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Recent research on abundant and rare bacteria has expanded our understanding 

of bacterial community assembly. However, the relationships of abundant and 

rare bacteria with antibiotic resistance genes (ARGs) remain largely unclear. 

Here, we investigated the biogeographical patterns and assembly processes 

of the abundant and rare bacteria from river sediment at high altitudes (Lhasa 

River, China) and their potential association with the ARGs. The results showed 

that the abundant bacteria were dominated by Proteobacteria (55.4%) and 

Cyanobacteria (13.9%), while the Proteobacteria (33.6%) and Bacteroidetes 

(18.8%) were the main components of rare bacteria. Rare bacteria with a large 

taxonomic pool can provide function insurance in bacterial communities. 

Spatial distribution of persistent abundant and rare bacteria also exhibited 

striking differences. Strong selection of environmental heterogeneity may 

lead to deterministic processes, which were the main assembly processes of 

abundant bacteria. In contrast, the assembly processes of rare bacteria affected 

by latitude were dominated by stochastic processes. Abundant bacteria had 

the highest abundance of metabolic pathways of potential drug resistance 

in all predicted functional genes and a high abundance of potential ARGs. 

There was a strong potential connection between these ARGs and mobile 

genetic elements, which could increase the ecological risk of abundant taxa 

and human disease. These results provide insights into sedimental bacterial 

communities and ARGs in river ecosystems.
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Introduction

Rivers play a vital and irreplaceable role in the process of 
human civilization and global biogeochemical cycling. Due to 
development of human society and rapid economic growth, 
river pollution has become a critical challenge (Shao et al., 
2006; Wang et al., 2019). Antibiotic resistance genes (ARGs) 
and antibiotic-resistant bacteria (ARB) are recognized as 
emerging contaminants (Cosgrove, 2006; Amarasiri et  al., 
2020). Environmental pollution due to factors such as heavy 
metals may accelerate the enrichment and evolution of ARB 
and ARGs and increase the risk of transmission of the 
environmental resistome to humans (Yang et  al., 2018). 
Bacterial community composition is a vital factor affecting the 
distribution of ARGs. For example, Cyanobacteria blooms 
promote the diversity of ARGs in aquatic ecosystems (Zhang 
et al., 2020). The change in the bacterial community promotes 
the improvement of ARGs in the chlorination process of 
drinking water (Jia et  al., 2015). These studies on the 
correlation between bacterial community and ARGs were 
conducted at the overall level of the community. However, 
microbial communities in nature are comprised of a large 
number of species, while few of these species are abundant, 
and a large number of species are often called the “rare 
biosphere” (Sogin et al., 2006; Jiao et al., 2017). To date, we still 
know little about how spatial variation in ARG composition 
relates to bacterial taxonomic composition (i.e., abundant 
bacteria or rare bacteria) in a river continuum.

Abundant and rare bacteria in sediments are major 
participants in the biogeochemical cycle of rivers (Jia et al., 2015; 
Goldman et al., 2017). It is the core goal of community ecology to 
reveal the basic mechanism of the generation and maintenance of 
river microbial community diversity, and some interesting 
patterns have been discovered. For example, the physicochemical 
properties (such as pH, heavy metals content, and nutritional 
status) and spatial distribution (such as horizontal geographic 
distribution and vertical altitude distribution) were important 
drivers of the unique biogeographic patterns of microbial 
communities (Chen et al., 2020b;  Wang Y. et al., 2020; Wang et al., 
2021). However, there has been little consistency in the studies so 
far due to the heterogeneity of the river ecosystem.

In recent years, pollutants from industry and life have entered 
the water of the Lhasa River and caused a certain degree of 
pollution to the water quality. The changes in microbial 
community diversity and structure can indirectly or/and directly 
affect the aquatic ecological function, which is a comprehensive 
and sensitive index of environmental quality in the aquatic 
ecosystem (Long et al., 2021). The main objective of this study was 
to examine the biogeographical patterns and assembly processes 
of the abundant and rare bacteria in sediment and the potential 
association with the ARGs in the sediment of the Lhasa River. 
Therefore, 16S rRNA gene sequencing and qPCR reaction were 
used to analyze the sediments of the Lhasa River to determine the 
adaptation mechanism of microorganisms and resistance genes in 

the sediments. We hope this study could provide new insights into 
sedimental bacterial communities and ARGs in river ecosystems.

Materials and methods

Study sites and sample collection

Lhasa River (90.08–93.33°E, 29.33–31.25°N) known as the 
“Water Tower of Asia” is located in the Qinghai-Tibetan Plateau 
and is one of the highest rivers in the world (Qu et al., 2019). The 
Lhasa River basin is about 568 km long from east to west, and the 
altitude is between 3,570 and 5,200 m above sea level. More than 
70% of the population of the Lhasa River Basin is concentrated 
from Mozhugongka county to Qushui county. Therefore, we set 
up 10 sampling sites along the Lhasa River from the Mozhugongka 
to the Qushui county with detailed geographic information on the 
sampling sites (Supplementary Table S1; Supplementary materials). 
Surface sediment (0–5 cm) was collected from each site in 
September 2019 using a stainless-steel core sampler. Three 
sub-samples were collected from each site, mixed as one sample, 
kept in a car refrigerator, transported to the laboratory, and stored 
at −80°C before 16S rRNA gene sequencing. The contents of Cr, 
Co, Cu, Zn, As, Cd, Hg, and Pb in sediment were detected by 
inductively coupled plasma mass spectrometer (ICP-MS, X Series 
2, Germany). Detailed data and measurement methods are shown 
in Supplementary Table S2. Detailed information about sediment 
physicochemical properties (temperature, pH, salinity, and 
conductivity) and nutrients [total nitrogen (TN) and total carbon 
(TC)] are shown in Supplementary Table S3.

16S rRNA gene sequencing

Genomic DNA of the bacterial community from each site was 
extracted using a bacterial DNA Extraction Kit (Tiangen Biotech, 
Inc., Beijing, China) according to the manufacturer’s protocols 
(Zhang et al., 2021a). The DNA served as a template for PCR 
amplification of the V4 region of 16S rRNA using the primer set 
515F/806R (Caporaso et  al., 2011; Walters et  al., 2016). The 
sequencing library was set up when the amplicons of 16S rRNA 
were purified, and Ion S5™XL of Thermofisher was used in the 
sequencing. The raw fastq data were quality-filtered by low-quality 
parts and chimeric sequences to get clean reads (Martin, 2011; 
Rognes et  al., 2016). The clean reads were clustered into 
operational taxonomic units (OTUs) at the 97% similarity level 
using Uparse (Edgar, 2013). Since this study only focused on 
bacteria, we deleted all OTUs that did not belong to bacteria. The 
MUSCLE method and the SSU rRNA database of silva132 were 
used for the annotation species analysis (Wang et al., 2007; Quast 
et  al., 2013). We  followed a previously reported method 
(Wemheuer et  al., 2020) and applied Tax4Fun to reveal the 
functional and redundancy index (FRI) of the sequenced 
bacterial genome.

https://doi.org/10.3389/fmicb.2022.977037
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhao et al. 10.3389/fmicb.2022.977037

Frontiers in Microbiology 03 frontiersin.org

Analysis of ARGs in the sediment from 
the Lhasa River

A total of 23 ARGs and the 16S rRNA gene were selected to 
investigate the distribution of ARGs in the sediment from the 
Lhasa River. Herein, the representative ARGs in the environment 
and clinically important ARGs were taken into account based on 
the potential ecological risks and threats to human health (Zhang 
et al., 2021a; Jiang et al., 2021b). The 23 ARGs including seven 
major classes of antibiotic-related ARGs, which were the colistin 
(mcr-1, mcr-3, and mcr-7), beta-lactam (blaCTX-M-32, blaNMD-1, 
blaCMY, blaCTX-M, and blaTEM), aminoglycosides (aadA, strB, and 
armA), macrolide (ereA, ereB, and mphA), quinolones (qnrA, 
qnrB, and qnrS), sulfonamides (sul1, sul2, and sul3), and 
tetracycline (tetA, tetM, and tetX) resistance genes, respectively. 
Besides, the transposase gene (tnpA) and class 1 integron-
integrase gene (intI1) were selected to investigate the transfer or 
propagation of ARGs in the Lhasa River sediment. Detailed 
information on the primers and their corresponding target genes 
was given in Supplementary Table S4. The qPCR reaction in a 10 μl 
reaction volume was performed according to the denaturation at 
95°C for 30 s, followed by the thermal cycles of qPCR consisting 
of 40 cycles of 10 s at 95°C, 30 s annealing at 55°C, and 1 min 
extension at 72°C. The relative abundances of ARGs and mobile 
genetic elements (MGEs) were calculated using the 2−ΔCT method 
[Equations (1) and (2); Zhang et al., 2021a].

 
C C CT T ARG T SrRNA gene= −( ) ( )16  

(1)

The relative abundance of

 ARG
C

T= −
2


 (2)

Statistical analysis

Previous studies have generally defined OTUs at the regional 
level with average relative abundances >0.10% as “abundant,” those 
with average relative abundances <0.01% as “rare” and those in 
between as “intermediate” (Jiao and Lu, 2020a; Wan et al., 2021a; 
Zhang et al., 2021b; Zhang Y. et al., 2021). However, this definition is 
not suitable for our data because the total abundance of these 
abundant bacterial OTUs in some samples was lower than 50% 
accounting for this sample’s total reads. Similarly, some previous 
studies also defined OTUs at the regional level with average relative 
abundances >0.05% as “abundant” (Jiao et al., 2017; Hou et al., 2020). 
Thus, across all sediment, the average relative abundance of OTUs 
above 0.05% was defined as abundant bacteria, while the average 
relative abundance of OTUs below 0.01% was regarded as rare 
bacteria. The remainder OTUs (0.01–0.05%) were deemed as 
“intermediate.” The community similarity (1-Bray–Curtis distance) 
and phylogenetic similarity (1-βNMTD) of abundant and rare 

bacteria were calculated based on taxonomic distance and 
phylogenetic distance, respectively. Then, the distance-decay 
relationship (DDR) was used to reveal the responses of community 
similarity and phylogenetic similarity to horizontal (geographic 
distance) and vertical (altitude distance) spatial distribution and 
environmental heterogeneity (Bray-Curtis distance). The network 
was constructed by Spearman correlation and visualized via Gephi 
software (0.9.1; Gephi, WebAtlas, France). We  identify the 
contribution of different assembly processes of abundant and rare 
bacteria in the Lhasa River sediments via applying a null model 
analysis by Stegen et al. (2013).

Results

Composition and distribution of 
abundant and rare bacteria

The relative abundance of abundant bacteria (mean = 69.6%) was 
higher than rare ones (10.5%; Figure 1A). Conversely, the Chao1 
richness (381.6), Shannon diversity (5.08), and Pielou evenness (0.86) 
of abundant bacteria were lower than the rare ones (1937.5, 6.88, and 
0.95, respectively; Figure 1A). At the bacterial phylum level, abundant 
bacteria were dominated by Proteobacteria (55.1%), Cyanobacteria 
(13.8%), and Bacteroidetes (11.6%), while the Proteobacteria (36.1%), 
Bacteroidetes (19.3%), and Actinobacteria (7.17%) were the main 
components of rare bacteria (Figure  1B). Abundance-occupancy 
relationships showed that rare bacteria possessed stronger positive 
correlations than abundant bacteria (Figure  1C). Meanwhile, 
abundant bacterial taxa had a wider distribution than the rare 
bacterial taxa. The petal diagram showed that abundant bacteria had 
325 OTUs that persisted in all sediments, while rare bacteria only had 
28 OTUs (Figure  1D). Even these persistent abundant and rare 
bacteria had obvious differences in spatial distribution.

The community similarity (Figure  2A) and phylogenetic 
similarity (Figure 2E) of abundant bacteria were higher than rare 
bacteria, indicating that the rare bacteria had more taxonomic and 
phylogenetic variation than the abundant bacteria. Furthermore, 
the community similarity for abundant and rare bacteria had 
significantly positive correlations with their corresponding 
phylogenetic similarity, and the correlations of rare bacteria were 
stronger than that of abundant bacteria (Supplementary Figure S1), 
indicating that the phylogeny of these abundant and rare bacteria 
had different sensitivities to environmental changes.

The DDR showed that the community similarity of both 
abundant and rare bacteria significantly decreased with the 
increased geographical distance (Figure  2B). Interestingly, the 
effect of geographical distance on the community composition of 
rare bacteria (R2 = 0.15) was greater than that of abundant bacteria 
(R2 = 0.12), whereas the community composition of abundant 
bacteria (Slope = −0.083) had more community turnover with 
increased of geographical distance. Besides, the composition of 
rare bacteria was also significantly affected by altitude in 
biogeographic patterns, and the community similarity significantly 
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decreased with the increased altitude distance (Figure  2C). 
Similarly, the effect of environmental heterogeneity on rare 
bacteria (R2 = 0.35) was greater than that of abundant bacteria 
(R2 = 0.18). Rare bacteria (Slope = −0.609) had more community 
turnover with the increase in environmental change (Figure 2D). 
Specifically, the taxonomic composition of rare bacteria was 
significantly affected by heavy metals, such as Cu, Zn, Cd, and As, 
whereas only the composition of abundant bacteria was 
significantly affected by Cu (Supplementary Table S5). Especially, 
Cu had more influence on the taxonomic composition of rare 
bacteria than abundant bacteria (Supplementary Table S5). 
However, the phylogenetic similarity for abundant and rare 
bacteria did not decrease significantly with the increased 
geographical distance and altitude distance (Figures 2F,G). Only 
the phylogenetic similarity of rare bacteria was significantly 
affected by environmental heterogeneity (Figure 2H). The different 
responses of abundant and rare bacteria to geographic and 

environmental factors in the taxonomic and phylogenetic 
composition may indicate the presence of had distinct community 
ecological assembly processes.

Community assembly processes of 
abundant and rare bacteria in the 
sediment

Although the niche width of abundant bacteria (mean = 5.58) 
was higher than rare bacteria (2.80), the niche of the abundant 
bacteria showed higher differentiation (Figure 3A). Results from 
the null model showed that the differentiating was the dominant 
process for both abundant (99.8%) and rare bacteria (88.9%) 
assembly, while the homogenizing process (4.44%) had little 
impact on rare bacteria assembly (Figure 3B). Additionally, the 
stochastic process (62.2%) was the main assembly pattern of rare 

A

D

B C

FIGURE 1

Alpha diversity and composition of abundant and rare bacteria in sediment from the Lhasa River. (A) Alpha diversity of abundant and rare bacteria 
in sediment. (B) The composition of abundant and rare bacteria in sediment. (C) Abundance–occupancy relationship of abundant and rare 
bacteria in sediment. (D) The number and composition of shared operational taxonomic units (OTUs) in sediment. Asterisks denote significance 
(**p < 0.01; ***p < 0.001).
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bacteria in the sediment of the Lhasa River, followed by the 
deterministic process (37.8%). The deterministic process (53.3%) 
dominated the assembly of abundant bacteria, followed by the 
stochastic process (46.7%). The results show that the contribution 
of the stochastic and deterministic process for the assembly of 
abundant and rare bacteria in the sediment of the Lhasa River was 
different. Mantel tests suggested that the βNTI values of both 
abundant and rare bacteria had a significant correlation with the 
geospatial factor (latitude; Supplementary Table S6), indicating 
that the community assembly of abundant and rare bacteria may 
be affected by latitude. Furthermore, the βNTI values of abundant 
bacteria significantly correlated with pH, conductivity, and heavy 
metal (Cd; Supplementary Table S6). The results of the null model 
further suggested that the variable selection (53.3%) was the 
dominant assembly process of abundant bacteria, whereas the 
dispersal limitation (51.1%) was the dominant assembly process 
of rare bacteria (Figure  3C). These results suggested that the 
assembly of abundant bacteria was susceptible to the 
environmental selection, while the assembly of rare bacteria was 
susceptible to geospatial factors.

Co-occurrence patterns of abundant and 
rare bacteria

A metacommunity network was conducted based on the 
strong (|r| > 0.8) and significant (p < 0.01) Spearman correlations to 

explore the co-occurrence patterns of the sedimental microbial 
communities of the Lhasa River (Figure  4A). The network 
consisted of 2,699 nodes linked by 40,344 edges. Degree, 
Betweenness centrality, Closeness centrality, and Eigen centrality 
of the network within abundant bacteria were significantly higher 
than within rare bacteria (Figure 4B), indicating that the abundant 
bacteria played an important role in maintaining community 
structure. Abundant bacteria interacted more with other bacterial 
taxa than within themselves (Figure 4A). Although the number of 
positive correlation edges (59.1%) was higher than that of negative 
correlation edges (40.9%) in the co-occurrence network of whole 
bacteria in sediment, the proportion of negative correlation was 
different within and between the different bacterial taxa. For 
example, the proportion of negative correlation within bacterial 
taxa was lower than between these bacterial taxa, suggesting there 
may be stronger competition between different bacterial taxa than 
that within these bacterial taxa. Further, the proportion of negative 
correlation within rare bacteria (40.1%) was higher than within 
abundant bacteria (38.9%), indicating that there may be stronger 
competition within rare bacteria than within abundant bacteria.

Potential function analysis of abundant 
and rare bacteria

When compared to rare bacteria, abundant bacteria not only 
had the highest abundance of metabolic pathways of potential 

A B C D

E F G H

FIGURE 2

Beta-diversity patterns of taxonomic and phylogenetic for both abundant and rare bacteria in sediment from the Lhasa River. (A) Community 
similarity (1—Bray-Curtis distance) of abundant and rare bacteria. (B–D) Relationship of community similarity for both abundant and rare bacteria 
with the geographical distance, altitude distance, and environmental heterogeneity, respectively. (E) Phylogenetic similarity (1—βMNTD) of 
abundant and rare bacteria. (F–H) Relationship of phylogenetic similarity for both abundant and rare bacteria with the geographical distance, 
altitude distance, and environmental heterogeneity, respectively. Asterisks denote significance (*p < 0.05; **p < 0.01; and ***p < 0.001).
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drug resistance (such as antimicrobial and antineoplastic 
resistance), chemical structure transformation maps, cell growth 
and death, cell motility, and xenobiotics biodegradation and 
metabolism but also had the more potential pathogenic potential 
of human disease (such as infectious diseases, etc.) in all predicted 
functional genes (Figure 5A). However, abundant taxa had weak 
global and overview maps (such as biosynthesis of antibiotics and 
carbon metabolism), carbohydrate metabolism, metabolism of 
terpenoids and polyketides, nucleotide metabolism, glycan 
biosynthesis and metabolism, and biosynthesis of other secondary 
metabolites. The function redundancy index (FRI) of abundant 
bacteria (122) was lower than that of rare bacteria (8,878; 
Figure 5B), indicating that the probability of potential function 
loss of rare bacteria after the disturbance was lower than that of 
abundant bacteria.

Composition and distribution of ARGs

A total of 20 ARGs were detected in sediment samples of the 
Lhasa River, which including colistin (mcr-1, mcr-3, and mcr-7), 
beta-lactam (blaCTX-M-32, blaCMY, blaCTX-M, and blaTEM), 
aminoglycosides (aadA and strB), macrolide (ereA, ereB, and 
mphA), quinolones (qnrA, qnrB, and qnrS), sulfonamides (sul1, 
sul2, and sul3), and tetracycline (tetM and tetX) resistance genes, 
respectively (Figure 6A). However, blaNMD-1, armA, and tetA were 
not detected in any sediment sample. The total relative abundance 
of ARGs ranged from 4.60 × 10−3 to 1.72 copies per 16S rRNA, 
indicating that the ARGs were widely distributed in the sediment 
of the Lhasa River. The blaTEM was the only ARG detected in all 

sediments and was the most abundant ARGs (mean relative 
abundance was 1.92 × 10−1 copies per 16S rRNA), followed by the 
tetM, sul1, and aadA. Besides, aadA, strB, sul1, sul2, and tetM were 
also detected in all sediments. Among the 10 sediment samples, 
the total relative abundance of ARGs at S6 was significantly higher 
than those of other locations. The total relative abundance of 
ARGs downstream from Lhasa (from S6 to S10) was significantly 
higher than those upriver from Lhasa (from S1 to S5), suggesting 
that human activities may promote the accumulation of ARGs in 
the sediments of the Lhasa River (Figure 6B).

Potential hosts and co-occurrence 
patterns of ARGs in sediment

Network analysis showed that more members of rare bacteria 
(36.5%) were the potential host of ARGs (Figure 7A). An ARG 
may have more potential hosts, such as the potential hosts of 
mcr-7 belonging to both abundant and rare bacteria. However, 
network topology features showed that abundant bacteria rather 
than rare bacteria had stronger connectivity and centrality, 
indicating that abundant bacteria may be the potential host of 
more ARGs (Supplementary Figure S2). Besides, the relative 
abundance of abundant bacteria (15.5%) in the whole bacterial 
community was higher than that of rare bacteria (0.57%; 
Supplementary Figure S3). This also suggested that the abundant 
bacteria were the main potential host of ARGs. The relative 
abundance of ARGs and their potential hosts downstream was 
higher than upstream, suggesting that urbanization may promote 
the occurrence of ARGs and their potential hosts.

A B C

FIGURE 3

Niche width (A) and community assembly processes (B,C) of abundant and rare bacteria in sediment from the Lhasa River. Stochastic = Dispersal 
limitation + Homogenizing dispersal + Undominated processes; Deterministic = Variable selection + Homogeneous selection; 
Homogenizing = Homogeneous selection + Homogenizing dispersal; and Differentiating = Variable selection + Dispersal limitation.
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Furthermore, the network results showed coexistence patterns 
among some ARGs, such as blaTEM had a significant correlation 
with the strB, mphA, sul3, and tetM. More important, transposase 
gene tnpA had a significant correlation with the aadA, strB, ereA, 
ereB, qnrS, sul1, sul2, and tetX. intI1 had a significant correlation 
with the aadA, strB, ereB, qnrS, sul1, sul2, and tetX. These results 
suggested that some ARGs (aadA, strB, ereB, qnrS, sul1, sul2, and 
tetX) in the sediment of the Lhasa River may co-exist on MGEs, 
which may increase the risk of transmission of these ARGs in 
aquatic ecosystems.

Discussion

Bacterial communities are the foundation of every ecosystem 
on earth. They are often composed of abundant bacterial taxa with 
fewer species and rare bacteria with more species (Pedrós-Alió, 
2012; Hou et al., 2020; Zhang et al., 2021b). Research on abundant 
and rare bacteria has expanded our understanding of bacterial 
community structure, but the relationships of abundant and rare 
bacteria with ARGs remain largely unclear. Revealing the 
dominant host bacteria (e.g., abundant or rare bacteria) of ARGs 
and assembly processes provide a good hold on the potential risks 
of ARGs. Therefore, we investigated the composition of abundant 

and rare bacteria and their relationship with ARGs. We  also 
characterized the ecological assembly mechanism of sedimental 
abundant and rare bacteria in the Lhasa River, China.

Rare taxa can serve as function insurance 
of sediment bacterial communities

In this study, rare bacteria with low relative abundance were 
found to have high richness and diversity (Figure 1A), which was 
consistent with findings of the studies on the sediment of Erhai 
Lake (Zhang et al., 2021b) and Hangzhou Bay (Dai et al., 2016). 
Although rare bacteria did not dominate the taxonomic 
community, they may still play an important role in maintaining 
the bacterial community’s stability in the Lhasa River sediment 
due to their large taxonomic pool. Because the more members of 
the rare bacteria, the stronger the buffering effect of their 
functional composition on environmental variation (Schindler 
et al., 2010). Previous studies showed that functional redundancy 
could protect microbial communities by maintaining ecosystem 
function homeostasis (Liang et al., 2020). Our study found that 
rare bacteria had stronger functional redundancy than abundant 
ones (Figure  5B). Besides, rare bacteria with high functional 
redundancy show a stronger adaptation to anthropogenic 

A B

FIGURE 4

Co-occurrence network of abundant and rare bacteria in the sediment of the Lhasa River. (A) The network analysis showed the intra-associations 
within each bacterial taxa and inter-association between different bacterial taxa. OTUs occurred in more than half of samples were used for 
network analysis. A connection based on a strong (|r| > 0.8) and significant (p < 0.01) correlation via Spearman. The size of each node is proportional 
to the degree. Numbers outside and inside parentheses represent total edge numbers and negative edge numbers and their ratio, respectively. 
(B) Comparison of node-level topological features among three different bacterial taxa. Asterisks denote significance (***p < 0.001).
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disturbances (Wan et al., 2021b). Thus, rare bacteria can serve as 
an insurance source for the function of sediment bacterial 
communities in the Lhasa River during external disturbance.

Biogeographical patterns of abundant 
and rare bacteria in the sediment

Our study found obvious differences in diversity, taxonomy 
composition, and phylogenetic composition between abundant 

and rare bacteria. Even the persistent abundant and rare bacteria 
showed different biogeographical patterns. The number of spatial 
persistence existing OTUs in abundant bacteria was outdistanced 
than that in rare ones, which was consistent with the spatial 
persistence existing pattern of rare and abundant bacteria in the 
sediment from Erhai Lake (Zhang et al., 2021b). Furthermore, this 
study found that the community similarity of abundant bacteria 
stands out from rare bacteria (Figure 2A), suggesting the species 
composition of rare bacteria was more susceptible to geographical 
and environmental filters. Some studies found that the stronger 

A B

FIGURE 5

Comparison of functional differences (A) and functional redundancy (B) between rich and rare groups in sediments of the Lhasa River.

A B

FIGURE 6

Main composition of the sedimental ARGs of the Lhasa River. Upriver including the sediment samples from sampling site S1 to S5, and downriver 
including the sediment samples from sampling site S6 to S10. “*” showed a significant difference at the 0.05 level.
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spatial variation within the microbial community, the more 
susceptible it is to environmental change (Wan et  al., 2021b; 
Zhang et al., 2021b). It also may be foreshadowed that rare bacteria 
in sediments from the Lhasa River were more susceptible to 
environmental changes.

Geographic distance and environmental heterogeneity are 
abiotic factors that govern bacterial community assemblage (Gao 
et al., 2019; Langenheder and Lindström, 2019). This study found 
that abundant and rare bacteria had complicated responses to 
geographical and environmental differences. The spatial turnover 
of the bacterial community has been reported to be related to 
dispersal limitations (Wang et al., 2013; Lewthwaite et al., 2017). 
Our study found that rare and abundant bacteria had a more 
significant variation in horizontal spatial distribution because 
their community similarity decreased with the increase in 
geographical distance, which was similar to the biogeographical 
pattern of river microorganisms reported previously (Chen et al., 
2020a,b; Wang Y. et al., 2020). This study also found that altitude 
was another important spatial factor that affects the community 
turnover of rare bacteria in the sediment. The R2 value of DDR 
showed that the geographical distance, altitude distance, and 
environmental heterogeneity had greater effects on rare bacteria 
than on abundant bacteria, showing that rare bacteria rather than 
abundant bacteria were more susceptible to environmental 
changes. The slope of DDR showed that the effects of altitude and 
environmental heterogeneity on the spatial turnover of rare 

bacteria surpass abundant bacteria. These results portend that 
geographic and environmental factors together shaped the unique 
biogeographic pattern of sediment abundant and rare bacteria in 
the Lhasa River. This also means the greater impact of geographic 
and environmental factors on rare bacteria resulting in the 
community similarity of rare bacteria far below abundant bacteria.

Potential associations of bacterial 
communities

Association among the microbe-microbe is an essential biotic 
factor in the assembly processes of microbial communities except for 
the abiotic factor (geographic and environmental selection; 
Nemergut et  al., 2013; Zhang et  al., 2021b). In the community 
ecological assembly processes, network analysis could provide new 
insights into the associations within individual bacterial taxon and 
linkages between different bacterial taxa (Xue et al., 2018; Zhang 
et al., 2021b). The nodes in networks with high connectivity may 
play a crucial role in protecting the structural stability of the bacterial 
community (Xue et al., 2018). This study found that the connection 
within the abundant bacteria significantly overtopped rare bacteria, 
indicating that abundant bacteria may play an irreplaceable role in 
maintaining bacterial community structure. Furthermore, the 
positive interaction links in the network are mainly considered 
cooperative relationships among microbial members, while the 

A B

FIGURE 7

Co-occurrence patterns of ARGs and their potential hosts in the sediment of the Lhasa River. (A) Network analysis showed the co-occurrence 
patterns of ARGs and their potential hosts. The percentages were of these taxa OTUs or genes that accounted for total OTUs or genes in 
networks. OTUs and ARGs occurred in more than half of the samples were used for network analysis. A connection based on a strong (r > 0.8) and 
significant (p < 0.01) correlation via Spearman. (B) Major network topological properties of co-occurrence patterns of ARGs and their potential 
hosts. Asterisks denote significance (NS, p ≥ 0.05; *p < 0.05; **p < 0.01; and ***p < 0.001).
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negative interaction links are mainly thought of as competitive 
relationships among microbial members (Faust et  al., 2012). 
Cooperation among bacterial members helps improve the resilience 
of bacterial communities to respond to changing environments (Xue 
et al., 2018). Cooperation among the abundant bacteria was more 
than among rare bacteria, which may be an important reason for the 
widespread of abundant bacteria in the sediment of the Lhasa River.

Deterministic process was the dominant 
assembly process in abundant bacterial 
taxa

Traditional niche theory generally agrees that deterministic 
process mediated community structure is governed by species 
interaction (e.g., competition and mutualisms, etc.) and 
environmental variables (e.g., pH and temperature, etc.; Fargione 
et al., 2003; Zhou and Ning, 2017), whereas neutral theory assumes 
that community structure is shaped by limited dispersal and 
random fluctuations in species abundance (e.g., birth, death, and 
extinction, etc.; Chave, 2004; Zhou and Ning, 2017). Although 
deterministic and stochastic were generally accepted that occur 
simultaneously in the community assembly processes, their relative 
contribution to regulating community structure and biogeography 
is debatable (Zhou and Ning, 2017). This study showed that both 
deterministic and stochastic processes occur during the assembly 
of abundant and rare bacteria, which was consistent with previous 
studies (Zhou and Ning, 2017; Jiao and Lu, 2020b; Wan et al., 
2021b; Zhang et  al., 2021b). Among them, the deterministic 
process was the dominant assembly mechanism of abundant 
bacterial taxa, while the stochastic process was the dominant 
assembly mechanism of rare bacteria. One possible reason was that 
the high diversity of rare bacteria species allows them to occupy 
various ecological niches, while more rare species occurs spatial 
turnover in biogeographic distribution, which leads to the strong 
influence of stochastic processes on the assembly of rare bacterial 
taxa (Hou et al., 2020). Similarly, more persistent species from the 
abundant bacterial taxa were detected in the Lhasa River sediment, 
which may be  one reason why the assembly processes of the 
abundant bacteria were more inclined to deterministic processes. 
Furthermore, environmental and spatial variables also seemed to 
control the biogeographic patterns and assembly of abundant and 
rare bacteria. Null model results showed that the variable selection 
was the dominant assembly process of abundant bacteria, followed 
by dispersal limitation. Conversely, the dispersal limitation was the 
main assembly process of rare bacteria, followed by variable 
selection. Moreover, the Mantel tests of geospatial and 
environmental factors against βNTI values also suggested that the 
βNTI values of abundant bacteria had a significant correlation with 
more geospatial and environmental factors (such as latitude, pH, 
conductivity, TN and TC ratio, and Cd), whereas βNTI of rare 
bacterial taxa only had a significant correlation with latitude. This 
may be a decisive reason why the abundant bacteria were more 
influenced by variable selection than rare bacteria.

Urbanization increased the occurrence 
of ARGs in the Lhasa River sediment

Antibiotic resistance genes were widely distributed in the 
sediment of the Lhasa River, among which blaTEM, aadA, strB, sul1, 
sul2, and tetM were detected with 100%. Notably, blaTEM was 
detected in all sediment samples with the highest abundance, 
consistent with blaTEM in the surface sediments of Danjiangkou 
Reservoir (Jiang et al., 2021b). The blaTEM was the clinically relevant 
ARG, which can be  used as an indicator gene for ARG 
contamination caused by human activities (Narciso-da-Rocha 
et al., 2014; Stange et al., 2019). This also indicates that sediments 
of the Lhasa River were contaminated by ARGs related to human 
activities. Human activities have increased correspondingly with 
the decrease of the altitude of the Lhasa River, which also leads to 
the increase in the abundance of ARGs in the sediments. In 
contrast to a global survey that found that urbanization was 
strongly associated with lower rates of antibiotic resistance 
(Collignon et al., 2018), studies have reported that urbanization 
could promote the development of bacterial resistance to 
antibiotics in rivers (Peng et al., 2020; Liu et al., 2021). This study 
found that urbanization promoted the enrichment of ARGs, which 
was consistent with the results found in the Yarlung Tsangpo River 
(Liu et al., 2021). Therefore, more attention should be paid to the 
pollution of ARGs caused by urbanization on the watershed scale.

Abundant bacterial taxa were the main 
potential hosts of ARGs

Bacterial antibiotic resistance is one of the most serious global 
threats to environmental safety and human health (Ashbolt et al., 
2013; Roca et al., 2015; Zainab et al., 2020). Cyanobacteria were 
found to be a reservoir and source of ARGs (Wang Z. et al., 2020), 
which contributes to the diversity increase of ARGs in the aquatic 
ecosystem (Zhang et al., 2020). In our study, the relative abundance 
of Cyanobacteria was second only to that of Proteobacteria among 
the abundant bacterial taxa, but not in rare bacterial taxa. Previous 
studies also found that Proteobacteria, Bacteroidetes, and 
Actinobacteria were often antibiotic producers or have the ability 
to transform/metabolize (Manaia, 2017). Proteobacteria, 
Bacteroidetes, and Actinobacteria were the dominant phyla in both 
abundant and rare bacteria. Furthermore, abundant bacteria 
account for the highest proportion in whole bacterial 
communities, indicating abundant bacteria may be the main hosts 
of ARGs in the sediments from the Lhasa River. Function 
prediction results show that abundant bacteria not only had a 
strong pathogenic potential for human diseases but also had a 
strong potential for drug resistance. Environment ARGs could 
threaten human health by increasing pathogenic ARB, leading to 
inefficient or ineffective use of therapeutic antibiotics for humans 
(Pan et al., 2020; Jiang et al., 2021a). To date, we still know little 
about how spatial variation in ARGs composition relates to 
bacterial taxonomic composition (i.e., abundant bacteria or rare 
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bacteria) in a river continuum. Therefore, we further explored the 
relationship of the ARGs with abundant bacteria and rare bacteria 
based on understanding the biogeographic patterns of ARGs.

The co-occurrence network is also a widely used as an important 
tool to explore the interaction between ARGs and their potential 
hosts (Chen et al., 2016; Peng et al., 2020). Important nodes in a 
network can be  identified by network central location and high 
connectivity (Peng et al., 2020). In this study, the network analysis 
showed that the connectedness between the abundant bacteria and 
ARGs was higher than the rare ones (Figure 7B), indicating that the 
abundant bacteria may be the potential hosts of more ARGs. The 
relative abundance of these potential hosts belonging to abundant 
bacteria was also higher than that of rare bacteria. This may also 
be an important reason for the strong potential drug resistance in the 
abundant bacterial taxa. More importantly, ARGs in the environment 
lead to the rapid increase in the spread and number of ARB through 
horizontal gene transfer, which will also make antibiotic resistance an 
important and unavoidable global health problem affecting human 
health (Watts et al., 2017; Manyi-Loh et al., 2018; Kraemer et al., 2019; 
Yadav and Kapley, 2021). This study found that abundant bacteria not 
only had strong potential drug resistance but also have a high 
abundance of potential ARGs. There was a strong and significant 
correlation between these ARGs and MGEs, which could increase the 
ecological risk of abundant taxa and the potential for human disease.

Some potential limitations merit further discussion. Our 
analyses were focused on the abundant and rare bacterial taxa 
level, and we did not know the exact host bacteria for each ARG 
at the species level. Network results on the co-occurrence patterns 
between ARGs and bacterial taxa indicated the possible host 
information of ARGs. Therefore, further studies are needed to 
verify the ARG bacterial hosts at the species level. Abundant 
bacteria had a high abundance of metabolic pathways of potential 
drug resistance in all predicted functional genes may be due to 
their higher relative abundance in the whole community, but it 
also does not mean that rich taxa contain more ARGs than rare 
taxa. Therefore, further studies are needed to verify the ARG 
bacterial hosts at the species level.

Conclusion

In this study, we investigated biogeographical patterns and 
assembly mechanisms of rare and abundant bacteria and revealed 
the potential association among the ARGs with abundant and rare 
bacteria from the Lhasa River sediment. The different and complex 
responses of abundant and rare bacteria to geospatial and 
environmental changes may be influenced mainly by deterministic 
and stochastic processes, respectively. Rare taxa can serve as 
function insurance of bacterial communities in the Lhasa River 
sediment. This shall provide novel insights to explain the assembly 
and biogeographical patterns of abundant and rare bacteria in the 
sediment. To our knowledge, this study was the first time to reveal 
that the abundant bacteria have a high abundance of potential 
ARGs in Plateau Rivers, with strong pathogenic potential for 

human diseases. In particular, abundant bacteria with potential 
ARGs were also maybe the main potential hosts for the presence 
of MGEs, which may increase the ecological risks of abundant 
bacteria. These results provide new insights into understand the 
ARGs’ association with abundant and rare bacteria in plateau river 
sediment. Given the importance of ARGs to the health of aquatic 
ecosystems, the findings of this study should be  validated 
experimentally at the bacterial species level in more diverse 
freshwater and marine ecosystems.
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