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Objectives: The intestinal microbiota is essential in absorbing nutrients and

defending against pathogens and is associated with various diseases, including

obesity, type 2 diabetes, and hypertension. As an alternative medicine,

Traditional Chinese Medicine (TCM) has long been used in disease treatment

and healthcare, partly because it may mediate gut microbiota. However, the

specific e�ects of TCM on the abundance and interactions of microbiota

remain unknown. Moreover, using TCM ingredients and data detailing changes

in the abundance of gut microorganisms, we developed bioinformatic

methods that decipher the impact of TCM on microorganism interactions.

Methods: The dynamics of gut microorganisms a�ected by TCM treatments

is explored using a mouse model, which provided the abundance of

70 microorganisms over time. The Granger causality analysis was used

to measure microorganism interactions. Novel “serial connection” and

“diverging connection” models were used to identify molecular mechanisms

underlying the impact of TCM on gut microorganism interactions,

based on microorganism proteins, TCM chemical ingredients, and KEGG

reaction equations.

Results: Codonopsis pilosula (Dangshen), Cassia twig (Gui Zhi), Radices

saussureae (Mu Xiang), and Sijunzi Decoction did not cause an increase

in the abundance of harmful microorganisms. Most TCMs decreased the

abundance of Bifidobacterium pseudolongum, suggesting a Bifidobacterium

pseudolongum supplement should be used during TCM treatment. The

Granger causality analysis indicated that TCM treatment changes more than

half the interactions between the 70 microorganisms, and “serial connection”

and “diverging connection” models suggested that changes in interactions

may be related to the reaction number connecting species proteins and TCM

ingredients. From a species diversity perspective, a TCM decoction is better
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than a single herb for healthcare. The Sijunzi Decoction only significantly

increased the abundance of Bifidobacterium pseudolongum and did not cause

a decrease in the abundance of other species but was found to improve the

alpha diversity with the lowest replacement rate.

Conclusions: Because most of the nine TCMs are medicinal and edible

plants, we expect the methods and results presented can be used to optimize

and integrate microbiota and TCMs into healthcare processes. Moreover, as

a control study, these results can be combined with future disease mouse

models to link variations in species abundance with particular diseases.

KEYWORDS

bioinformatics, Granger causality, Traditional Chinese Medicine, intestinal

microbiology, molecular mechanisms

Introduction

The intestinal microbiota consists of 1013-1014

microorganisms, with a gene number 100 times that of

the human genome (Gill et al., 2006). This microbiota acts as

an important ecosystem (Sonnenburg et al., 2005) that plays

essential biological roles in maintaining health by potentially

protecting the host from pathogen infections (Sorbara and

Pamer, 2019) and other diseases (Xu et al., 2015; Liu et al.,

2017). Compared with an abundance per sample, a time

series of microorganism abundance can characterize dynamic

rather than static processes and examine inter-microorganism

dependencies between adjacent time points (Mehta et al., 2018),

and this scheme is used to study gut microorganisms in infants

(Vatanen et al., 2016) and the effects of type 1 diabetes (T1D)

(Kostic et al., 2015) and antibiotics on gut microbiota (Yassour

et al., 2016).

Most human gut microbiome experiments must be carried

out with animal models, mainly mouse models (Nguyen et al.,

2015), for ethical and safety reasons. Germ-free (Schaedler

et al., 1965), ASF (altered Schaedler flora) (Brand et al., 2015)

and HFA (human flora-associated) (Hirayama et al., 1995) are

often used in mouse model experiments. The mouse intestinal

bacterial collection (miBC) database contains gut microbes from

various mice (Lagkouvardos et al., 2016), and the mouse gut

microbial biobank (mGMB) contains data covering 126 species

represented by 244 strains (Liu et al., 2020). However, only a

few projects have systematically constructed an abundance time

series of mouse intestinal microorganisms, which limits our

understanding of microorganism interactions.

As an important alternative medicine, Traditional Chinese

Medicine (TCM) has a long utilization and treatment history

over thousands of years and has contributed significantly to

human disease prophylaxis and therapy (Qiu, 2007). TCM

medicine for COVID-19 has received national clinical approval

(Lyu et al., 2021). TheWorld Health Organization has estimated

that up to 80% of the global population living in developing

countries relies on herbal medicines as a primary source

of healthcare (World Health Organization, 2004). Even in

developed countries in Europe and North America, herbal

medicines are consumed in large quantities, and there is an

increasing demand for these complementary and alternative

medicines (Ekor, 2014). By studying ancient literature on TCM,

Youyou Tu won the Nobel Prize for discovering artemisinin,

a drug refined from a TCM, Artemisia apiacea, that can be

used to treat malaria. Hence, investigating TCM ingredients

as potential therapies is a worthwhile venture. TCM can also

be used to treat intestinal diseases, perhaps representing the

most important potential of TCM in medical therapy (Teschke

et al., 2015; Bailly, 2021). Literature has studied the relationship

between microbiota and TCM or its ingredients (Gong et al.,

2020; Zheng et al., 2020); however, few papers have focused

on the association of gut microbiota and TCM for intestinal

diseases. In this report, we focus on nine effective TCMs

for treating intestinal disease and explore their impact on

typical mouse gut microorganisms. As a control, the results

can be combined with future disease mouse models to identify

variations in microorganism abundance associated with the

disease. Moreover, most of the nine TCMs are both medicinal

and edible plants; thus, the methods and results herein can be

used to optimize and integrate microbiota and the nine TCMs

into healthcare and intestinal disease treatments.

The interactions of microorganisms contribute to the

stability of the microbiome. The strength of this interaction can

be measured by the Granger causality approach, which identifies

causality between different time series (Granger, 1969), can be

used to construct sensorimotor cortical networks (Brovelli et al.,

2004) and gene regulation networks (Finkle et al., 2018) and to

connect species in complex ecosystems (Sugihara et al., 2012).

A current review provides a comprehensive summary (Shojaie

and Fox, 2022). In this paper, the null hypothesis for Granger

causality tests is that the time series of one species’ abundance

(x2) does not cause the other species’ time series (x1). We reject

the null hypothesis when x2 does not cause x1 if p < 0.01 and
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accept the hypothesis when x2 causes x1 at the level of p < 0.01.

For the python function “grangercausalitytests,” there are four

kinds of tests for the null hypothesis: two tests are based on the

F distribution, “params_ftest” and “ssr_ftest,” and two are based

on the χ
2 distribution, “ssr_chi2test” and “lrtest.”

To benefit healthcare and intestinal disease TCM treatment,

we used the bio-statistic and Granger causality methods to

explore the impact of TCM on gut microorganism abundance

and interactions using nine TCMs and standard mouse gut

microorganism sequencing data. Moreover, by novel serial and

diverging connection models, we also deduced possible reaction

pathways underlying the impact of the interactions.

Materials and methods

Experiment part 1: Preparing water
extract from the TCM

The TCMs were obtained from Kangmei Pharmaceutical

Industry Co., Ltd, with batch numbers (BN) as follows:

Codonopsis pilosula (Dangshen, BN:17040212), Poria cocos

(Fuling, BN:170809401), Rhizoma dioscoreae (Shan Yao,

BN:170711221), Radices saussureae (Mu Xiang, BN:170501921),

Rhizoma Zingiberis (Ganjiang, BN:170708491), Cassia twig

(Gui Zhi, BN:170704361), Magnolia officinalis (Houpo,

BN:170700141), White Atractylodes rhizome (Bai Zhu, BN:

170812601), Poria cocos (Fuling, BN:170809401), Liquiritiae

glycyrrhizae (Gan Cao, BN:170808051), Astragalus mongholicus

(Huangqi, BN:170800541), and Chinese angelica (Dang

Gui, BN:170708441).

Initially, we weighed seven single dried Chinese herbs

and two compounds used in intestinal treatment (Teschke

et al., 2015; Bailly, 2021). Codonopsis pilosula may affect small

intestinal propulsion movement (Li et al., 2004). Poria cocos

can improve intestinal barrier function and intestinal microbiota

(Yu and Liu, 2021). Rhizoma dioscoreae (Fu et al., 2008) and

Radices saussureae (Tang et al., 2010) are medicines used to

treat gastrointestinal disorders. Magnolia officinalis is a popular

TCM with antibiotic and analgesic effects (Lu et al., 2004).

Cassia twig is also an important alternative medicine that

displays anti-inflammatory, antibacterial, antiviral, anti-allergic,

and analgesic functions (Ye et al., 2022). The TCMs used

herein have been verified by clinical investigation, are herbal

slices without any secondary processing (granule, powder, and

herbal leaven), and most of them, including Codonopsis pilosula

(Dangshen), Poria cocos (Fuling), Rhizoma dioscoreae (Shan

Yao), Rhizoma zingiberis (Ganjiang), Liquiritiae glycyrrhizae

(Gan Cao), Astragalus mongholicus (Huangqi), and Chinese

angelica (Dang Gui), are medicinal and edible plants. TCM

samples listed in Tables 1, 2 were placed in round-bottom flasks

and 10-fold the weight of pure water was added, and these

samples were left to soak for 30min. Samples were then heated

in the round-bottom flasks and boiled for over an hour. After

cooling, the flasks containing the TCM water extracts were

filtered with six-layer gauze, and the nine water extracts were

collected.We then added pure water (eight-fold in weight) to the

nine remaining TCM residues, and after repeating the boiling,

cooling, and filtering process, these nine water extracts were

also stored. We combined the water extracts derived from the

same TCMs and concentrated the nine water extracts to yield

the crude drug concentrations listed in Tables 1, 2. Samples were

stored at−20◦C.

Experiment part 2: Feeding mice and
collecting fecal samples

This study was performed with 198 male-specific pathogen-

free (SPF) C57BL/6J mice aged 6 weeks. The mice were housed

in the SPF animal breeding room of KMHD under License No.

SYXK (Yue) 2019-0205, at a temperature of 23–25◦C, moisture

54–57% and a 12-h light/dark cycle. This experimental study was

approved by the Ethics Committee of KMHD under Approval

No. IACUC-0210831-1.

After feeding for a week, 198 mice were randomly grouped

into 11 groups, with each group consisting of 18 mice. Among

the 11 groups, nine groups were treated with different TCMs by

gastric infusion (Figure 1), and the other two groups were the

blank control group (blank group) and the physiological saline

treatment group (saline group). Mice were given free access to

food and drinking water.

Fecal collection process: after alcohol disinfection of each

cage, three mice in each cage acted freely and defecated freely.

Using sterile forceps, fresh feces were collected, placed into 2EP

tubes, and quickly placed at −80◦C. The fecal collection was

performed before intragastric administration. The intragastric

administration was suspended during the 3rd week (days 15 to

21) of the experiment.

Bioinformatics part 1: Sequencing
metagenome and calculating the relative
microorganism abundance in a time
series

High-quality genomic DNA was extracted from the mouse

feces. The DNA that passed quality control was then used

to construct a library using the TruSeq DNA HT Sample

Prep Kit. Paired-end sequencing (2 × 150 bp) was carried

out using the Illumina HiSeq X10 platform. After removing

the host (mouse) and low-quality sequences, the relative

abundance was calculated using MetaPhlAn 3.0 (Beghini et al.,

2021) with default parameter values. Functional profiling

was performed using HUMAnN3 (Beghini et al., 2021)
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TABLE 1 Single TCM gavage dose for mouse treatment.

Single TCM Weight of TCM (g) Concentrated volume

of TCM water extract

(mL)

Crude drug

concentration (g/mL)

Mouse dose (mg/g)

Codonopsis pilosula (Dangshen) 260 200 1.3 13

Poria cocos (Fuling) 260 200 1.3 13

Rhizoma Dioscoreae (Shan Yao) 260 200 1.3 13

Radices saussureae (Mu Xiang) 130 200 0.65 6.5

Rhizoma zingiberis (Ganjiang) 130 200 0.65 6.5

Cassia twig (Gui Zhi) 195 200 0.975 9.75

Magnolia officinalis (Houpo) 195 200 0.975 9.75

TABLE 2 Compound TCM gavage dose for mouse treatment.

Compound TCM Composition of TCM Weight of

TCM (g)

Concentrated

volume of TCM

water extract (mL)

Crude drug

concentration

(g/mL)

Mouse dose

(mg/g)

Sijunzi decoction Codonopsis pilosula (Dangshen) 110 200 2 20

White Atractylodes rhizome (Bai Zhu) 110

Poria cocos (Fuling) 110

Liquiritia glycyrrhiza (Gan Cao) 72

Dang Gui Bu Xue decoction Astragalus mongholicus (Huangqi) 200 200 1.2 12

Chinese angelica (Dang Gui) 40

in the UniRef90 mode. In Supplementary material 1,

merged_abundance_table_species70.csv, we list the relative

abundance of 70 species at 0, 3, 14, 21, and 28-day time points

under the 11 different treatments, where the sum of each

column is 100.

Bioinformatics part 2: Chemical
composition of TCMs, metabolites of
microorganisms, and KEGG reactions

KEGG (Kyoto Encyclopedia of Genes and Genomes)

(http://rest.kegg.jp/list/reaction) includes 11,075 reactions

and represents a primary source to relate TCM with

microorganisms. Chemical compositions and keywords of

chemical reactions related to Cassia twig (Gui Zhi) and Sijunzi

Decoction are listed in Supplementary material 2. Among the

70 microorganisms we annotated from mice gut microbiota, 28

microorganisms are present in KEGG (Supplementary Table 1 in

Supplementary material 3), and their proteins and metabolites

can also be obtained from KEGG. We retrieved reactions

involving each TCM composition or microorganism metabolite

from KEGG. Thus, a TCM or microorganism can be related

to several hundred reactions. If a TCM and a microorganism

share some reactions, they may naturally interact through these

shared reactions. Similarly, the intersection of reactions between

a TCM and two microorganisms may indicate where the TCM

affects microorganism interactions.

Results and discussion

Beneficial impact of TCM on
microorganism abundance

Most microorganisms with increasing abundance

following treatment with the nine TCMs have positive

health functions for humans. There were 11 TCM-free

samples on day 0. After N (0, 1) normalizing each column of

merged_abundance_table_species70.csv, from the 11 TCM-free

samples, we estimated the mean abundance values and variances

for all 70 microorganisms. Then, we calculated the mean relative

abundance for each microorganism species under each TCM

treatment on days 3, 14, 21, and 28. If the mean is in the 95%

confidence interval, treatment does not significantly change

the abundance of the species at the p1 < 0.05 level according

to the two-tail test. A mean located on the left side of the

95% confidence interval indicates that treatment significantly

decreases the abundance of a species, whereas a mean on the

right side of the confidence interval indicates that treatment
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FIGURE 1

Experimental design and the microorganism relative abundance calculation for 70 species over five time points, where ASDSB represents the

Dang Gui Bu Xue Decoction, and DFMD represents the Sijunzi Decoction.

increases the abundance of a species, with p2 < 0.025 using the

one-tail test.

Regarding setting p2 < 0.005 with the one-tail test, no

microorganisms treated with the nine TCMs showed a decrease;

however, setting p2 < 0.05 with the one-tail test revealed

that Dang Gui Bu Xue Decoction, Cassia twig (Gui Zhi),

and Sijunzi Decoction did not cause a significant decrease

in the abundance of all microorganisms, whereas the other

TCMs caused a reduction in the abundance of Bifidobacterium

pseudolongum. This observation suggests that people taking

TCM for healthcare should also take probiotics (including

Bifidobacterium pseudolongum) to neutralize the mild adverse

effects because this species is enriched with specific enzymes that

degrade complex plant carbohydrates and host glycans (Xiao

et al., 2021).

In Figure 2 and Supplementary Table 2 in

Supplementary material 3, we show species whose

abundance increased under the nine treatments with a

p2 < 0.025 using the one-tail test. Many microorganisms

have positive (or conditionally positive) benefits

to human health, including Lactobacillus_johnsonii

(Lim et al., 2017), Parasutterella_excrementihominis

(Fart et al., 2020), Bacteroides_vulgatus (You et al.,

2019), Parabacteroides_distasonis (Wang et al., 2019),

Parabacteroides_goldsteinii (Wu et al., 2018), and

Lachnospiraceae_bacterium_A4, which increase the
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FIGURE 2

Increase in species abundance by the 11 treatments, where p2 < 0.025 with the one-tail test.

short-chain fatty acids (SCFA) content in the caecum,

Enterorhabdus_caecimuris (Fang et al., 2022), which aids

the production of tryptophan metabolism in the gut,

and Bacteroides_thetaiotaomicron (Delday et al., 2019)

and Dubosiella_newyorkensis, which improve various

health indicators of a fatty mouse. Lactobacillus_murinus

(Perelmuter et al., 2008), Bacteroides_uniformis (Zhao

et al., 2016), Adlercreutzia_equolifaciens (Zhu et al., 2015),

and Bacteroides_intestinalis are helpful for treating type 2

diabetes mellitus.

A few microorganisms with adverse conditional

functions toward human health were also identified to

increase in abundance following TCM treatments (Figure 2,

Supplementary Table 2 in Supplementary material 3).

For example, Desulfovibrionaceae_bacterium, which

produces H2S, can harm intestinal epithelial

cells, and Clostridium_bolteae (Cai et al., 2020),

Flavonifractor_plautii (Wang et al., 2021), and

Bilophila_wadsworthia also produce H2S and are associated

with appendicitis and some other local inflammation.

Lachnospiraceae_bacterium_28_4 and Romboutsia_ilealis

was also found and may contribute to the development

of diabetes in obese mice (Kameyama and Itoh, 2014;

Rodrigues et al., 2021).
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Most species identified to increase in abundance when

exposed to the nine TCMs were positive or conditionally

positive. This observation indicates that the nine TCMs, which

have similar functions according to TCM theory (Wang and

Guo, 2015), i.e., tonifying the spleen, regulating the flow of vital

energy, and removing obstructions, have largely a consistent

impact on gut microorganisms.

Biomarker characterization of the TCM
treatments

The LDA Effect Size (LEfSe) (Segata et al., 2011) is used

to discover biomarkers that show a difference between two or

more biological conditions or intervention groups. LEfSe is used

to identify both statistical significance and biological relevance.

LEfSe was applied to our data matrix (Supplementary material 1,

merged_abundance_table_species70.csv), and the results are

presented in Figure 3. Rhizoma dioscoreae (Shan Yao) was found

to have five biomarkers: Bacteroides_caccae, Blautia_coccoides,

Ruthenibacterium_lactatiformans, Clostridium_innocuum,

and Lactobacillus_intestinalis. Rhizoma zingiberis (Ganjiang)

was found to have Intestinimonas_butyriciproducens and

Escherichia_coli as biomarkers. Codonopsis pilosula (Dangshen),

Sijunzi, and Magnolia officinalis (Houpo) were found

to have only one biomarker. Compared with Figure 2,

the abundances of these biomarkers did not increase in

their corresponding TCM treatment, except for Rhizoma

zingiberis (Ganjiang), where the abundance of the two

biomarkers increased.

TCM can change the strength of the
inter-microorganism interaction

Taking the python package statsmodels.tsa.stattools,

importing the grangercausalitytests function and using gc_res

= grangercausalitytests [DATA, (1)], the Granger causality p-

values of two species were calculated based on their abundance

time series included in variable DATA. We used the likelihood

ratio test (“lrtest”), a χ
2 distribution test, to calculate the

p-values of the Granger causality. We found many possible

causality relationships under the 11 treatments when p < 10−4.

For example, we showed that the Granger causality network

for mouse gut microorganisms treated by Sijunzi Decoction

has a p < 10−4 (Figure 4). Supplementary Figures 1–10 of

Supplementary material 4 show the Granger causality network

for the other 10 networks. In summary, blank control, Dang

Gui Bu Xue Decoction, Codonopsis pilosula (Dangshen), Poria

cocos (Fuling), Rhizoma zingiberis (Ganjiang), Cassia twig

(Gui Zhi), Magnolia officinalis (Houpo), Radices saussureae

(Mu Xiang), saline control, Rhizoma dioscoreae (Shan Yao),

and the Sijunzi Decoction have 372, 414, 426, 428, 467, 588,

443, 543, 431, 410 and 392 pairs of significantly correlated

species, respectively.

Compared with the blank control group, the newly added

causality pairs included 374, 383, 400, 454, 552, 423, 513, 410,

371, and 347 for the last 10 treatments, and 332, 329, 344, 359,

336, 352, 351, 351, 333, and 327 causality pairs vanished. In

Figure 5, we also show the number of different causality pairs

identified between 11Granger causality networks with p< 10−4.

Thus, correlations between the 70 species were found to change

considerably by TCMs.

After setting lrtest to p < 0.00000001, a stricter cutoff,

for blank control, Dang Gui Bu Xue Decoction, Codonopsis

pilosula (Dangshen), Poria cocos (Fuling), Rhizoma zingiberis

(Ganjiang), Cassia twig (Gui Zhi),Magnolia officinalis (Houpo),

Radices saussureae (Mu Xiang), saline control, Rhizoma

dioscoreae (Shan Yao), and Sijunzi Decoction, there remained

36, 30, 44, 45, 73, 22, 58, 61, 31, 64, and 45 pairs of significantly

correlated species, respectively. Compared with the blank group,

the number of newly added causality pairs was 29, 44, 45, 73, 22,

57, 61, 31, 63, and 45 for the last 10 treatments, and 35, 36, 36, 36,

36, 35, 36, 36, 35, and 36 causality pairs vanished, respectively.

These results further confirmed that TCMs greatly changed the

species correlations.

Moreover, the biomarkers shown in Figure 3 are not among

the first 10 highest degree species in all Granger causality

networks, including Figure 4 and Supplementary Figures 1–10

of Supplementary material 4.

Alpha and beta diversity

A diversity index for a dataset is a quantity reflecting

how many different species exist and how evenly individuals

are distributed among those species. The diversity index

increases with increasing species number and increasing

evenness. Alpha diversity measures, in one sample, the number

of different species and their different abundance, whereas

beta diversity focuses on a group of samples and compares

species compositions between different samples. For each

sample of each treatment in our study, an alpha diversity

index was calculated (Figure 6). Here, we found that for

two decoction TCMs (Sijunzi Decoction and Dang Gui Bu

Xue Decoction), the alpha diversity value increased slightly

when comparing their start and end diversity values. In

contrast, for the saline control, Poria cocos (Fuling) and

Cassia twig (Gui Zhi), a decrease in the alpha diversity

values were observed because their diversity at point “5” was

significantly lower than that at point “1”. The remaining

TCMs showed no significant change in their alpha diversity.

From the perspective of species diversity, TCM decoctions
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FIGURE 3

LEfSe analysis identifies microorganism biomarkers that show distinctions among the nine TCM treatments.

FIGURE 4

Granger causality network for mouse gut microorganisms treated by the Sijunzi Decoction with p < 10−4.

were found to have a greater effect when compared with

single herbs.

As shown in Supplementary material 5, we also

calculated the Simpson and Invsimpson index, and found

that three indexes were consistent and closely related,

i.e., the Shannon index can describe the diversity of

each sample.

Beta diversity measures differences between the species

composition of samples, with larger beta diversity values

indicating a larger replacement rate (Anderson et al., 2010).

We calculated the beta diversity for the 11 treatments, with

a beta diversity of 0.2222222 determined for the blank

control group. The beta diversity of the Dang Gui Bu

Xue Decoction treatment group was 0.2441315, whereas
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FIGURE 5

The number of di�erent causality pairs among the 11 Granger causality networks.

the value for the Codonopsis pilosula (Dangshen) treatment

group was 0.2443439. A value of 0.2672811 was determined

for Poria cocos (Fuling) treatment, 0.3333333 for Rhizoma

zingiberis (Ganjiang) treatment, 0.2918660 for Cassia twig (Gui

Zhi) treatment, 0.3302752 for Magnolia officinalis (Houpo)

treatment, 0.3594470 for Radices saussureae (Mu Xiang)

treatment, 0.2127660 for the saline control treatment, 0.4285714

for Rhizoma dioscoreae (Shan Yao) treatment and 0.1842105

for Sijunzi Decoction treatment. The Sijunzi Decoction,

saline, and blank treatments have the lowest replacement

rates, whereas Ganjiang, Houpo, Mu Xiang and Shan Yao

have the highest replacement rates. Interestingly, the Sijunzi

Decoction was found to only increase the abundance of

Bifidobacterium_pseudolongum significantly, with no decrease

in any other species abundance. Thus, this treatment improved

the alpha diversity with the lowest replacement rate.

Exploring the mechanisms of TCM that
a�ect the microorganism correlation
strength by contrast analysis

Two TCMs (Cassia twig and Sijunzi Decoction) and

two microorganisms (Adlercreutzia equolifaciens and

Bifidobacterium pseudolongum) were used as examples to

clarify the novel mechanism exploration method as follows.

First, the two microorganisms present very different correlation

strengths under the two TCM treatments. Second, specific

reactions involving the chemical compositions of the two TCMs

and metabolisms of the two microorganisms were retrieved.

Finally, by using novel serial and diverging connection reaction

path models, contrast analysis was performed to deduce the

possible mechanism of TCM that changes the microorganism

correlation strength.
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FIGURE 6

The alpha diversity Shannon index for each sample of each treatment.

The interaction between Adlercreutzia equolifaciens

and Bifidobacterium pseudolongum presents very different

correlations: treatment with Cassia twig (Gui Zhi)

gave a Granger causality lrtest p-value of 0.000064934,

whereas treatment with the Sijunzi Decoction yielded a

Granger causality lrtest p-value of 0.93943. We typically

study three models to explore the relationship among

the three objects (a TCM and two microorganisms):

serial connection, diverging connection, and converging

connection. Here, the “converging connection” is not

applicable because microorganisms cannot have an impact

on the TCM.

For convenience, in the following study, in

Supplementary material 2 we have listed the chemical

compositions of Cassia twig (Gui Zhi) and Sijunzi Decoction,

respectively, and the metabolites of Adlercreutzia_equolifaciens

and Bifidobacterium_pseudolongum are available from KEGG

(data not shown due to size). “Serial connection” means

three equations are involved in Adlercreutzia_equolifaciens

→ Bifidobacterium_pseudolongum → chemical

composition of TCM, or Bifidobacterium_pseudolongum

→ Adlercreutzia_equolifaciens → chemical composition of

TCM, where the TCMmay increase the inter-species correlation

by driving the chemical reaction based on Le Chatelier’s

principle/the equilibrium law.

For Cassia twig, taking the following as an example:

{rn:R00237} acetyl-CoA + pyruvate ↔ (3S)-citramalyl-

CoA (A. equolifaciens) → {rn:R02955} acetate +

(3S)-citramalyl-CoA (A. equolifaciens) ↔ Acetyl-CoA (B.

pseudolongum) + Citramalate → {rn:R10474} Acetyl-CoA

(B. pseudolongum) + cinnamyl alcohol (Cassia twig) ↔

CoA + Cinnamyl acetate. Clearly, there are three equations

involved in A. equolifaciens → B. pseudolongum →

Cassia twig. Here, the metabolite “(3S)-citramalyl-CoA” of

A. equolifaciens helps to produce the metabolite “acetyl-

CoA” of B. pseudolongum, and the chemical composition of

“cinnamyl alcohol” from Cassia twig can consume “acetyl-

CoA” of B. pseudolongum. Hence, this serial connection

may increase the correlation between A. equolifaciens and

B. pseudolongum.

In Supplementary material, more information is

provided on the novel serial connection models: in

Supplementary material 6, we list 2,775 such serial connections:

A. equolifaciens → B. pseudolongum → Cassia twig. In

Supplementary material 7, 1,352 serial connections are listed:

B. pseudolongum → A. equolifaciens → Cassia twig. In
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Supplementary material 8, 1,419 such serial connections are

listed: A. equolifaciens → B. pseudolongum → Sijunzi

Decoction, and in Supplementary material 9, we have 390

serial connections: B. pseudolongum → A. equolifaciens →

Sijunzi Decoction. Clearly, for Adlercreutzia_equolifaciens

and Bifidobacterium_pseudolongum, the number of serial

connections driven by Cassia twig (2,775 + 1,352 = 4,127)

is much larger than that driven by the Sijunzi Decoction

(1,419 + 390 = 1,809). This observation may partially

explain the stronger Granger causality of A. equolifaciens

and B. pseudolongum under Cassia twig than that under the

Sijunzi Decoction.

The “diverging connection” indicated that the compositions

of TCM may react with both metabolites of A. equolifaciens

and B. pseudolongum through the same or different reaction

equations. As shown in Supplementary material 10, Cassia

twig (Gui Zhi) connects with both A. equolifaciens and

B. pseudolongum through 75 shared chemical reactions,

whereas Cassia twig (Gui Zhi) has five specific equations

with A. equolifaciens and 15 specific equations with B.

pseudolongum. Data in Supplementary material 10 also shows

that the Sijunzi Decoction connects with A. equolifaciens

and B. pseudolongum through 11 shared chemical reactions,

without any specific reactions. The more shared chemical

reactions may explain, in part, the higher correlation

between A. equolifaciens and B. pseudolongum under

Cassia twig treatment than that found under Sijunzi

Decoction treatment.

Conclusion

Mouse gut experiments and sequencing technology

afforded a systematic analysis of the abundance of gut

microorganisms over time with and without TCM treatments.

The study also provided an opportunity to explore how

TCM affects microorganism abundance and their inter-

species correlations. Ingredient and reaction pathway

analysis was used to explain the impact of TCM on gut

microorganisms, and we focused our analysis on two TCMs,

Cassia twig (Gui Zhi) and Sijunzi Decoction. Moreover,

among the 70 microorganisms annotated in our mice

model, only 28 microorganisms were annotated in KEGG.

Given more detailed data, the novel serial and diverging

connection models should provide additional insights

into how TCM affects microorganism abundance and

inter-species correlations.
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