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Tuina can effectively alleviate ulcerative colitis-related symptoms, but the 

mechanism of action is unknown. The purpose of this research is to explore 

potential pathways for the treatment of tuina through gut microbiota and 

proteomics techniques. Thirty-two male BALB/c mice were divided into four 

groups, the control, model, mesalazine, and tuina groups. The ulcerative colitis 

model was established by freely drinking a 3% dextran sulphate sodium solution 

for 7 days. The mesalazine group and the tuina group, respectively, received 

7 days of mesalazine and tuina treatment. Subsequently, their body weights, 

feces properties, colon length, histomorphological changes, gut microbiota, 

and colon proteomics were determined. Body weights, disease activity index 

score, colon histological scores, and microbiota diversity were restored in the 

tuina group. At the phylum level, Firmicutes was increased and Bacteroidota 

decreased. At the family level, Lachnospiraceae increased and Prevotellaceae 

decreased. At the genus level, the Lachnospiraceae_NK4A136_group was 

increased. Proteomics detected 370 differentially expressed proteins regulated 

by tuina, enriched to a total of 304 pathways, including biotin metabolism, 

Notch signaling pathway, linoleic acid metabolism, and autophagy. Tuina can 

effectively improve the symptoms of weight loss, fecal properties, and colon 

inflammation in ulcerative colitis mice and restore the gut microbiota diversity, 

adjusting the relative abundance of microbiota. The therapeutic effects of tuina 

may be achieved by modulating the signaling pathways of biotin metabolism, 

Notch signaling pathway, linoleic acid metabolism, and autophagy.
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Introduction

Ulcerative colitis (UC) is a chronic inflammatory disease of the colon and small 
intestine caused by a combination of genetic background and environmental factors (De 
Souza and Fiocchi, 2016). The disease is characterized by abdominal pain, diarrhea, rectal 
bleeding, internal cramps of the pelvis, and weight loss. The prevalence of UC exceeds 0.3%, 
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and the incidence of pediatric UC is steadily increasing (Ng et al., 
2017; Sýkora et  al., 2018; Windsor and Kaplan, 2019). The 
development of UC is highly associated with genetic and 
environmental factors. These causes together with changes in the 
gut microbiota drive the chronic immune-mediated inflammatory 
response (Ni et al., 2017). The terminal ileum and colon are the 
most severe inflammatory sites of UC, as well as the sites with the 
highest concentration of gut microbes. There is an epithelial cell 
layer that separates the intestinal immune system and the 
microbiota. When the gut microbiota is imbalanced, it can easily 
break the intestinal barrier and affect the physiological function 
of the immune system (Conrad et al., 2017). Although we do not 
know whether the gut microbiota is a cause or a consequence of 
the pathogenesis of UC, changes in the microbiota are certainly 
consistent with the condition or prognosis of the disease, which is 
supported by both clinical trials and animal studies (Mukhopadhya 
et al., 2012).

Complementary and alternative therapies, such as tuina, 
acupuncture, and moxibustion, are widely used in the treatment 
of UC. Tuina is a therapy that treats diseases by applying pressure 
with direction, depth, and intensity to the skin, muscles, and joints 
of the body through a variety of manipulations. It has been widely 
used in the treatment of a variety of diseases, such as the 
musculoskeletal system, nervous system, etc.(Fan et  al., 2021; 
Huang et al., 2022). In recent years, it has shown a good clinical 
effect on digestive system diseases and can improve symptoms 
such as constipation, diarrhea, pain, and dyspepsia caused by 
intestinal diseases (Bu et al., 2020; Fang et al., 2021). A clinical 
study showed that tuina can effectively improve the visual analog 
score and reduce pain caused by UC compared with mesalazine 
treatment (Yu et al., 2019). Studies have shown that between 20 
and 40% of UC patients used tuina to alleviate the unbearable 
symptoms (Rawsthorne et  al., 2012; Oxelmark et  al., 2016). 
However, the effective mechanism of tuina therapy is still in its 
infancy, several studies found that tuina can down-regulate the 
expression levels of tumor necrosis factor-α, interleukin (IL)-6, 
and IL-10 to reduce inflammation, suggesting that tuina plays an 
effective role in immune or inflammatory diseases (Mori et al., 
2004; Crane et al., 2012; Negahban et al., 2013; Barbe et al., 2021). 
Furthermore, enrichment for diversity and beneficial bacterial 
community was observed in rats after tuina treatment, it is 
indicated that tuina exerts an immunomodulatory effect by 
modulating the microbiota (Zhu et al., 2020).

Here, to explore the potential mechanisms of action for UC 
treatment using tuina, we  combined the gut microbiota and 
proteomics to investigate whether tuina can alter the dysbiosis of 
the gut microbiota and regulate the expression of colon proteins 
in UC model mice. We  reported that mesalazine and tuina 
treatment restored the lost diversity and composition after 
modeling, with an increased abundance of beneficial taxa 
associated with the alleviation of inflammatory symptoms. 
We  identified 247 differentially expressed proteins (DEPs) 
regulated by mesalazine and 370 DEPs regulated by tuina and then 
performed bioinformatic analyzes. This study preliminary 

explored the potential mechanisms of tuina for the treatment of 
UC and provided a basis for follow-up studies.

Materials and methods

Animals and ethical approval

In this experiment, 32 9-week-old male BALB/c mice 
weighing 20 ± 1 g each were purchased from SPF (Beijing) 
biotechnology Co., LTD. (Beijing, China) for this experiment, the 
certification number is SCXK (JING) 2019–0010. The mice 
received sterile maintenance feed, with free access to drinking 
water. These animals were housed at 25 ± 0.5°C and relative 
humidity of 60%–70%, and the padding was changed twice a 
week. All animal experimental procedures were following the 
principles of the local animal ethics committee (The review 
number is BUCM-4-2,021,112,601-4,074).

Experimental UC model induction

After 3 days of acclimatization, at time point P1, the 32 mice 
were randomly assigned to the control group, the model group, 
the mesalazine group and the tuina group, 8 per group. Mice in 
the control group received distilled water. And experimental UC 
models were induced by freely drinking 3% dextran sulphate 
sodium (DSS) solution (w/v in distilled water; MPBIO, Canada) 
for 7 days in the other three groups (Figure 1).

Experimental treatment

After 7 days of DSS solution induction, at time point P8, all 
groups received distilled water. The mesalazine group was treated 
with a once daily mesalazine solution (intragastrically; 500 mg/kg; 
IPSEN, China) solution for 7 days. The tuina group received a 
10-min tuina treatment per day for 7 days (Figure 1).

Tuina treatment

During acclimatization feeding, the manipulator performed 
daily handling to reduce animal stress. The tuina protocol 
consisted of two parts: rubbing the abdomen and pointing. The 
procedure was performed as follows (Figure 1): The manipulator 
held a mouse in the palm. First, set RN 4, and RN 15 as the 
operating area (the abdomen). The abdomen was exposed, and 
circular rubbed the abdomen with the thumb was in a clockwise 
direction for 3 min (100 times per minute), then operated 
counterclockwise for 3 min, 6 min in total, with the force of 4 N 
(Liu, 2006). Second, the index finger pointed bilateral ST 36 and 
ST 37, 1 min per acupoint, 4 min in total, with the force of 4 N 
(Huizhu et al., 2021). The manipulator had been trained prior to 
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the experiment. Pressure and frequency are controlled by the 
fingerTPS II wireless pressure measurement system (Pressure 
Profile System, US).

Evaluation of the disease activity index 
score and colon sample collection

At time point P15, all animals were assessed for the disease 
activity index (DAI) score according to the following criteria 
(Table  1). Then, all groups were sacrificed by IP with 2% 
pentobarbital. Immediately separated the colon from the rest of 
the abdominal tissue. Removed the entire colon between the anus 
to the cecum, and measured the colon length. Furthermore, 2 cm 
of the distal colon sample was taken for hematoxylin–eosin (HE) 
staining and another 2 cm for 16 S rDNA bioinformatic analysis. 
Each mouse collected the same segments. Meanwhile, the colon 
contents were rapidly removed and stored at −80°C for 
further analysis.

He staining and evaluation of the colon 
histological score

The colon tissues were fixed in a 4% paraformaldehyde fixing 
solution at 4°C for 48 h. The tissues were then embedded in 
paraffin and sectioned, the thickness was 4 μm. The glass slides 
were hydrated at 65°C for 1 h and stained with HE  solution 

(Solarbio, China), then observed and photographed through the 
microscope (NIKON, Japan). Colon histological scores were 
graded according to the following standard of tissue injury 
(Table 2).

16 S rDNA bioinformatics analysis

Gut microbiota analysis was performed by the 16 S rDNA 
bioinformatics approach. Briefly, the genomic DNA of the 
microbial community in fecal samples was extracted by a soil 
DNA kit (Omega Bio-Tek, US). After qualifying for the 
concentration and purity test, proceed to the next operation. The 
V3-V4 hypervariable region of bacterial 16S rRNA gene was 
amplified by forwarding primer 338 and reverse primer 806, and 
the primer sequences are 5′-ACTCCTACGGGAGGCAGCAG-3′ 
and 5′-GGACTACHVGGGTWTCTAAT-3′. Then triple PCR 16S 

FIGURE 1

Timeline of the experiment. ✝, time point of sacrifice, the arrow above indicates before the sacrifice and the arrow below indicates after the 
sacrifice. a and b form the abdomen operation area. a, RN 15; b, RN 4. c and d indicate the direction of the rubbing manipulation. (c), clockwise for 
3 min; (d), counterclockwise for 3 min. (e), ST 36 (bilateral); (f), ST 37 (bilateral). g indicates the direction of the pointing manipulation [images with 
permission created with BioRender. https://biorender.com (2022)].

TABLE 1 Disease activity index score criteria.

Points Body weight Feces properties Occult blood

0 No loss Normal −

1 1%–5% loss Soft +

2 6%–10% loss Wet and soft ++

3 11%–15% loss Watery and semi-

loose

+++

4 16% and over loss Watery and loose Gross
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rRNA gene amplification was performed. According to the 
standard protocol, the purified amplicons were pooled and 
end-sequenced using the MiSeq PE 300 (Illumina, US) platform. 
Then, using FastQ to quality filter the raw reads of 16S rRNA gene 
sequencing, and using Fast Length Adjustment of Short reads to 
merge (Magoč and Salzberg, 2011; Chen et al., 2018). The UPARSE 
was used to cluster the operational taxonomic units (OTUs) with 
97% similarity, and the chimeric sequences were identified and 
deleted (Edgar, 2013). Using 0.7 as the confidence threshold, the 
16S rRNA database was then analyzed by the RDP Classifier for 
each representative OTU sequence (Wang et al., 2007).

Data independent acquisition 
quantitative proteomics analysis

The DIA quantitative analysis process includes 5 steps: total 
protein extraction, protein digestion, high pH RP-UPLC 
separation, liquid chromatography-mass spectrometry analysis, 
and protein identification (Law and Lim, 2013). Briefly, the colon 
tissue samples were incubated on ice in protein lysis buffer (with 
8 M urea, 1% SDS, and protease inhibitor) for 30 min, then, all 
samples were centrifuged for 30 min at 4°C, set the speed to 
16,000 g, and determined the protein supernatant concentration 
using the bicinchoninic acid method. The protein digestion 
process includes 3 steps: resuspension was performed with 
triethylammonium bicarbonate buffer (100 mM, Sigma-Aldrich, 
and Germany). Then the reduction was performed with Tris 
(2-carboxyethyl) phosphine buffer (10 mM, Sigma-Aldrich, and 
Germany) for 60 min at 37°C. At last, alkylation was performed 
with iodoacetamide buffer (40 mM, Sigma-Aldrich, and 
Germany) for 40 min in darkness at room temperature. After the 
samples were centrifuged for 20 min at 4°C and set the speed to 
10,000 g, the collected pellet was resuspension and incubation at 
37°C overnight after adding trypsin. The trypsin-digested 
peptides were vacuum-dried and resuspended in UPLC loading 
buffer, then fractionated into fractions to increase proteome 
depth. Online analysis of the redissolved peptides using a 
nanoflow liquid chromatography–tandem mass spectrometry 
method with the EASY-nLC system (Thermo Fisher Scientific, 
USA). Ran the Q Exactive HF-X in DIA mode with variable 
isolation windows, set with 40 windows, each overlapping by 
1 m/z. Last, use the default settings of Spectronaut (Version 14; 
Biognosys AG) for analysis of DIA data files. A cutoff value of 1% 
was used as the Q-value (FDR) at the precursor level and the 

protein level. The six highest intensity peptides were used 
for quantification.

Statistical analysis

Data from this study were statistically analyzed using 
GraphPad Prism (Version 9.3.1). Data were presented by 
mean ± standard error (SEM). A two-way ANOVA and Tukey’s 
multiple comparisons were used to test the significance differences 
of the data and p < 0.05 was considered statistical significance. 
Differential abundance testing between groups and post hoc tests 
were performed using the Benjamini-Hochberg method and 
Tukey’s multiple comparisons. The Chao diversity index was used 
to measure Alpha diversity. The binary-jaccard distance and 
principal coordinates analysis (PCoA) was used to analyze Beta 
diversity. The metabolic functional prediction analysis was 
performed using the PICRUSt analysis platform. In this study, the 
identification thresholds for DEPs were selected as fold change 
>1.2 or < 0.83 and p-value <0.05. Using the GO (http://
geneontology.org/) and KEGG pathway (https://www.kegg.jp/
kegg/) platforms for DEPs annotation and enrichment 
bioinformatics analysis (Mi et al., 2019).

Results

Tuina improves UC-related symptoms in 
DSS-induced model mice

The body weights of the mice were measured every 2 days 
during the experiment (Figure 2A). As the experiment proceeded, 
the control group gradually gained weight. The model, mesalazine, 
and tuina group gradually lost weight during model induction, 
and with statistical differences at P5 (ap = 0.015). At time points P8 
to P15, the model group maintained the trend of weight loss. In 
contrast, treatments with mesalazine or tuina showed effects 
(bp = 0.010; cp = 0.007). Mice that received tuina showed a slightly 
lower weight but no statistical difference compared with the 
mesalazine group (p = 0.208). Along with pathological weight loss, 
changes in the properties of stool, fecal occult blood, or even 
bloody stool are also caused by DSS (Figure  2B). The stool 
properties in the control group were consistently normal, with a 
DAI score of zero. However, the model group showed persistent 
occult blood in the feces started on the 3rd day after model 
induction, and bloody stools appeared on the 9th day after 
modeling. After all, when the treatments were completed, the stool 
properties of the mesalazine group and the tuina group returned 
to normal and without occult blood (bp < 0.000; cp < 0.000). 
Although the DAI score in the mesalazine group was better than 
the tuina group, there was no statistical between the two groups 
(p = 0.496).

DSS-induced DAI score changes can also be  reflected by 
changes in colon lengths (Figure 2C). The colons of the model 

TABLE 2 Colon histological score standard.

Points Inflammation Intestinal mucosa

0 No No interstitial edema, and no hurt in the mucosa

1 Slight Interstitial edema, and mucosal hurts

2 Moderate Interstitial edema, and mucosal and submucosal 

hurts

3 Severe Interstitial edema, and transmural hurts
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group were the shortest among these four groups, and the control 
group was the longest. A comparison of colon lengths showed that 
the mesalazine group was longer than the tuina group, but there 
was no statistical difference (p = 0.612). However, 2 groups were 
statistically significant different when compared with the model 
group (bp < 0.000; cp < 0.000). The degree of change in the 
morphological structure of the colon before and after treatments 
was assessed using the colon histological score (Figures 2D,E). The 
model group had the highest colon histological score and the most 
severe colon morphological abnormalities, such as colon 
inflammation and destruction of the epithelial barrier. HE staining 
showed that the model group had crypt injury, goblet cells, and 
epithelial cell loss, and infiltration of transmural inflammatory 
cells in the mucosa, submucosa, or glands. After tuina treatment, 
the colon histological score was significantly reduced (bp < 0.000), 

at the same time, reduced colon inflammation, preservation of 
structural integrity, and promotion of cell recovery can 
be observed. The results of the mesalazine group were similar to 
the tuina group (p = 0.101). Altogether, these results indicated that 
tuina could improve damages, reduce inflammation, and protect 
the structure of the colon.

Variation in community abundance 
between the control group and model 
group

Compared with the control group, there was a significant 
difference in the gut microbiome of the model group. At the 
phylum level, the predominant phyla of all groups are composed 

A B

C D

E

FIGURE 2

Tuina treatment prevents UC-related symptoms in model mice. (A) Changes in body weight of all groups throughout the study. (B) DAI score for 
each group. (C) The colon length of all groups. (D) Colon histological score of all groups. (E) The HE staining analysis, representative images are 
shown. ap < 0.05, vs. control group; bp < 0.05, vs. model group; cp < 0.05, vs. model group.
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A B

C

D

FIGURE 3

Analysis and comparison of dominant phylum, family, and genus in different groups. (A) At the phylum level, the horizontal coordinate represents 
the group and the vertical coordinate represents the percent of community abundance; (B) At the family level; (C) At the genus level; (D) The alpha 
diversity (Chao diversity index).

of Firmicutes and Bacteroidota, and the model mice showed an 
increased relative abundance of Verrucomicrobiota and a 
decreased relative abundance of Patescibacteria, Desulfobacterota, 
Actinobacteriota, and Campilobacterota (Figure  3A). At the 
family level, the abundance of Lachnospiraceae, Prevotellaceae, 
and Bacteroidaceae increased and Muribaculaceae, 

Staphylococcaceae and Rikenellaceae decreased (Figure 3B). At 
the genus level, the relative abundance of Staphylococcus, 
Desulfovibrio, and Rikenella decreased and Bacteroides, 
Lachnospiraceae_NK4A136_group, Prevotellaceae UCG-001, and 
Alloprevotella increased (Figure 3C). Overall, the alpha diversity 
of the model group was reduced (Figure 3D).
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Variation in community abundance 
between DSS-induced model mice with 
tuina treatment or mesalazine treatment

Compared with the model group, at the phylum level, the 
relative abundance of Patescibacteria and Desulfobacterota 
increased and Actinobacteriota and Verrucomicrobiota decreased 
in the tuina group. In the mesalazine group, Proteobacteria and 
Cyanobacteria increased, Desulfobacterota, Actinobacteriota, 
and Verrucomicrobiota decreased (Figure  3A). At the family 
level, Lachnospiraceae and Saccharimonadaceae increased, and 
Rikenellaceae and Prevotellaceae decreased in the tuina group. 
Prevotellaceae, Bacteroidaceae, and Oscillospiraceae increased 
and Lachnospiraceae and Rikenellaceae decreased in the 
mesalazine group (Figure  3B). At the genus level, 
Lachnospiraceae_NK4A136_group and Candidatus_
Saccharimonas increased, Prevotellaceae UCG-001, 
Alloprevotella, and Parabacteroides decreased in the tuina group. 
The relative abundance of Bacteroides and Prevotellaceae 
UCG-001 increased, and Lactobacillus, 

Lachnospiraceae_NK4A136_group, Alloprevotella and 
Parabacteroides decreased in the mesalazine group (Figure 3C). 
Mesalazine and tuina treatment can help restore the alpha 
diversity index to the gut microbiota (Figure 3D).

Tuina restored the microbiota 
biodiversity of DSS-induced model mice

The results of beta diversity showed that 4 groups were 
clustered separately in the PCoA, suggesting that modeling and 
intervention were the primary factors that affected community 
differences. There were very small areas of overlap between the 
model and tuina groups, this suggested that the tuina treatment 
may not be as effective as the mesalazine treatment, which is 
consistent with other results from this study (Figure  4A). 
However, on the PC 1 axis, the diversity of the tuina group was 
similar to that of the control group (Figure 4B). And on the PC 2 
axis, the tuina group had good intragroup aggregation 
(Figure  4C). The merits of the results of the nonmetric 

A B

C D

FIGURE 4

Beta diversity analysis of PCoA and NMDS. (A) PCoA between groups, the horizontal coordinate represents PC 1 and the vertical coordinate 
represents PC 2; (B) Distribution and dispersion of the groups on the PC 1 axis; (C) Distribution and dispersion of the groups on the PC 2 axis; 
(D) NMDS between groups.

https://doi.org/10.3389/fmicb.2022.976239
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2022.976239

Frontiers in Microbiology 08 frontiersin.org

FIGURE 5

Functional abundance of COG. The vertical coordinate represents the relative abundance of the COG function of each group.

multidimensional scaling (NMDS) analysis tested with the stress 
value, and a stress value of 0.137 represented a certain degree of 
explanatory significance, which indicated that the species 
composition was not similar between the 4 groups of samples 
(Figure 4D).

The PICRUSt functional prediction 
analysis of microbial communities

The functional abundance of metabolic COG in this 
community was deduced from the 16S compositional data 
utilizing the PICRUSt analysis platform. The metabolic COG 
functions of the colony were mainly focused on the transport and 
metabolism of carbohydrate, amino acid, and inorganic ion, and 
energy production and conversion (Figure 5). We suggested that 
the gut microbiota may play a positive role through the signaling 
pathways of carbohydrate, amino acid, inorganic ion, and 
signal transduction.

DIA quantitative proteomics analysis of 
the colon samples

Quantitative proteomics analysis of DIA and bioinformatics 
analysis can further elucidate the potential regulatory mechanisms 

of tuina treatment on UC. The principal component analysis 
(PCA) showed excellent sample aggregation in each group, and 
the distance was long between the sample points in each group, 
indicating that the four groups were not similar to each other, the 
model was successfully established, and tuina or mesalazine 
treatment was effective (Figure 6). Proteomics analysis identified 
6,294 quantifiable proteins, of which 987 DEPs in the model group 
vs. control group, 589 were down-regulated and 398 were 
up-regulated. Tuina treatment had 292 down-regulated DEPs and 
578 up-regulated DEPs, for a total of 870 DEPs compared with the 
model group, then 843 DEPs (413 down-regulated and 430 
up-regulated) were found in the mesalazine group vs. the 
model group.

DEPs regulated by tuina or mesalazine 
treatment

To understand the unique mechanism of tuina, it is necessary 
to identify the DEPs that are regulated by tuina. There were 437 
overlapping DEPs between the control group vs. model group and 
the model group vs. tuina group, of which 370 DEPs were 
regulated by tuina. And there were 379 overlapping DEPs between 
the control group vs. model group and the model group vs. 
mesalazine group, with 247 DEPs regulated by mesalazine 
treatment (Figure 7).
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Bioinformatics analyses of DEPs 
regulated by tuina or mesalazine

GO enrichment analysis revealed a total of 265 GO terms 
based on 370 DEPs regulated by tuina treatment, including 
glandular epithelial cell differentiation, oxygen carrier activity, 
regulation of cytokine production involved in immune response, 
etc. (Figure 8A). There were 323 GO terms based on 247 DEPs 
regulated by mesalazine treatment, including positive regulation 
of leukocyte mediated immunity, response to bacterium, and 
positive regulation of lymphocyte leukocyte mediated immunity 
(Figure 9A). KEGG annotation analysis showed that there were 
304 pathways based on tuina-regulated DEPs, the level 1 pathway 
categories with the highest number of enriched proteins were 
human diseases (305 proteins), organismal systems (220 proteins), 
and metabolism (184 proteins), level 2 pathways including signal 
transduction, infectious disease: viral, transport and catabolism, 
endocrine system, and immune system (Figure  8B). KEGG 
enrichment analysis showed level 3 pathways, and tuina-regulated 
pathways included biotin metabolism, Notch signaling pathway, 
linoleic acid metabolism, and autophagy (Figure 8C). There were 
290 pathways based on mesalazine-regulated DEPs, and the level 
1 pathway categories with the highest enriched proteins were 
human diseases (199 proteins), metabolism (149 proteins), and 
organismal systems (122 proteins), level 2 pathways including the 

immune system, infectious disease: viral, transport and 
catabolism, and infectious disease: bacterial (Figure 9B). Level 3 
pathways included the intestinal immune network for IgA 
production, vitamin digestion and absorption, arachidonic acid 
metabolism, and mucin type O-glycan biosynthesis (Figure 9C).

Discussion

Due to the unclear pathogenesis of UC, modern medicine 
cannot find effective therapeutic targets and methods. Tuina is 
gradually applied to the complementary alternative treatment of 
UC. Combined with the gut microbiota and proteomics, the 
mechanism of tuina treatment can be  elucidated. Here, 
we  histologically assessed the extent of damage to the colon 
morphological structures of the colon tissue and generally 
explored the overall changes in body weight, stool property, blood 
feces, and colon length under tuina treatment, mesalazine 
treatment, and non-treatment conditions in the UC model. 
We also analyzed the structural changes and diversity of the gut 
microbiota by 16 s rRNA high-throughput sequencing. Finally, 
quantitative DIA proteomics analysis was performed on colon 
samples to study changes in protein expression between all groups.

The DSS-induced UC model chosen for this experiment is an 
acute modeling method commonly used in animal studies, which 

FIGURE 6

PCA analysis and volcano plots. The horizontal coordinate represents PC 1 and the vertical coordinate represents PC 2.

https://doi.org/10.3389/fmicb.2022.976239
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2022.976239

Frontiers in Microbiology 10 frontiersin.org

FIGURE 7

Venn analysis among each group. The bar diagram below represents the number of DEPs compared between the two groups.

is similar to the pathology of human UC. After 7 days of drinking 
the DSS solution, the animals showed weight loss and gross 
bloody feces, and the colon tissues also showed varying degrees of 
ulceration, edema, transmural inflammatory cell infiltration, and 
epithelial cell damage under microscopic observation, which 
proved the success of the established model (Huang et al., 2017). 
The gut microbiota diversity of the model mice was reduced 
compared with the control group, consistent with the literature 
(Galipeau et al., 2021).

At present, the symptoms of UC are mainly controlled by 
aminosalicylic acid preparations (ASAP) and glucocorticoids. The 
representative drug for ASAP is mesalazine, which reduces PEG2 
synthesis in the mucous membrane of the colon and inhibits 
neutrophil function (Nitta et  al., 2002). The main types of 

administration include oral and rectal administration, 
bioavailability is approximately 30% regardless of the route of 
administration, and the half-life is approximately 10 h (Schwab 
and Klotz, 2001). However, the therapeutic effect of mesalazine 
depends on the maintenance of effective doses and has adverse 
effects on liver function. So we chose mesalazine as a drug control 
and the experimental results proved its effectiveness. The results 
showed that after the drug intervention, the fecal properties were 
restored and their body weight was increased compared with the 
model mice, and the colon tissue structure was well regained 
under the microscope. Bacterial diversity was also restored 
compared with the model group.

Tuina treatment used abdominal rubbing manipulation and 
pressing manipulation of ST 36 and ST 37. Abdomen rubbing 
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manipulation is the main method, it can reduce the volume of 
gastric residue, reduce distension, increase bowel movements, 
and improve gastrointestinal functions without side effects 
(Dehghan et al., 2020). ST36 and ST37 belong to the stomach 
meridian (ST), they can reduce local inflammation, visceral 
hypersensitivity, and improve gastrointestinal transport (Wang 
et al., 2015; Qu et al., 2020). Although many clinical studies have 
confirmed the therapeutic effect of tuina treatment in diseases 
such as constipation, there is no experimental evidence of the 
mechanism underlying its efficacy. In recent years, research on 
the treatment of UC in Chinese medicine has been increasing 
and certain achievements have been made. For example, a single 
herb Patrinia villosa or a Ganluyin herbal formula can exert anti-
inflammatory effects through pathways such as NF-κB (Wang 

et  al., 2022; Xiong et  al., 2022). Acupuncture has also been 
shown to alleviate UC-related symptoms by restoring the 
diversity of the gut microbiota (Wei et  al., 2019). Tuina is a 
non-invasive intervention with minimal adverse effects. The 
results of the present study showed that body weight loss, 
intestinal inflammation, and loose and watery feces can 
be reversed by tuina. A detailed study of the DAI score results 
indicated that the mice in the tuina and mesalazine groups 
showed similar recovery trends. The same results were shown for 
morphological evidence of colon length changes and histological 
structure changes under microscopy. All evidence confirmed 
that there were no statistical differences between the tuina and 
mesalazine groups, but the mesalazine group was superior to the 
tuina group.

A

C

B

FIGURE 8

GO and KEGG analyses based on DEPs regulated by tuina treatment. (A) GO enrichment analysis, the abscissa represents the GO description and 
the Go term (level 1) and the ordinate represents the enrichment ratio, different colors represent statistical differences of enrichment; (B) KEGG 
annotation histogram, the horizontal coordinate represents the number of proteins, and the vertical coordinate represents KEGG pathways, 
different colors represent pathway categories; (C) KEGG enrichment analysis, the horizontal coordinate represents the pathway name and the 
vertical coordinate represents the enrichment ratio, different colors represent statistical differences of enrichment.
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The results of the gut microbiology examination did not show 
overlap in the expression of the tuina group and the mesalazine 
group, and we  speculated that the treatment of tuina and 
mesalazine achieves therapeutic effects through different 
mechanisms. At the phylum level, we found that tuina increased 
the relative abundance of Firmicutes and decreased Bacteroidota. 
Firmicutes account for about 30% of the total number of gut 
microorganisms, which together with Bacteroidota cover more 
than 90% of gut microbes. It can regulate energy absorption and 
metabolic conversion by the body and are a relatively stable 
species in the gastrointestinal flora (Tremaroli and Bäckhed, 
2012). Firmicutes increased and Bacteroidota decreased are 
considered to be associated with weight gain, reduced obesity-
induced low-grade inflammation, and inflammatory phenotype 
(Chakraborti, 2015). At the family level, we observed that tuina 
treatment could increase the relative abundance of the protective 

strain Lachnospiraceae in inflammatory bowel disease, its family 
members can prevent colon cancer by producing butyric acid (Ai 
et al., 2019; Zeng et al., 2020). These results suggest that tuina can 
improve nutritional intake, increase body weight and reduce 
intestinal inflammation in DSS-induced UC mice, reduce the 
expression abundance of opportunistic pathogens, for example, 
Prevotellaceae, and prevent cancer development, consistent with 
the literature on other Chinese medical treatments (Qi et  al., 
2018). At the genus level, it has been suggested that the 
Lachnospiraceae_NK4A136_group belongs to the intestinal 
beneficial bacteria, and the higher abundance can reduce intestinal 
inflammation, diarrhea, and other symptoms (Wu et al., 2021). 
However, it has also been suggested in the literature that the 
Lachnospiraceae_NK4A136_group is associated with intestinal 
dysfunction and a lower abundance is beneficial to maintain 
intestinal flora balance (Wang et  al., 2021). In this study, an 

A

C

B

FIGURE 9

GO and KEGG analyses based on the DEPs regulated by mesalazine treatment. (A) GO enrichment analysis; (B) KEGG annotation histogram; 
(C) KEGG enrichment analysis.
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increased abundance of Lachnospiraceae_NK4A136_group was 
observed after tuina treatment and with decreased abundance in 
the mesalazine group.

Tuina can regulate biotin metabolism, Notch signaling 
pathway, linoleic acid metabolism, autophagy, etc. Biotin, a water-
soluble vitamin, is involved in the immune and inflammatory 
response, cellular stress response (Kuroishi, 2015; Elahi et  al., 
2018). Patients with inflammatory bowel disease (IBD) are 
accompanied by a biotin deficiency (Erbach et al., 2022). Biotin 
deficiency is associated with severe colitis, which can be alleviated 
by biotin supplementation. Skupsky found that biotin 
supplementation could significantly improve DAI, colon length, 
and mucosal morphology of DSS mice, suggesting that biotin may 
have the potential to treat IBD (Skupsky et al., 2020). The Notch 
signaling pathway participates in regulating the development of 
intestinal epithelial cells and maintaining the stability of the 
internal environment (Wu et al., 2021). It was found that Notch 
signaling pathway genes were overexpressed in the proliferative 
recess of intestinal cells of DSS colitis mice (Noah and Shroyer, 
2013). Inhibited differentiation of the intestinal epithelium into 
goblet cells and weakened intestinal mucous barrier function were 
associated with abnormal expression of the Notch signaling 
pathway (Pope et al., 2014; Lin et al., 2019). In this study, the 
goblet cells in intestinal epithelial cells of DSS model mice 
decreased, while increasing after tuina, suggesting that tuina may 
protect the mucus barrier by inhibiting the Notch signaling 
pathway. Excessive intake of linoleic acid is a risk factor for the 
development of IBD (Owczarek et al., 2016). The level of linoleic 
acid in patients with UC and CD was higher than in healthy 
controls (Ueda et al., 2008). Tefas et al. found that IBD patients 
showed significant changes in 6 lipids and 7 metabolites compared 
to healthy ones, and most of them belonged to linoleic acid 
metabolism and glycerophospholipid (Tefas et  al., 2020). 
Autophagy is a key factor in maintaining the stability of intestinal 
homeostasis and can regulate the intestinal microbiota and 
immunity response (Larabi et al., 2020). It has been proved that 
the variation of autophagy-related genes can lead to apoptosis. 
Autophagy-related gene defects in colonic epithelial cells can 
affect the microbiota composition, such as Lachnospiraceae, 
Proteobacteria, and Cyanobacteria. This is consistent with the 
results we obtained for the gut microbiota (Tsuboi et al., 2015; 
Yang et al., 2018; Lavoie et al., 2019). The limitation of this study 
is that there was no molecular biological validation of the relevant 
inflammatory indicators and possible pathways. In the next step 
we want to screen among the potential pathways, design new 
experimental protocols, explore regulatory pathways, and clarify 
key protein target relationships to explain the action mechanism 
of tuina.

Conclusion

In conclusion, tuina can effectively improve the DAI score in 
DSS-induced UC mice, relieve colitis and restore colon morphology, 

as well as restore gut microbiota diversity and adjust microbiota 
structure. The therapeutic effects of tuina may be  related to 
modulating biotin metabolism, Notch signaling pathway, linoleic 
acid metabolism, and autophagy signaling pathways.
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