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It is unknown whether nirBDs, which conventionally encode an NADH

nitrite reductase, play other novel roles in nitrogen cycling. In this study,

we explored the role of nirBDs in the nitrogen cycling of Pseudomonas

putida Y-9. nirBDs had no effect on organic nitrogen transformation

by strain Y-9. The MnirBD strain exhibited higher ammonium removal

efficiency (90.7%) than the wild-type strain (76.1%; P < 0.05) and lower

end gaseous nitrogen (N2O) production. Moreover, the expression of

glnA (control of the ammonium assimilation) in the MnirBD strain was

higher than that in the wild-type strain (P < 0.05) after being cultured

in ammonium-containing medium. Furthermore, nitrite noticeably inhibited

the ammonium elimination of the wild-type strain, with a corresponding

removal rate decreasing to 44.8%. However, no similar impact on

ammonium transformation was observed for the MnirBD strain, with removal

efficiency reaching 97.5%. In conclusion, nirBDs in strain Y-9 decreased

the ammonium assimilation and increased the ammonium oxidation to

nitrous oxide.

KEYWORDS

Pseudomonas putida Y-9, nirBDs, glnA, ammonium assimilation, ammonium
oxidation

Introduction

Microorganisms show multiple nitrogen transformation pathways, contributing
to the natural nitrogen-cycling balance (Canfield et al., 2010; Kuypers et al.,
2018). Ammonium (NH4

+) is the preferred nitrogen source for most bacteria and
archaea (Burkovski, 2003; Muro-Pastor et al., 2005). Ammonium assimilation by
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microorganisms leads to high ammonium removal efficiency
and mitigation of harmful effects on the environment. However,
the role of ammonium assimilation in NH4

+ removal is
often neglected.

Simultaneous nitrification and denitrification (SND) has
been widely applied in wastewater treatment plants as an
attractive biological approach to nitrogen removal, owing to
its low investment costs and high efficiency (Jin et al., 2015;
Lei et al., 2016). Numerous studies have focused on isolating,
identifying, and characterizing nitrogen removal associated
with SND strains (Jin et al., 2015; Chen et al., 2016, 2021;
Lei et al., 2019). Usually, the SND pathway by bacteria is
NH4

+
→NH2OH→NO2

−
→NO3

−
→NO2

−
→NO→N2O

→N2. Ammonia monooxygenase catalyzes NH4
+ oxidization

to NH2OH and is encoded by amoA, amoB, or amoC (Kuypers
et al., 2018). Nitrate reductase encoded by narG, narH, napA, or
nasA can catalyze NO3

− reduction to NO2
−. Nitrite reductase

catalyzing NO2
− reduction to NO or NH4

+ is encoded by nirK,
nirS, nirB, or nirD (Kuypers et al., 2018; Yang L. et al., 2019; Xia
et al., 2020; Zhang et al., 2020).

nirBDs, which conventionally encode an NADH nitrite
reductase in many bacteria (Jackson et al., 1981; Lin and Stewart,
1997; Malm et al., 2009), show different characteristics under
different conditions. For example, dissimilatory nitrite reductase
encoded by nirBDs in Escherichia coli and other enterobacteria
is only expressed under anaerobic conditions (Macdonald et al.,
1985; Gennis and Stewart, 1996), while nirBDs in Streptomyces
coelicolor only encode the assimilatory nitrite reductase under
aerobic conditions (Tiffert et al., 2008; Fischer et al., 2012).
Recent studies have shown that nirBDs in S. coelicolor also play
an integral role in the nitric oxide (NO) homeostatic regulation
system that eliminates nitrite (NO2

−) from cultures during
NO3

− reduction (Yukioka et al., 2017).
We previously observed that the SND strain Pseudomonas

putida Y-9 exhibited excellent removal ability for NH4
+

and NO3
− (Xu et al., 2017). Further studies clarified that

strain Y-9 could transform NH4
+ into nitrous oxide (N2O)

under aerobic conditions (Huang et al., 2019) and remove
NH4

+ mainly through assimilation (Huang et al., 2021a). In
addition, strain Y-9 can remove NO3

− via simultaneous nitrate
assimilation, dissimilatory nitrate reduction to ammonium
(DNRA), and denitrification under aerobic conditions. Within
these contexts, the enzyme encoded by nirBDs catalyzes
NO2

− reduction to NH4
+ during assimilation and DNRA

(Huang et al., 2020). We hypothesized that nirBDs in strain
Y-9 might be functional in other roles than encoding the
traditional nitrite reductase. In this study, the effects of nirBDs
on different nitrogen transformation pathways in strain Y-
9 were explored. Results revealed that knocking out nirBDs
promoted ammonium assimilation and weakened the emission
of nitrous oxide. These findings provide a new understanding
on how to use strain Y-9 for the treatment of ammonium
nitrogen polluted water.

Materials and methods

Strain and culture media

The SND bacterium P. putida Y-9 (GenBank No. KP410740)
used here was obtained from our previous study (Xu et al.,
2017). nirBDs were knocked out from the genome of strain Y-
9 using homologous recombination technology, as previously
described (Huang et al., 2020), mediated via plasmid pLP12.
The primer sequences for nirBDs knockout are shown in
Supplementary Table 1. Supplementary Figure 1 shows the
successful construction of the nirBD deletion mutants.

Lysogeny broth (LB) liquid medium consisting of (per liter)
10.0 g Tryptone, 5.00 g Yeast extract, and 10.0 g NaCl (pH
adjusted to 7.0–7.2) was used for strain enrichment.

Nitrification medium (NM) comprised (per liter) 7.00 g
K2HPO4, 3.00 g KH2PO4, 0.10 g MgSO4·7H2O, 0.50 g
(NH4)2SO4, 0.05 g FeSO4·7H2O, and 5.13 g CH3COONa (pH
adjusted to 7.2). NM was used to determine the ammonium
transformation characteristics of strain Y-9.

The composition of the denitrification medium (DM) was
(per liter) 7.00 g K2HPO4, 3.00 g KH2PO4, 0.10 g MgSO4·7H2O,
0.72 g KNO3 (DM-1) or 0.49 g NaNO2 (DM-2), 0.05 g
FeSO4·7H2O, and 5.13 g CH3COONa (pH adjusted to 7.2). The
two DM formulae were used to evaluate the nitrate or nitrite
transformation ability of strain Y-9.

The organic nitrogen medium (OM) was composed of
(per liter, pH 7.2) 7.00 g K2HPO4, 3.00 g KH2PO4, 0.10 g
MgSO4·7H2O, 0.79 g tryptone, 0.05 g FeSO4·7H2O, and 0.788 g
peptone (pH adjusted to 7.2). OM was used to evaluate the
organic nitrogen conversion ability of strain Y-9.

The SND medium contained 7.00 g K2HPO4, 3.00 g
KH2PO4, 0.10 g MgSO4·7H2O, 0.50 g (NH4)2SO4, 0.72 g KNO3

(SND-1) or 0.49 g NaNO2 (SND-2), 0.05 g FeSO4·7H2O, and
10.3 g CH3COONa (pH adjusted to 7.2). Two types of SND
media were used to assess the nitrogen transformation ability
of strain Y-9 with ammonium and either nitrate or nitrite.

Solid plates were prepared using 2.0% (w/v) agar added into
the above liquid media. Before use, all of the above media were
autoclaved for 30 min at 0.11 MPa and 121◦C.

Estimation of the role of nirBDs in
nitrogen transformation by strain Y-9

Single colonies of the Y-9 and MnirBD strains were
enriched for 36 h using LB liquid medium. Preculture (8 mL)
was harvested and washed twice with sterile pure water by
centrifugation (4,000 rpm, 8 min), inoculated into 100 mL of
NM, DM-1, DM-2, OM, SND-1, or SND-2, and then cultivated
at 15◦C with shaking at 150 rpm. No strains were added for
control treatments. Three replicates were performed for each
experiment. Culture samples in different nitrogen media were
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taken out to measure the optical density of the strain (OD600)
and different types of nitrogen using a spectrophotometer
(Huang et al., 2019).

Detection of N2O and N2 after Y-9 and
MnirBD strains cultured in ammonium
medium

The precultures of the Y-9 and the MnirBD strains were
inoculated into media containing (15NH4)2SO4 (10 atom%) in
250 mL serum bottles. Then, the serum bottles were sealed
with a rubber septum, aerated with oxygen, and incubated at
15◦C for 48 h with shaking at 150 rpm. Finally, the 15N2O and
15N2 present in the headspace were collected with a needle and
detected using GC-MS (Agilent, USA) and GC-IRMS (Thermo
Fisher Scientific, USA), respectively (Ai et al., 2011; Ye et al.,
2016; Huang et al., 2019).

Monitoring the expression of glnA

DNA fragments of the Y-9 and MnirBD strains containing
upstream regions of glnA were PCR-amplified and ligated into
the upstream region of the promoter-less lacZ in pRG970Km
(Table 1) to generate the reporter plasmids p970 Km-glnA.
Then, the Y-9 and MnirBD strains containing the reporter
plasmids were cultured in NM medium with shaking at 150 rpm,
and aliquots were collected after 2 days of incubation. The
activity of β-galactosidase was measured as described by Miller
(1972). Relative expression of glutamine synthetase encoded
by glnA was represented by OD420/OD600 (Xu et al., 2018).
Moreover, total RNA of Y-9 and MnirBD strains incubated in
NM medium for 48 h was extracted and converted to cDNA
to investigate the relative expression of glnA using qPCR.
The primers of glnA were GACCACGAAATCCGTACTGC
and TTTCAGGGCCTGTACTTCGT. The 16S rRNA
gene was used as an internal standard, and its
primers were GTGCCAGCMGCCGCGG (515F) and
CCGTCAATTCMTTTRAGTTT (907R). The PCR cycling
conditions were as follows: initial denaturation at 95◦C for
30 s; 38 cycles at 95◦C for 15 s, 60◦C for 30 s, and 72◦C for
30 s; 1 cycle of 95◦C for 15 s; and finally, stepwise temperature
increases from 55 to 95◦C to generate the melting curve.
Standard curves were established using a dilution series of
pMD19-T vectors containing the target gene (Huang et al.,
2021b).

Analytical methods

Total nitrogen (TN, including cells) content in the
suspension was estimated using the alkaline potassium

persulfate digestion-UV spectrophotometric method. The
contents of NH4

+, NO2
−, and NO3

− in the supernatant
were quantified using the indophenol blue method, the
hydrochloric acid photometry method, and the N-(1-
naphthalene)-diaminoethane spectrophotometry method,
respectively, after samples were centrifuged at 8,000 rpm
for 5 min. The above analyses were carried out according
to the guidelines set by the State Environmental Protection
Administration of China (2002). The decline rate of nitrogen
(TN, NH4

+, NO2
−, and NO3

−) was calculated using the
equation: Rv = (T1-T2)/T1 × 100%, where Rv represents the
nitrogen decrease efficiency, and T1 and T2 are the original and
eventual contents of nitrogen in the system (mg L−1). Culture
pH was measured by a pH meter.

The SPSS Statistics program (version 22) and Microsoft
Excel 2010 were used for statistical analysis, and Origin 8.6 was
used to produce the graphics.

Results and discussion

Impact of nirBDs on organic nitrogen
transformation by strain Y-9

Both the wild-type and MnirBD strains grew vigorously in
the OM and did not reach the stationary phase until 4 days
(Figure 1), consistent with data from Fischer et al. (2012), who
reported that strain S. coelicolor A3(2) (MnirBD) grew well on
the plate containing casamino acids. The TN concentrations
in the MnirBD and wild-type strain culture systems decreased
gradually throughout the experiments and finally only dropped
by 18.0 mg L−1 without NO2

− accumulation. This phenomenon

TABLE 1 Strains and plasmids used in this study.

Strain or
plasmid

Description References
or source

Strains

Pseudomonas putida
Y-9

Wild type Xu et al., 2017

MnirBD Y-9 nirBD genes in-frame deletion in
strain Y-9; Kmr

Huang et al.,
2020

E. coli DH5α

λ-φ80dlacZ1M151(lacZYA-
argF)U169 recA1 endA1

hsdR17(rK- mK-) supE44 thi-1
gyrA relA1

Lab stock

Plasmids

pRG970Km Cloning vector containing
promoterless lacZYA for

construction of transcriptional
fusion; Kmr

Yan et al., 2009

p970Km-glnA pRG970 Km containing a glnA
transcriptional fusion; Kmr

This study
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FIGURE 1

The growth curve and nitrogen transformation performance of strain Y-9 in organic nitrogen medium at 15◦C. (A) The wild-type strain Y-9.
(B) The MnirBD strain Y-9.

suggested that strain Y-9 preferred to utilize organic nitrogen for
cellular growth rather than converted it into gaseous nitrogen.
Besides, variations in all of the measured nitrogen species within
the culture medium of the wild-type and MnirBD strains were
consistent across the entire incubation period. These results
indicated that knocking out nirBDs did not affect organic
nitrogen transformation by strain Y-9.

Impact of nirBDs on ammonium
transformation by strain Y-9

To explore the effects of nirBD on the ammonium
transformation process, the Y-9 and MnirBD strains were
cultured in NM. Both strains grew vigorously (Figure 2),
consistent with a previous study (Fischer et al., 2012), with the
MnirBD strain of S. coelicolor growing similar to the wild-type
strain on glucose minimal medium agar plates supplemented
with NH4

+ as the nitrogen source. These results illustrated that
nirBD was not essential for the utilization of ammonium by
strain Y-9. Intriguingly, the NH4

+ removal efficiency by MnirBD
strain (90.7%) was higher than that by the wild-type strain
(76.1%) after 2 days of incubation (P < 0.05), which might be
attributed to the stronger assimilation or ammonium oxidation
ability of the MnirBD strain compared to the wild-type strain (Li
et al., 2017; Jin et al., 2019).

The gas produced during the NH4
+ removal process was

N2O and not N2, according to the results of the GC test,
consistent with our previous studies (Huang et al., 2019).
Moreover, the δ15N/14N ratio of N2O in the MnirBD strain
culture system (2.46) was lower than that in the wild-type
strain culture system (3.63). Similarly, the decrease in TN in the
MnirBD strain culture system (15.7 mg L−1) was lower than that
in the wild-type strain culture system (21.5 mg L−1; P < 0.05;

Figure 2). These results illustrated that knocking out nirBDs
reduced the production of N2O, suggesting that the knockout
accelerated ammonium assimilation instead of the ammonium
oxidation by strain Y-9.

Previous studies have proven that the glutamine synthetase
encoded by glnA gene plays an important role in the ammonium
assimilation process (Gupta et al., 2012; Van Heeswijk et al.,
2013). In this study, glnA was found in strain Y-9 according
to the results of the genome-wide scan. Considering that
knocking out the nirBDs accelerated ammonium assimilation
by strain Y-9, we speculated that the expression of nirBDs
might influence the expression of glnA. Thus, the expression
of glnA in Y-9 and MnirBD strains was further detected.
β-Galactosidase was utilized as a reporter to examine glnA
promoter activity. The results showed that the β-galactosidase
activity in the MnirBD strain was obviously higher than that
in the wild-type strain (P < 0.05; Figure 3A). Moreover,
qPCR results showed that the expression of glnA in the
MnirBD strain was higher than that in wild-type strain Y-
9 (Figure 3B). These findings suggested that knocking out
nirBDs would promote the expression of glnA, accelerating
ammonium assimilation.

Impact of nirBDs on nitrate
transformation by strain Y-9

The OD600 of the wild-type strain increased significantly
from 0.17 to 1.23, while the MnirBD strain exhibited a slower
growth trend when culturing in SND-1 medium (P < 0.05;
Figures 4A,B). These results are consistent with those observed
when the two strains grew on agar plates supplemented with
NO3

− as the sole nitrogen source but differed from those
when strain NM7 (MnirBD) failed to grow under similar
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FIGURE 2

The growth curve and nitrogen transformation performance of strain Y-9 in nitrification medium at 15◦C. (A) The wild-type strain Y-9. (B) The
MnirBD strain Y-9.

FIGURE 3

GlnA expression in strain Y-9 and MnirBD strain Y-9. (A) β-Galactosidase activity. (B) Relative expression abundance of glnA. The different
lowercase letters above the bars indicate significant differences among treatments (P < 0.05).

conditions (Fischer et al., 2012). The NirBD protein in strain Y-
9 was previously shown to catalyze NO2

− reduction to NH4
+

(Huang et al., 2020). Accordingly, a little amount of NO2
− was

detected in our experiments, while NH4
+ gradually increased

during the cultivation of the wild type strain Y-9 (Figure 4A). In
contrast, the accumulation of NO2

− was nearly equivalent to the
decrease in NO3

−, but NH4
+ was undetectable during the entire

NO3
− transformation process of the MnirBD strain (Figure 4B).

These findings suggest that NO2
− converted from NO3

− could
not be further reduced to NH4

+ by strain Y-9 when nirBDs was
knocked out, resulting in NO2

− accumulation in the cultures.
After cultivating the wild-type strain for 4 days, the decrease

in NO3
− and TN reached 93.7 mg L−1 and 26.4 mg L−1,

respectively. Moreover, culture pH increased over the whole
cultivation period for the wild-type strain (Figure 4A). These
dynamics were due to a small amount of NO3

− being removed

by strain Y-9 via weak denitrification (Huang et al., 2020). The
MnirBD strain achieved a total NO3

− reduction of 105.6 mg
L−1, while TN was barely diminished after 4 d of incubation
(Figure 4B). This finding could be because the knocking out of
nirBDs resulted in NO2

−1 accumulation in the medium, finally
inhibiting the growth of strain Y-9 and its TN degrading ability.

Impact of nirBDs on nitrite
transformation by strain Y-9

Growth of the wild-type and MnirBD strains increased
slowly during the initial 3 days of cultivation in the NO2

− -
containing medium (Figures 4C,D). The probable reason for
the slow growth was the high content of free nitrous acid
(FNA, > 0.021 mg HNO2-N L−1 at 3 days) released due to
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FIGURE 4

The growth curve and nitrogen transformation performance of strain Y-9 in denitrification medium at 15◦C. (A) The wild-type strain Y-9 in
DM-1. (B) The MnirBD strain Y-9 in DM-1. (C) The wild-type strain Y-9 in DM-2. (D) The MnirBD strain Y-9 in DM-2.

the NO2
− inhibition in strain metabolism (Vadivelu et al.,

2006). The wild-type strain grew quickly, with a concomitant
considerable reduction of NO2

− and TN between days 3 and
4. After cultivation, the decrease in TN in suspension (44.2 mg
L−1) was lower than the reduced amount of NO2

− in the
supernatant (82.6 mg L−1; P < 0.05). Thus, some amount
of NO2

− (44.2 mg L−1) might have been lost from the
system through denitrification, while the remainder (38.4 mg
L−1) could have been assimilated by the wild-type strain Y-9.
NO2

− has well-documented toxicity to bacterial cells (Zemke
et al., 2017), and strain Y-9 cannot directly absorb NO2

−.
Moreover, NH4

+ accumulation was tracked throughout the
NO2

− transformation process (Figure 4C). Therefore, it is
possible that most of the NO2

− that had not been removed
through denitrification could have been reduced to NH4

+

through assimilation and DNRA by the wild-type strain Y-9,
in accordance with our previous results (Huang et al., 2020).
The MnirBD strain still grew at a slow rate after 3 days and
could seldom remove NO2

−. After 4 days of cultivation, NO2
−

in the supernatant only decreased by 10.0 mg L−1, which was
nearly equal to the decreased TN levels in the culture suspension

(8.8 mg L−1), indicating that the MnirBD strain also conducted
weak denitrification. Additionally, NH4

+ was undetectable
throughout the cultivation of the MnirBD strain (Figure 4D).
Taken together, these results show that knocking out nirBDs
does not allow noxious NO2

− to be reduced to NH4
+, thereby

inhibiting cellular growth and denitrification ability.

Influence of nirBDs on nitrogen
transformation of strain Y-9 in SND-1
medium

Knocking out nirBDs accelerated the assimilation of NH4
+

by strain Y-9 (Figure 2) and led to the near complete conversion
of NO3

− into NO2
− while inhibiting the transformation of

NO2
− (Figures 4B,D). We further evaluated the impact of

nirBDs on nitrogen transformation when NH4
+ and NO3

−

coexisted in the medium. The wild-type and MnirBD strains
grew vigorously after a 1-day lag phase and reached the
stationary phase on days 3 and 2, respectively (Figures 5A,B).
Concomitantly, the transformation of NH4

+ by the MnirBD
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strain was faster than that of the wild-type strain (P < 0.05),
consistent with the results when using NH4

+ as the sole nitrogen
source (Figure 2). These results were attributed to nirBD
knockout that accelerated the assimilation of NH4

+. The final
NH4

+ removal efficiency by the wild-type and MnirBD strains
was 92.13 and 95.87%, respectively, which were both slightly
lower than the NH4

+ removal efficiency when incubating the
two strains in NM (both approximately 100%) (Figure 2).
Consequently, the existence of NO3

− led to little inhibition
of NH4

+ transformation. Moreover, the contents of TN in
suspension both dropped down by approximately 20 mg L−1

in the two systems containing the wild type or MnirBD strain,
consistent with the decrease in TN in suspension when NH4

+

was used as the sole nitrogen source (Figure 2). Thus, no
denitrification occurred in strain Y-9 when NH4

+ and NO3
−

coexisted in the system.
The decrease in NO3

− content in suspension reached only
26.4 mg L−1, and the NO2

− was undetected after 4 days of
wild type strain cultivation, indicating that strain Y-9 utilized
NH4

+ preferentially when NH4
+ and NO3

− coexisted in the
medium. Similar results were observed by Xu et al. (2017), who

used 200 mg L−1 of NH4
+ and NO3

− to cultivate strain Y-9.
Yang J. R. et al. (2019) and Zhang et al. (2022) also reported
that Acinetobacter sp. JR1 and P. taiwanensis EN-F2 preferred
to remove NH4

+ from a medium containing both NH4
+ and

NO3
−. Nevertheless, the contents of NO3

− in the MnirBD
strain cultures dropped by 72.3 mg L−1 and the accumulation
of NO2

− reached 61.5 mg L−1 at the end of the experiment
(Figure 5B). The above results combined with variation in
NO3

− and NO2
− concentrations when cultivating the MnirBD

strain in DM-1 medium (Figure 4B) suggested that nirBDs
reduced the NO2

− resulting from NO3
− respiration to NH4

+,
and the denitrification ability of the MnirBD strain was weak.
In addition, when using NH4

+ or NO3
− as the sole nitrogen

source, the pH increased over the entire incubation process of
the wild-type strain Y-9 but fluctuated during MnirBD strain
growth (Figures 2, 4A,B). Intriguingly, the pH increased during
the entire cultivation period of the wild-type and MnirBD strains
when NH4

+ and NO3
− were both available (Figures 5A,B).

Thus, the coexistence of NH4
+ and NO3

− might counteract
the effects of nirBDs knockout with regard to culture pH.
Nevertheless, these dynamics require further investigation.

FIGURE 5

The growth curve and nitrogen transformation performance of strain Y-9 in simultaneous nitrification and denitrification medium. (A) The
wild-type strain Y-9 in SND-1. (B) The MnirBD strain Y-9 in SND-1. (C) The wild-type strain Y-9 in SND-2. (D) The MnirBD strain Y-9 in SND-2).
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Influence of nirBDs on the nitrogen
transformation of strain Y-9 in the
SND-2 medium

When NH4
+ and NO2

− coexisted in the medium,
the wild-type and MnirBD strains both barely grew within
the first 2 days. Nevertheless, the MnirBD strain exhibited
higher growth than the wild type strain over the entire
cultivation period (P < 0.05; Figures 5C,D), owing to the
acceleration of NH4

+ assimilation by strain Y-9, due to
nirBDs knockout (Figure 2). The NH4

+ removal rate by
the MnirBD strain (97.5%) was considerably higher than
that of the wild-type strain (47.7%), but the decrease in
TN in the MnirBD strain culture system (9.1 mg L−1)
was lower than that in the wild-type strain culture system
(13.2 mg L−1; P < 0.05). This finding could be attributed
to the denitrification that was inhibited when nirBDs were
knocked out (Figures 4A,B). The decrease in NO2

− in
the wild-type strain culture system was consistently greater
than that of the MnirBD strain culture system over the
entire incubation period (P < 0.05), which might have been
due to the stronger denitrification rate of the wild-type
strain compared to the MnirBD strain. However, the high
concentration of NO2

− in the system could still inhibit the
utilization of NH4

+ by the wild-type strain, with residual
NH4

+ levels reaching 47.8 mg L−1 at the end of the
experiment (Figure 5C), consistent with the reports that the
addition of NO2

− had a negative impact on ammonium
removal of bacterium (Yang et al., 2012; Zhang et al., 2015,
2022). A noteworthy observation is that NO2

− had no
impact on the ammonium efficiency of the MnirBD strain,
which reached 97.5% (Figure 5D), possibly due to nirBDs
knockout leading to increased NH4

+ assimilation and strain
growth, thereby enhancing the tolerance of the strain to the
toxic NO2

−.

Conclusion

nirBDs, which conventionally encode an NADH nitrite
reductase, also influence the ammonium transformation of
P. putida Y-9. Knocking out nirBDs accelerated the ammonium
assimilation and inhibited the emission of the greenhouse gas
N2O, thus alleviating the toxicity of nitrite in an ammonium
and nitrite system.
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