(Kozich et  al., 2013). The V4 region of 16 s rRNA gene was 
amplified using custom-designed primers, and sequenced using 
an Illumina MiSeq sequencer with paired-end sequencing. Raw 
FASTQ data were processed through Qiime2 pipeline from raw 
file processing to taxonomy assignment (https://qiime2.org/, 
version 2021.04). Qiime2 Cutadapt plugin was used to trim 
primer sequences, and representative sequences were obtained 
through DADA2 denoising algorithm. Taxonomies were assigned 
using SILVA databases (release 138) with 99% similarity. Fasttree 
plugin was used to generate the phylogenetic tree. After removing 
singletons and doublets, data comprised 4,772 representative 
sequences. After filtering representative sequences with <0.005% 
of total read count (Bokulich et  al., 2013), 803 representative 
sequences with 80 genera were available.

Zeller’s colorectal cancer data
Stool samples obtained through the European Molecular 

Biology Laboratory (EMBL) were used in the real analysis of this 
study. Raw sequencing data and metadata are available at 

European Nucleotide Archive (ENA) with the project number 
PRJEB6070. Excluding samples without the disease status 
information, a total of 91 samples with 50 normal and 41 CRC 
were available.

Experimental procedures were previously reported as follows 
(Zeller et al., 2014). The V4 region of 16 s rRNA gene was amplified 
using targeted primers (F515 5’-GTGCCAGCMGCCG 
CGGTAA-3′, R806 5’-GGACTACHVGGGTWTCTAAT-3′), and 
sequenced following Illumina MiSeq platform (Illumina, San 
Diego, United  States) at the Genomics Core Facility, EMBL, 
Heidelberg. Raw FASTQ data were processed through the same 
pipeline as the Baxter’s data described above using Qiime2. After 
the filtering, 329 representative sequences with 81 genera 
were available.

Methods for identifying DE features

The methods for identifying DE features are classified into 
taxa-level and community level methods, as summarized in 
Table  1 with the corresponding null hypotheses. Taxa-level 
method includes DESeq2[Wald/LRT], edgeR, Wilcoxon rank sum 
test with CLR transformation (Wilcoxon CLR), ZIBSeq, 
MetagenomeSeq [Gaussian/log normal], and ZINB. Community-
level method includes oMiRKAT, aMiSPU, aSPU, and 
TMAT. aSPU was considered instead of OMiAT, that takes the 
minimum value of p of SPU and MiRKAT. For this study, the value 
of p generated by MiRKAT was already included, so only value of 
p generated by SPU was considered. All analysis results were 
obtained at the genus level. R1 software was used for the analyses. 
Unless stated, default options were used for all analysis.

Methods for integration analysis

For the value of p combination, Fisher’s method, minimum 
value of p method (min P method), Kost method, Simes method, 
Stouffer’s method, and Cauchy combination test were used. Details 
of each method are described below.

Fisher’s method
It is also called Fisher’s combination test. Under the null 

hypothesis, for independent value of ps,
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for k  tests to be combined, and pi  represents ith  value of p.
Minimum value of p method (Min P method). Under the null 
hypothesis, for independent value of ps,

1 https://www.r-project.org/

TABLE 1 Null hypotheses of statistical methods.

Category Method Null hypothesis (H0) Detail

Taxa-level DESeq2 0iβ = β =LFC (Log-

fold change) For 
thi  taxa

edgeR 01 2λ λ− = For group 1, 

group 2

Wilcoxon CLR 01 2
median medianλ λ− = For group 1, 

group 2

ZIBSeq 0iβ = For thi  taxa

MetagenomeSeq 0iβ = For thi  taxa

ZINB 0iβ = For thi  taxa

Community-

level

oMiRKAT 0τ = Kernel regression 

Random effect 
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For kernel K 
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for k  tests to be combined.

Kost method
For dependent value of ps, scale the chi-square distribution of 

Fisher’s method as follows (Kost and McDermott, 2002):
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Cauchy combination method
For value of ps under arbitrary dependency structure, defined 

by the weighted sum of the Cauchy transformed value of each 
value of p as follows:

 
T w p
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k
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where wi  is nonnegative weight that satisfies 1 1,ω= =∑k
ii  and 

pi  is the value of p from i th test. Cauchy combination test 
accounts for the dependence of value of ps using the heaviness of 
the Cauchy tail (Liu and Xie, 2020). Equal weights were used in 
this study.

Simes method
For independent value of ps, let 1, ,… kp p  be  the ordered 

p-values for k  tests. The null hypothesis is rejected if p i ki £ a /  
for any i k= ¼1, ,  for a significance level a . It is mainly used in 
multiple testing correction, but also suggested for the p-value 
combination in some studies (Cheng and Sheng, 2017; Ganju and 
Ma, 2017).

Stouffer method
For independent p-values,
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( )
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1
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−
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k

where Φ  represents the standard normal cumulative 
distribution function.

Simulation settings

Simulation setting 1
Simulation setting 1 was designed to assess type 1 error rates 

and power of each p-value combination method. The simulation 
datasets were generated as previously reported (Zhao et al., 2015). 
Microbiome datasets were simulated according to Chen and Li’s 
approach (Chen and Li, 2013). The simulated OTU counts were 
generated using Dirichlet-multinomial (DM) model, that 
incorporates the mean OTU proportion and the overdispersion 
measure as the shape parameter α. The sample size was set to 300 
and 20,000 total read counts were generated per sample. The OTU 
counts were set to have different levels of sparsity (e.g., the total 
proportion of zero counts) to account for the zero-inflated nature 
of microbiome datasets. For sparsity, sparsity parameter π ϵ 
{0.3,0.5,0.7,0.8} was set. The OTU counts were simulated 
as follows:

 
Zij = - ( )

0 with probability
Dirichlet multinomial with probabi

p
a llity1-

ì
í
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where Zij  is OTU counts for ith  sample and jth  OTU.
The dependent variable was generated as practiced in 

MiRKAT (Zhao et al., 2015). For the binary outcome variable, the 
outcome was simulated under the model
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where yi  represents the dependent variable of the sample i , Xi  
represents the covariates of sample i , scale(·) represents the 
standardization with mean 0 and standard deviation 1, b  represents 
the degree of association and G  represents the given cluster of 
OTUs. Here, the OTU-level datasets are simulated so that each 
cluster of OTUs indicates each genus. Among the statistical methods, 
the taxa level analysis methods used a collapsed sum of OTUs 
corresponding to a genus, while the community-level analysis 
methods used simulated OTU data as it is.

One virtual covariate X i1  was simulated as ~ .Bernouill 0 5( ) . 
The other virtual covariate X i2  was simulated as ~ N ,0 1( ) , 
assuming the covariate and the taxa counts Zi  were 
independent. b  was set to have the values of 

0 0 01 0 02 0 03 0 04 0 05 0 1 0 15 0 2, , , , , , , ,. . . . . . . .{ } . Type 1 error was 
measured when b = 0 . A total of 1,000 dependent variables were 
generated for each combination of b s and Às to calculate the type 
1 error rates and the power.

Among the DE feature analysis methods, the taxa-level 
analysis methods used a collapsed sum of OTUs corresponding to 
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a genus, while the community-level analysis methods used 
simulated OTU data as it is.

Simulation setting 2
Simulation setting 2 was designed to assess the rank similarity 

between the true rank and the rank determined using each value 
of p combination method. The real CRC dataset introduced in 
Method 2.1 was used to reflect the microbiome counts of the real 
data. To control the degree of association ( b ), the dependent 
variable was generated under the same model from simulation 
setting 1. For the same dataset, ten different dependent variables 
were generated by previously determined b s as in Figure 1. The 
larger effect size, the higher rank. For each dependent variable, 
100 replications were performed.

Three scenarios were considered using different numbers of 
non-causal dependent variables. Non-causal dependent variables 
were set to have b =0, assuming microbiome features that are not 
related to the dependent variables. Each scenario was designed to, 
respectively, have 6, 4, and 8 non-causal dependent variables, and 
the causal dependent variables were generated to have different 
degrees of association (with different βs).

The rank difference was presented with two measurements: 
rank squared difference and Spearman correlation coefficient. The 
rank squared difference was measured using

 g

N
gd

=
å

1

2

where d rank rankg = -( )real computed  of g th genus.
Similarly, the Spearman rank correlation coefficient was 

used as:

 
( )

2

2
6

1
1

∑
ρ = −

−
gd

N N

With each value of p combination method, both measures 
were applied and the results of 100 replications were compared.

Results

Simulation result

Result of simulation setting 1
In this section, the type 1 error rates and the power of 

individual statistical method are first shown, then that of value of 
p combination methods are subsequently shown.

FIGURE 1

Simulation setting 2 with different scenarios. ZG  represents a collection of OTUs comprising a genus. sY  represent dependent variables that 
were generated by various effect sizes (βs). The larger effect size represents the higher rank. Non-causal βs have the value of zero, while causal βs 
have the value of more than zero.
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The type 1 error rates of individual methods are given in 
Table 2. Under the significance level of 0.05, the type 1 error rates 
of most statistical methods were well-controlled below 0.05. The 
type 1 error rates of ZIG Gaussian was uncontrolled in some cases, 
but not in ZIG log Normal. It was previously reported that the 
type 1 error rate of ZIG Gaussian was off the nominal range, 
compared to other statistical methods (Calgaro et al., 2020).

Figure 2 shows the statistical power of the individual methods 
in terms of the degree of association. The power tended to decrease 
as the level of sparsity increased, and the power of community-level 
analysis methods tended to be lower than the taxa-level analysis 
methods. The methods used in RNA-Seq data analysis showed 
higher performances in terms of power (ZIG, DESeq2). The 
Wilcoxon rank sum method showed a higher performance when the 
sparsity level was low (Genus sparsity 1.3%).

Table  3 represents the type 1 error rates of value of p 
combination methods. The type 1 error rates were not controlled 
in Fisher’s method and Stouffer’s method. The type 1 error rates 
were considered to be not controlled if the confidence interval for 
proportion test did not include 0.05 (i.e., for Stouffer’s method 
with sparsity 0.3, the 95% confidence interval of [0.0694, 0.1051] 
did not include 0.05, for Cauchy combination test with sparsity 
0.5, the 95% confidence interval of [0.0435, 0.0732] include 0.05.). 
The type 1 error rates of other value of p combination methods did 
not exceed the given significance level of 0.05 considering the 
confidence interval. Since the type 1 error rates of Fisher’s 

combination method and Stouffer’s methods were not controlled, 
we focused only on the other methods for value of p combination. 
The results for Fisher’s and Stouffer’s methods can be found in the 
Supplementary Figure 1.

Figure  3 shows the statistical power of the value of p 
combination methods as the degree of association increases. 
Although the performances of value of p combination methods 
were similar, the power of Cauchy combination test was observed 
to be the best for all levels of sparsity. The performance of min P 
method was the worst. The differences in power between the 
methods tended to be smaller as the sparsity level becomes higher.

Result of simulation setting 2
Three scenarios were considered to evaluate the rank 

difference. In scenario 1, the rank squared difference was the 
lowest when combined with Cauchy combination test, Min P and 
Simes methods being next (Figure 4). Similarly, the Spearman 

TABLE 3 The type 1 error rates of p-value combination methods.

Sparsity Fisher MinP Kost Cauchy Simes Stouffer

0.3 0.032 0 0.005 0 0 0.086

0.5 0.09 0.029 0.045 0.057 0.032 0.096

0.7 0.01 0 0 0 0 0.016

0.8 0 0 0 0 0 0.005

Bold value indicates to inflated type I errors.

TABLE 2 Type 1 error rates of individual statistical methods.

Sparsity DESeq2 
LRT

DESeq2 
Wald

edgeR Wilcoxon ZIBSeq ZIG 
Gaussian

ZIG Log 
Normal

ZINB aSPU oMiRKAT aMiSPU TMAT

0.3 0.000 0.000 0.000 0.017 0.002 0.000 0.000 0.000 0.014 0.014 0.014 0.014

0.5 0.037 0.037 0.026 0.006 0.031 0.094 0.000 0.043 0.042 0.042 0.042 0.042

0.7 0.000 0.000 0.000 0.013 0.000 0.009 0.000 0.000 0.000 0.000 0.000 0.000

0.8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Bold value indicates to inflated type I errors.

FIGURE 2

The statistical power of the individual methods. The x-axis represents the degree of association ( β ). The value of sβ  were given as 

{ }0.01,0.02,0.03,0.04,0.05,0.1,0.15,0.2 . The y-axis represents the power. The blueish colors represent methods that consider zero-inflation.
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rank correlation was the highest for Cauchy combination test. In 
both measures, the paired Wilcoxon test value of p between 
Cauchy combination test results and others were significant (value 
of p < 0.001). Similarly, Cauchy combination test showed the 
lowest rank squared difference and the highest correlation 
coefficient in scenarios 2 and 3 (Figure 4).

Real microbiome data analysis

Baxter’s colorectal cancer data analysis
The differentially expressed microbiome feature analysis was 

conducted for every genus in the Baxter’s CRC dataset, and the 
importance was determined by the magnitude of value of ps 
generated for each genus. DE feature analyses were used as 
described in the Method section. The Spearman rank correlation 
between each pair of statistical methods was compared as in 
Figure 5. A Spearman rank correlation coefficient of 0.46 was 
observed between DESeq2 and edgeR, which are both used in 
RNA-Seq analysis and based on the negative binomial distribution 
in common. A lower spearman rank correlation coefficient was 
observed between edgeR and Wilcoxon rank sum test results, 
between ZIBSeq and others, ZIG and others, ZINB and others 
except for RNA-Seq analysis methods, and the community-level 
analysis methods (oMiRKAT, aSPU, aMISPU, and TMAT) and 
others. The correlation tests were significant between some pairs 
of methods, that means there was a linear trend between value of 
ps ranks generated for those methods. However, the linear trend 
does not assure that the pairwise p-values have the same ranks. 
For example, although the correlation test between edgeR and 
ZINB is significant with the coefficient of 0.79, and thus they have 
a linear trend of p-value ranks, the pairwise p-values are not 
aligned as DESeq2_LRT and DESeq2_Wald. Furthermore, except 
for the DESeq2_LRT and DESeq2_Wald, which are both derived 
from DESeq2, no pair of methods produced similar rank list of 
microbiome genera (Supplementary Figure 2).

CRC stool samples were analyzed with different statistical 
methods and the resulting p-values were combined using Cauchy 
combination test. These p-values were further adjusted for 
controlling the false discovery rate (FDR) as practiced (Yoon et al., 
2021). Table 4 shows the top microbiome genera in the order of 
adjusted p-values (q-values).

The first taxon was the most significant. Although it was 
uncultured in both genus and family levels, Rhodospirillales in 
order level was previously identified in the dextran sulfate sodium-
induced colitis group but not in the control group (Yang et al., 
2017). Also, the microbiome family Rhodospirillaceae was increased 
in colitic mice and IBD patients (Burrello et al., 2018). The bacterial 
genus Megasphaera was found to be  a butyrate-producer, that 
induces epigenetic modifications in CRC development (Tarashi 
et  al., 2019). Gastranaerophilales was previously reported as 
correlated with the late phase of aging through gene expression 
profiles of C57BL/6 J mice (van der Lugt et al., 2018). The genus 
Cloacibacillus was observed to be enriched in CRC patients with 
stage IV (Sheng et al., 2019). The bacterial species Porphyromonas 
asaccharolytica and Porphyromonas gingivalis, both rarely 
detectable in healthy individuals, were shown to be enriched in 
CRC patients in previous studies (Sinha et al., 2016; Okumura 
et al., 2021; Wang et al., 2021). Clostridia vadinBB60 group was 
observed to be  enriched in low-graded; right-sided/transverse 
tumors (Zwinsová et al., 2021). The genus Sutterella was reported 
to be the most representative in the colorectal adenocarcinoma 
groups (Mori et  al., 2018). The bacterial species Odoribacter 
splanchnicus was previously reported as a potential inducer of 
TH17cells and might protect against colitis and CRC in wild type 
mice (Xing et al., 2021; York, 2021). The abundance of Turicibacter 
was observed to be higher in the colitis or CRC group than in the 
groups with treatments, but the causative role of Turicibacter is to 
be further studied (Wu M. et al., 2019). The genus Slackia was 
studied to be overrepresented in CRC (Coleman and Nunes, 2016).

Most microbiome genera in Table 4 that had high ranks from 
Cauchy combination test had been previously reported as associated 

FIGURE 3

The statistical power of value of p combination methods. The x-axis represents the degree of association ( β ). The value of sβ  were given as 
{ }0.01,0.02,0.03,0.04,0.05,0.1,0.15,0.2 . The y-axis represents the power.
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with CRC or related symptoms. The ranks generated by min P and 
Simes method were similar to the Cauchy combination test, which 
corresponds to the results from the simulation setting 2. On the 
other hand, the other methods did not include some highly ranked 
taxa discovered from Cauchy combination test in the lists of their 
top  10 taxa (Supplementary Table  1). For example, Cauchy 
combination test ranked the genera Sutterella and Odoribacter at 7th 
and 8th, while Stouffer’s method ranked them at 18th and 13th, 
respectively, despite their reported associations with CRC.

Zeller’s colorectal cancer data analysis
A different CRC stool samples were analyzed with statistical 

methods and the resulting p-values were combined using Cauchy 
combination test. Table 5 shows the top microbiome genera in the 
order of q-values.

The most significant microbiome, Porphyromonas has been 
reported to be  enriched in gut microbiota profiling of CRC 
patients in several studies (Yang et  al., 2019). Hungatella was 

found to be a CRC-enriched marker, and was found to be depleted 
after the removal of CRC compared with newly diagnosed CRC 
patients (Cronin et  al., 2022). Also, the species Hungatella 
hathewayi WAL-18680 is a common cancer-associated biomarker 
(Wu et  al., 2021). Fusobacterium nucleatum is commonly 
associated with CRC, and found to promote tumor development 
by inducing several immune responses including inflammation 
(Wu J. et al., 2019; Queen et al., 2022). Rikenellaceae RC9 gut group 
was suggested as a potential biomarker of CRC from gut 
microbiota profiles in mice (Shao et al., 2022). Cloacibacillus was 
reported to show statistical differences in the gut microbiota 
between CRC patients with stage III and IV (Sheng et al., 2019). 
Veillonella and a strain of Streptococcus together were reported to 
modulate inflammation, and were increased in fibrosis and 
cirrhosis compared to samples without cirrhosis (Jia et al., 2021). 
The relative abundance of Catenibacterium was found to 
be significantly different between CRC and normal patients (Yang 
et al., 2019). A low abundance of Mitsuokella in CRC patients 

FIGURE 4

Results of the simulation setting 2. The graphs in the left column represent rank difference of each value of p combination method. The graphs in 
the right column represent the Spearman rank correlation of each p-value combination method.
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compared to healthy controls was reported (Sobhani et al., 2019). 
Bilophila wadsworthia was reported to produce genotoxic 
hydrogen sulfide in the gut, enhancing carcinogenesis (Coker 
et al., 2022). The relative abundance of Anaerostipes were reported 
to be  reduced in CRC patients compared to healthy controls 
(Chen et al., 2012).

Similar to the previous results with Baxter’s data, Fisher’s 
method, Kost’s method, and Stouffer’s method ranked CRC-related 
important genera lower than Cauchy combination test. For 
example, Fusobacterium, which was ranked 3rd by Cauchy 
combination test, was ranked 12th, 12th, and 36th, respectively. 
Similarly, Cloacibacillus, which was ranked 5th by Cauchy 
combination test, was ranked 15.5th, 15th, and 18th, respectively.

We also compared the results obtained from two CRC datasets 
(Baxter’s data and Zeller’s data). A total of 64 common genera 
were found. Fusobacterium was found to be the rank of 27.5 out 
of 80 genera in Baxter’s data, but the rank of 3 out of 81 genera in 
Zeller’s data. The value of p trend of the two datasets, and there 
were four commonly significant genera (q-value <0.05). 
Fusobacterium was found to be significant in Zeller’s data, but not 
in Baxter’s data with q-value of 0.133.

The commonly significant genera from the real datasets were 
investigated. There were 22 significant microbiome genera (q-value 
<0.05) from Zeller’s data, and 9 significant microbiome genera from 
Baxter’s data (q-value <0.05). Among them, there were four 
commonly significant microbiome genera from the two datasets. 
Cloacibacillus was previously found to be related to late-stage CRC 
patients (Sheng et al., 2019). Porphyromonas has been reported to 
be enriched in gut microbiota profiling of CRC patients in several 
studies (Yang et  al., 2019). Clostridia vadinBB60 group was 
previously found to be  enriched in low-graded; right-sided/
transverse tumors (Zwinsová et  al., 2021). Streptococcus was 
reported to have increased relative abundance in CRA compared to 
healthy controls (Sun et  al., 2020). Furthermore, Streptococcus 
gallolyticus is known as opportunistic pathogen causing infections 
associated with colon neoplasia in the elderly (Périchon et al., 2022).

Discussion

In this study, we conducted empirical studies to determine the 
most appropriate value of p combination method for microbiome 

FIGURE 5

Pairwise Spearman correlation coefficients computed from various statistical methods. Spearman correlation of each pair of methods are 
represented in the upper diagonal graphs. The bigger the numbers the stronger the correlation. Lower diagonal scatterplots represent p-values. 
Diagonal graphs with the method name have histogram of p-values. Methods are in the order of DESeq2[LRT/Wald], edgeR, Wilcoxon CLR, 
ZIBSeq, ZIG[Gaussian/log normal], ZINB, oMiRKAT, aSPU, aMiSPU, TMAT.
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data. Cauchy combination test was determined to be the most 
appropriate in terms of type 1 error rates, power, and showed the 
highest consistency with the true rank than other methods.

The power and type 1 error rates were assessed because it was 
important to know whether the combined value of ps controlled 
type 1 error rates. For Fisher’s method and Stouffer’s method, the 
uncontrolled type 1 error rates were observed. Since it was shown 
that the value of ps produced from various methods had significant 
correlations, Fisher’s method and Stouffer’s method that combine 
value of ps based on the independent assumption of p-values 
tended to show uncontrolled type 1 error rates in some conditions. 
On the other hand, Kost method incorporating the correlation 
between the combined p-values yielded well-controlled type 1 
error rates. Cauchy combination test is a powerful p-value 
combination method robust to arbitrary dependency structures, 
effectively accounting for the dependency structure of the 
microbiome dataset.

In our analysis, we considered 12 DE analyses and proposed 
combining all 12 value of ps. Our method can be applicable to any 
number of DE analyses. For illustrative purposes, we performed the 
similar analyses using only a fewer DE methods. We considered 
combining the following methods: (1) taxa-level methods, (2) 
community-level methods, (3) three randomly chosen methods, (4) 

five randomly chosen methods, (5) seven randomly chosen 
methods, (6) a correlated set of methods, (7) another correlated set 
of methods, and (8) less correlated set of methods. For the randomly 
chosen three/five/seven methods, we simply applied on a single 
random set of methods each. Each case resulted similar power trend 
with that of using all 12 methods (Supplementary Figures 3–10).

In this study, we  formulated the difficulty of analyzing 
microbiome datasets in the sense of overdispersion and high 
sparsity, by using different analysis methods accounting for these 
traits. However, one may want to focus on other traits, such as 
different normalization strategies. We leave it as a future study.

From the rank simulation, Cauchy combination test showed the 
best performance with significant differences from other value of p 
combination methods for scenarios 1 and 3, while it showed similar 
performance in scenario 2. Note that scenarios 1 and 3 had six and 
eight non-causal dependent variables, respectively, while scenario 2 
had four non-causal dependent variables and six different causal 
dependent variables. This implies that Cauchy combination test has 
the better performance when several non-causal microbiome genera 
exist. This corresponds to the real microbiome dataset that has 
several non-causal microbiome taxa and few causal taxa.

The microbiome ranks generated by Cauchy combination test 
and min P or Simes method did not differ much for the top ranks 

TABLE 4 Top 10 microbiome genera ranked by Cauchy combination test.

Taxa (o:order, f:family, g:genus) q-value

o__Rhodospirillales; f__uncultured; g__uncultured 5.64E-20

o__Veillonellales-Selenomonadales; f__Veillonellaceae; g__Megasphaera 1.22E-16

o__Gastranaerophilales; f__Gastranaerophilales; g__Gastranaerophilales 3.72E-15

o__Synergistales; f__Synergistaceae; g__Cloacibacillus* 7.42E-13

o__Bacteroidales; f__Porphyromonadaceae; g__Porphyromonas* 4.23E-09

o__Clostridia_vadinBB60_group; f__Clostridia_vadinBB60_group; g__Clostridia_vadinBB60_group* 1.12E-07

o__Burkholderiales; f__Sutterellaceae; g__Sutterella 2.13E-05

o__Bacteroidales; f__Marinifilaceae; g__Odoribacter 1.09E-05

o__Erysipelotrichales; f__Erysipelotrichaceae; g__Turicibacter 1.51E-04

o__Coriobacteriales; f__Eggerthellaceae; g__Slackia 1.87E-04

*Commonly significant microbiome genera with Zeller’s data.

TABLE 5 Top 10 microbiome genera ranked by Cauchy combination test.

Taxa (o:order, f:family, g:genus) q-value

o__Bacteroidales; f__Porphyromonadaceae; g__Porphyromonas* 1.80E-14

o__Lachnospirales; f__Lachnospiraceae; g__Hungatella 3.26E-13

o__Fusobacteriales; f__Fusobacteriaceae; g__Fusobacterium 2.78E-09

o__Bacteroidales; f__Rikenellaceae; g__Rikenellaceae_RC9_gut_group 1.11E-06

o__Synergistales; f__Synergistaceae; g__Cloacibacillus* 1.35E-06

o__Veillonellales-Selenomonadales; f__Veillonellaceae; g__Veillonella 1.47E-06

o__Erysipelotrichales; f__Erysipelatoclostridiaceae; g__Catenibacterium 1.11E-05

o__Veillonellales-Selenomonadales; f__Selenomonadaceae; g__Mitsuokella 1.36E-05

o__Desulfovibrionales; f__Desulfovibrionaceae; g__Bilophila 5.75E-05

o__Lachnospirales; f__Lachnospiraceae; g__Anaerostipes 1.05E-04

*Commonly significant microbiome genera with Baxter’s data.
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in the real data analysis. Rather, similar trends of value of ps and 
high correlation coefficients between those methods were observed 
(Supplementary Figure 11). The difference of microbiome ranks 
was most obvious with Stouffer’s method, and it was shown that the 
top ranks generated by Cauchy combination test and Stouffer’s 
method were quite different. The top ranks generated using Fisher’s 
method and Kost method did not differ much from those generated 
using Cauchy combination test. The ranks generated using Fisher’s 
method and Kost method were the same because they both follow 
chi-square distributions with different degrees of freedom. Kost 
method follows a scaled chi-square distribution, but scaling did not 
alter the resulting ranks.

Most microbiome features have very high sparsity and low 
abundance, making the statistical analysis difficult. In this study, 
we considered those characteristics in assessing the different value 
of p combination methods by simulating different levels of sparsity 
and setting a microbiome feature with high sparsity and low 
abundance as causal.

The value of p combination approach used to determine 
microbiome importance considering microbiome-specific 
characteristics can be easily extended to other omics data analyses. 
For example, our approach can be applied to analysis in RNA-seq 
or copy number variation data considering data-specific 
characteristics. There also are several methods to analyze each type 
of dataset. Note that there is “no one real winner that performs the 
best.” Thus, combining the results from various methods can have 
the advantage of using all methods available and being robust to the 
method-specific assumptions. Cauchy combination test can 
effectively combine different statistical methods, and produces a 
representative result of all methods, instead of using a single method 
that could possibly have a good performance in one dataset, but not 
in others. Our empirical study showed that the performance of 
Cauchy combination method provided robust and reasonable result 
compared to the best performing individual DE method, and 
performed the best among the value of p combination methods in 
terms of power and rank similarity, and controlling type 1 error 
rates (supplementary Figure 12). Furthermore, we made a python 
script with the module “mpmath” that enables floating point 
arithmetic in case the resulting value of ps from individual analysis 
methods are minute for the combined value of p of Cauchy 
combination test (Cauchy_pval.py). All combination methods used 
in this script are provided as a R script in https://github.com/
HyeonJungHam/P_value_combination, that also includes 
automatic execution of python script for calculating Cauchy 
combination test p-value.

While Cauchy combination test was introduced with equal 
weights for each method, it can be  easily extended to handle 
unequal weights. By the authors, Cauchy combination test still 
accounts for the arbitrary dependency structure when the weights 
are random variables and independent of test statistics (Liu and 
Xie, 2020). Thus, it is reasonable to assign a larger weight to the 
method providing more reliable and accurate result. We expect 
that the optimal weights would result in an increased performance 
of Cauchy combination test. However, the choice of optimal 

weights can change across dataset. Thus, given a dataset, it would 
not be straightforward to choose the optimal weights. We will 
leave the choice of optimal weights as a future research topic.
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