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The São Francisco River (SFR), one of the main Brazilian rivers, has suffered 

cumulative anthropogenic impacts, leading to ever-decreasing fish stocks 

and environmental, economic, and social consequences. Rhinelepis 

aspera and Prochilodus argenteus are medium-sized, bottom-feeding, 

and rheophilic fishes from the SFR that suffer from these actions. Both 

species are targeted for spawning and restocking operations due to their 

relevance in artisanal fisheries, commercial activities, and conservation 

concerns. Using high-throughput sequencing of the 16S rRNA gene, 

we  characterized the microbiome present in the gills and guts of these 

species recruited from an impacted SFR region and hatchery tanks (HT). 

Our results showed that bacterial diversity from the gill and gut at the 

genera level in both fish species from HT is 87% smaller than in species 

from the SFR. Furthermore, only 15 and 29% of bacterial genera are shared 

between gills and guts in R. aspera and P. argenteus from SFR, respectively, 

showing an intimate relationship between functional differences in 

organs. In both species from SFR, pathogenic, xenobiont-degrading, and 

cyanotoxin-producer bacterial genera were found, indicating the critical 

pollution scenario in which the river finds itself. This study allowed us to 

conclude that the conditions imposed on fish in the HT act as important 

modulators of microbial diversity in the analyzed tissues. It also raises 

questions regarding the effects of these conditions on hatchery spawn 
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fish and their suitability for restocking activities, aggravated by the narrow 

genetic diversity associated with such freshwater systems.

KEYWORDS

São Francisco River, Neotropical fish, microbiome, next-generation sequencing, 
aquaculture, conservation

Introduction

Human impacts on fish biodiversity affect more than 50% of 
the world’s freshwater systems (Su et al., 2021). The Neotropical 
region harbors over 6.200 named freshwater fish species, making 
it the most diverse continental vertebrate fauna on the planet 
(Albert et al., 2020). The São Francisco River (SFR) is the fifth-
largest river in South America, more than 2,700 km in length, 
enclosed in a 639.219 km2 eponymous basin, and it constitutes the 
most extensive river residing entirely inside Brazilian territory 
(Sun et al., 2016) (Figure 1). It cuts through two major biomes, the 
Brazilian savannah, Cerrado, and the Caatinga, allowing for 
agricultural operations around it in otherwise dry regions, as well 
as inland artisanal and commercial fisheries (Holanda et al., 2009; 
Maneta et al., 2009; Torres et al., 2012).

The SFR is widely afflicted by the cumulative effects of several 
anthropogenic impact sources, such as the introduction of 
invasive species (Linares et  al., 2019); suppression of riverine 
vegetation (Holanda et  al., 2009); mining and damming for 
hydropower generation activities (Nascimento and Becker, 2010), 
and urban and rural pollution (Ribeiro et al., 2012) (Figure 1). In 
addition, during the last decade, unstable hydrological regimes in 
dry regions (Otto et al., 2015; Getirana, 2016; Gudmundsson et al., 
2021) and overfishing have contributed to ever-decreasing fish 
stocks (Barbosa et al., 2017; Figueiredo, 2018). Thus, sustainability 
in the SFR is threatened, jeopardizing the livelihood of its 
communities of part-time and full-time fishing folk (Gutberlet 
et al., 2007; Alves and Leal, 2010; Barbosa et al., 2017).

Fish spawning and stocking operations have been set as 
hatchery tanks (HT) for fish farming, employed to produce 
angling opportunities, commercial sales, and to counteract 
environmental pressures (Arantes et  al., 2011). However, its 
efficiency remains to be shown, especially if disconnected from 
broader policy actions to address the root causes of fish stock 
decline in the SFR (Araki and Schmid, 2010; González-
Wangüemert et al., 2012; Klinger and Naylor, 2012; Savary et al., 
2017). In addition, there are concerns related to the potentially 
deleterious effects of genetic diversity impoverishment in spawned 
fish and sanitary hazards observed in hatcheries (González-
Wangüemert et al., 2012; Carmo et al., 2015; Benson et al., 2016; 
Pavlova et al., 2017; Savary et al., 2017; FAO, 2020).

Environmental factors, both biotic and abiotic, modulate the 
assemblage of microorganisms (microbiome) associated with 
organisms and their different morphophysiological features 

(Sullam et al., 2012; Duarte et al., 2014; Ringo et al., 2016; Sylvain 
et al., 2016; Guivier et al., 2017).

Few studies are addressing the morphophysiological changes 
caused to Neotropical fish by chronic exposure to environmental 
toxins in their natural habitat (Paschoalini and Bazzoli, 2021). Also, 
the presented data are not robust enough to link aquatic 
contamination to mortality risks of the ichthyofauna species 
(Molbert et al., 2021). However, there are reports of histological and 
molecular changes in the liver, spleen, and gills of P. argenteus 
recruited from regions impacted by heavy metals in the SFR basin. 
Among them, a significant increase in melanomacrophage centers 
in the liver and spleen, a high incidence of fibrosis in the spleen, 
alterations in the number and morphology of germ cells, and also 
endocrine and reproductive dysfunctions, with a negative effect on 
the gonadal development of females (Paschoalini et al., 2019). In the 
gills, increased inflammatory foci, hyperplasia, edema, and lamellar 
fusion were reported (Arantes et al., 2011; Procópio et al., 2014). 
Additionally, toxicogenetic biomarkers positively correlated the 
increased frequency of micronuclei in erythrocytes 
(Shirmohammadi et al., 2018; Delcorso et al., 2020) with the speed 
of telomere shortening (Molbert et al., 2021).

Changes in microbiome composition have been implicated in 
increased disease occurrence, population size decline, and other 
adverse effects in animals (Sylvain et al., 2016; Pękala-Safińska, 
2018). Also, the microbial composition is related to vital metabolic 
processes in the host (Izvekova et al., 2007; Lowrey et al., 2015; Liu 
et al., 2016; Sylvain et al., 2016; van Kessel et al., 2016).

Significant advances toward a complete understanding of 
microbial-environmental interactions have been strengthened by 
the development of culture-free methods in microbiology, such as 
high-throughput sequencing of specific genes or the assembly of 
complete microbial genomes (Faust and Raes, 2012; Blainey, 2013; 
van Dijk et al., 2014), which allows the identification of a myriad 
of prokaryotic species, more significant in scope than with the few 
species eventually detected by growth on culture media.

The importance of fish-microbiome interaction, its relationship 
to aquaculture, and its role in survival and performance has been 
acknowledged in this century (van Kessel et al., 2011; Ringo et al., 
2016; Tarnecki et  al., 2016; Perry et  al., 2020). Characterizing 
microbiome composition could help craft ways to facilitate the 
functional enhancement of nutritional, immunologic, and other 
beneficial traits in reared fish (Perry et al., 2020). Studies involving 
fish have provided insights into the importance of microbiome 
associated with the skin, gills, and gut, allowing for the 
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characterization of factors influencing microbial diversity in both 
wild and reared species; at least 145 fish gut microbiomes have been 
analyzed to date (Roeselers et al., 2011; Sylvain et al., 2016, 2019; 
Tarnecki et al., 2016; Uren Webster et al., 2018; Krotman et al., 2020; 
Nolorbe-Payahua et al., 2020; Perry et al., 2020; Riiser et al., 2020). 
Nevertheless, most of these studies have been performed on 
economically relevant fish such as Cyprinus carpio (van Kessel et al., 
2016), Ctenopharyngodon idellus (Wu et  al., 2012), Salmo salar 
(Gajardo et al., 2016; Schmidt et al., 2016), Oreochromis niloticus (Yu 
et al., 2019; Xia et al., 2020), Oncorhynchus mykiss (Lowrey et al., 
2015), Colossoma macropomum (Sylvain et al., 2016), Arapaimas gigas 
(Ramírez et  al., 2018), Seriola lalandi (Legrand et  al., 2018) and 
Ictalurus punctatus (Larsen et al., 2014). Thus, there is still a relatively 
low number of studies focusing on microbiomes in wild living fish. 
Studies involving fish microbiomes from the SFR are still scarce (Silva 
et al., 2005; Makino et al., 2012; Santos et al., 2014; Da Silva et al., 
2020). Even though important, they are traditionally limited by 
culture-dependent methods.

So far, most metagenome research has focused on the fish gut 
microbiota. These studies have shown that diet and 

physicochemical variations of water are strong modulators of 
microbial diversity, leading to metabolic dysbiosis, increased 
susceptibility to infections, and reduced environmental 
adaptability (Ning et al., 2020). Such alterations were observed in 
Gambusia affinis and Danio rerio exposed to Benzo(a)pyrene, 
which induced intestinal dysbiosis and the increased expression 
of genes related to the inflammatory response (Xie et al., 2020). 
Exposure of D. rerio to titanium dioxide nanoparticles and 
Bisphenol A induced an increase in the Lawsonia genera, a 
pathogen of the gastrointestinal tract of animals, and a decrease in 
Hyphomicrobium associated with denitrification metabolism 
(Chen et al., 2018). Reported as polycyclic aromatic hydrocarbons 
(PAHs) degraders, the bacterial genera Novosphingobium, 
Sphingobium, and Sphingomonas were found in the intestinal 
microbiota of Gadus morhua collected in impacted environments 
by oil contamination while absent in unimpacted environments 
(Walter et al., 2019).

This work aimed to characterize the microbiomes present in 
the gills and guts of two relevant bottom-feeding species from the 
SFR (R. aspera and P. argenteus) and to establish a comparison 

FIGURE 1

Location of the SFR Basin, highlighting the region of collection and the species of ichthyofauna studied. Fish collection site in the middle SFR 
region, upstream and downstream of the city of Januária, North of Minas Gerais. Brazil. Google. The map was obtained from the Pristine Institute: 
digital geoenvironmental atlas. WebGis (Web Geographical Information System) with “free access to the environmental database.” Available at 
<https://institutopristino.org.br/atlas/>. Access on 25/Jun/2020.
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FIGURE 2

(A) Experimental design. The planning steps are on a yellow background, the collection and processing steps on a salmon background, and the 
steps to obtain results and data analysis on a green background. Photos that, respectively, denote degradation of riparian forests (B), which causes 
landslides (C) that in turn contribute to silting up of the SFR bed (D). (E) Evident eutrophication of the SFR waters at the time of the first collection 
is best proven when trawls are used (F). (G,H) HT structure where they were collected.

with the same species from an HT for fish farming intended for 
restocking activities through a culture-free approach through 
high-throughput sequencing of the 16S rRNA gene.

In this study, we hypothesized that benthic fish, iliophagous 
detritivores, which differ in behavior in their natural habitat, being 
one a long-distance migrator (P. argenteus) and the other a 
sedentary one (R. aspera), are exposed to different levels of 
environmental stress and physicochemical gradients of water, 
differentially modulating the structure and diversity of the 
intestinal and gill microbiome of these species. Additionally, this 
study was the first to characterize the microbiomes of these two 
ichthyic species recruited in the SFR, providing important insights 
into the effects of confinement on the structure and diversity of 
the investigated microbiomes, pointing out vulnerabilities 
associated with commercial aquaculture and restocking programs, 
and aiming at the restoration of natural ichthyofauna stocks.

Methodology

The complete methodological workflow of this study is 
presented in Figure 2A. Two species (R. aspera and P. argenteus) 
were selected based on relevance in fisheries, drastic stock 
reduction, and vulnerability. In addition, as bottom feeders, both 
species constitute adequate water column indicators and sediment 
contamination (Camargo et  al., 2009; Islam et  al., 2015; 
Paschoalini et al., 2019).

Morphophysiological and behavioral 
characterization of species

Rhinelepis aspera (Spix and Agassiz, 1829) is a medium-
sized, stream-dwelling, melanic, armored catfish locally known 
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as acari or cascudo preto (Siluriformes order, the Loricariidae 
family (Britski et al., 1988; Buckup et al., 2007). It is among the 
single largest species (> 4 kg) within this family, which, in turn, 
is characterized by the presence of thick bony plates covering 
the skin, ventral suckermouth, and round eye’s iris (Covain and 
Fisch-Muller, 2007). The specie R. aspera exhibits obligatory 
male parental care of young adults and lacks long migratory 
movements associated with reproduction (wet season), which 
is common in large Neotropical catfish (Suzuki et al., 2000; Sato 
et  al., 2003). The International Union for Conservation of 
Nature does not assess its conservation status (International 
Union for Conservation of Nature and Natural Resources –
IUCN, 2022). Still, it was deemed a species endangered at the 
end of the 20th century, and it has been reported as rare in the 
main body of the SFR basin, although abundant in its main 
tributary, the Paracatu River (Sato et  al., 1998). It shows a 
specialized mouth, adapted to its iliophagous lifestyle, being an 
important organic matter and nutrient recycling player (Roxo 
et al., 2019). This fish is highly adaptable to lentic environments, 
and its high fecundity makes it a natural target for fish farming 
initiatives in the SFR region.

The specie P. argenteus, Spix and Agassiz, 1829, is one of the 
two species of the Prochilodus genera (Characiformes order, 
Prochilodontidae family (Britski et  al., 1988; Castro and Vari, 
2004) occurring in the SFR basin. This region could have served 
as a dispersal departure point for the evolutionary radiation of the 
five species in southeastern Brazil (Santos et al., 2021). P. argenteus 
is the largest species from its family (Sato et  al., 2003) and is 
popularly known as zulega, curimatã-pacu, curimba, or papa-terra 
(Perini et al., 2021). It can reach approximately 45 cm in length, up 
to 15 kg, and it is one of the largest and most prominent species 
for artisanal and commercial fisheries in the SFR (Godinho and 
Godinho, 2003; Sato et al., 2005; Godinho et al., 2017). It is a 
typical potamodromous migratory Neotropical fish that performs 
long upstream movements in the wet season (Sato et al., 2003, 
2005), with high tolerance and suitability for aquaculture 
(Almeida et al., 2015).

Collection sites and experimental design

This study was conducted in the middle portion of the SFR, 
immediately upstream and downstream of the city of Januária (S 
15°29.576’ W 044°21°0.069′), in the north of the Minas Gerais 
estate, Brazil (Figure  1). It is a major regional center, with a 
population of approximately 65.463 and a human development 
index of 0.658, with only 37.2% of households served by sewage 
(IBGE, 2010).

Rhinelepis aspera and P. argenteus specimens were sampled 
from the SFR (Figures 2B–G) and an HT from Januária (S 15°28′ 
48.94752” W 044°21′42.50952″). This tank was built in tiled 
masonry above the ground, supplied with water from the river 
after being treated by the Companhia de Saneamento de Minas 
Gerais (COPASA).

The Instituto Mineiro de Gestão das Águas em Minas Gerais 
(IGAM, 2018) has classified the water from the sampling point as 
Class II, with several diagnostic features above the limits 
established by Brazilian legislation (BRASIL, 2005) like dissolved 
aluminum, total manganese, lead, total solids, turbidity, 
biochemical oxygen demand (BOD), and cyanobacteria density 
(visually confirmed during sampling; Supplementary Table 1 and 
Figures 2E,F).

Three fish were collected from each species in the SFR and HT, 
totaling 12 individuals. Fish were trapped with a dragnet 
(Figure  2F) by professional fishers from the Associação de 
Pescadores de Januária in July 2018. Two male and one female 
specimen of the fish were taken alive to the Laboratório de 
Zoologia do Instituto Federal de Educação, Ciência e Tecnologia 
do Norte de Minas Gerais, campus Januária. The fish identification 
was confirmed according to Britski et al. (1988). One voucher 
specimen for each species was stored in the laboratory collection 
mentioned before. The fishes were euthanized to remove the 
medial portions of the gills and guts using sterile instrumentation 
under a laminar flow hood.

Total DNA extraction

For associated microbiome DNA extraction, two samples 
from each fish were collected: gills (G) and medium gut (I) from 
each species P. argenteus (Pa) and R. aspera (Ra), from SFR or HT 
(TQ), totaling 24 samples (Table  1). According to the 
manufacturer’s guidelines, small sections of approximately 3 g of 
gill and gut of each animal were used for DNA extraction using 
the NucleoSpin™ Tissue (Macherey-Nagel, Germany) commercial 
kit followed by NanoDrop™ (Thermo Fisher Scientific, USA) 
quantification at 260 nm. In addition, DNA integrity was verified 
using 0.8% agarose gel electrophoresis.

Partial amplification of the 16S ribosomal 
gene

The preparation of the libraries was performed following the 
recommendations for sequencing on the Illumina platform. 
Oligonucleotides 341F and 785R (Klindworth et al., 2013) were 
used, which amplify the V3/V4 region of the 16S ribosomal gene 
with the included overhang adapter sequences. The sequences of the 
primers (in uppercase) plus adapters (in lowercase) are 341F: 
(5’tcgtcggcagcgtcagatgtgtataagagacagCCTACGGGNGGCWGCA 
G) and 785R: (5’gtctcgtgggctcggagatgtgtataagagacagGAC 
TACHVGGGTATCTAATCC). One μL of DNA was used for the 
amplification, in addition to 0.5 μl of each primer at 10 μM (0.2 μM 
final concentration in the reaction, in a final volume of 25 μl), 10 μl 
of the 2X Ultra Mix PCRBio master mix™ (PCR BioSystems, 
United Kingdom), topping up with ultrapure water for the final 
volume of 25 μl. The PCR conditions were: 1 cycle of 95°C for 3 min; 
25 cycles: 95°C for 30 s, 55°C for 30 s, 72°C for 30 s; 1 cycle of 72°C 
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for 5 min; keep at 4°C indefinitely. The PCR product was applied on 
a 1.5% agarose gel and then purified with AMPure XP Beads 
(Beckmann-Coulter, USA). To connect the adapters, 2.5 μl of the 
amplification product, 2.5 μl of each index (i5 and i7), 12.5 μl of the 
2X Ultra Mix PCRBio master mix™ (PCR BioSystems, USA), and 
5 μl of ultra-water were used to adjust the final volume at 25 μl. The 
PCR conditions for connecting the adapters were: 95°C for 3 min; 
8 cycles: 95°C for 30 s, 55°C for 30 s, 72°C for 30 s; 1 cycle of 72°C 
for 5 min; keep at 4°C indefinitely. The ligation product was purified 
with beads and then applied on a 1.5% agarose gel. The libraries 
were quantified with a NanoDrop@ instrument, and their 
concentration was normalized. An equimolar pool was made with 
all of them. The pool was quantified by qPCR using the KAPA 
Biosystems kit™ (KAPA Biosystems, USA) to estimate its 
concentration and load the MiSeq with 20% Phix. The sequencing 
was performed with paired readings of 2× 250 bp.

Sequencing analysis

The data were analyzed according to Callahan et al. (2016b) 
using a set of R packages available through the BioConductor 
project (Gentleman et al., 2004; Huber et al., 2015). The DADA2 
package (Callahan et  al., 2016a) was used for trimming and 
filtering low-quality reads, modeling and correcting amplicon 
errors, and deduplicating and overlapping the forward and reverse 

reads. After the removal of chimeric sequences, taxonomies were 
assigned to each ASV (Amplicon Sequencing Variant) using the 
DADA2 implementation of the naive Bayesian classifier (Wang 
et  al., 2007), using the Genome Taxonomy Database (GTDB) 
release 95 as reference (Parks et al., 2017).

Taxonomic classifications generated by DADA2 and their 
quantifications were imported into the Phyloseq R package 
(McMurdie and Holmes, 2013). ASVs were grouped at the genera 
level, and ASVs that were not classified at the family level were 
filtered out. After these filters, the tables of counts, relative 
abundance, and Alpha and Beta diversity were obtained. The limma 
R package (Ritchie et al., 2015) was used to perform the differential 
abundance analysis. In short, counts were transformed to log2 
(counts per million) (Law et  al., 2014), which allows the linear 
models implemented in the limma package to be used to count data. 
Factors were created for each combination of species + tissue + 
environment, and the differential taxonomic abundance was tested 
for each contrast of interest with moderate t-tests (Smyth, 2004). The 
ordinate function from phyloseq was then used to calculate the 
Unifrac distance (Hamady et  al., 2010), and the graphs of the 
Principal Coordinate Analysis (PCoA) were generated from these 
distances (Lozupone and Knight, 2005). Ellipses were computed for 
the ordination plot with stat_ellipse function from ggplot2 v.3.3.3 
(Wickham, 2016), considering a multivariate t-distribution with a 
0.95 level. The heatmap analysis was generated using the HTML 
server http://www.heatmapper.ca/ (Babicki et al., 2016).

TABLE 1 Number and characteristics of samples obtained from R. aspera and P. argenteus collected in the SFR and HT.

Samples SeqCode Species Organs Environment #Reads

1 1RaIHT R. aspera I HT 162,102

2 1RaGHT R. aspera G HT 170,706

3 2RaIHT R. aspera I HT 158,763

4 2RaGHT R. aspera G HT 182,837

5 3RaIHT R. aspera I HT 137,448

6 3RaGHT R. aspera G HT 150,649

7 1PaIHT P. argenteus I HT 132,940

8 1PaGHT P. argenteus G HT 160,301

9 2PaIHT P. argenteus I HT 154,155

10 2PaGHT P. argenteus G HT 155,418

11 3PaIHT P. argenteus I HT 133,581

12 3PaGHT P. argenteus G HT 153,282

13 1RaISFR R. aspera I SFR 169,824

14 1RaGSFR R. aspera G SFR 160,309

15 1PaISFR P. argenteus I SFR 119,957

16 1PaGSFR P. argenteus G SFR 183,156

17 2PaISFR P. argenteus I SFR 151,713

18 2PaGSFR P. argenteus G SFR 138,402

19 2RaGSFR R. aspera G SFR 150,646

20 2RaISFR R. aspera I SFR 171,690

21 3RaGSFR R. aspera G SFR 137,827

22 3RaISFR R. aspera I SFR 172,831

23 3PaGSFR P. argenteus G SFR 176,088

24 3PaISFR P. argenteus I SFR 177,679

https://doi.org/10.3389/fmicb.2022.966436
https://www.frontiersin.org/journals/microbiology
http://www.heatmapper.ca/


Damasceno et al. 10.3389/fmicb.2022.966436

Frontiers in Microbiology 07 frontiersin.org

Raw sequencing reads were deposited at NCBI Sequence Read 
Archive under BioProject PRJNA768447. The datasets generated 
for this study can be  found in the NCBI under BioSample 
accessions SAMN22044346 - SAMN22044369.

Results

Characterization of α-diversity

The microbiomes associated with the gills and guts of 
R. aspera and P. argenteus from the SFR and HT were compared 

(Figure 3A). Different microbial diversity levels were observed 
between the gills of fish from the same species originating from 
the SFR and HT (Shannon’s index [F = 0.0006] and Simpson’s 
index [F = 0.01974]). Also, microbiomes from the gills and guts 
showed higher α-diversity in fish from the river than in the 
hatchery counterparts (Figure 3B and Supplementary Table 2).

Characterization of β-diversity

Scatter analysis revealed that the clustering pattern of the 
microbiome was markedly affected by fish origin – SFR or HT 

A B

C

FIGURE 3

(A) Rarefaction curve. The numbers indicate each of the samples described in Table 1. (B) Alpha-diversity indices of the microbiota associated with 
the gills and guts of R. aspera and P. argenteus from SFR and HT. (C) Diversity β is expressed as dispersion, given by the metric of the weighted 
UniFrac distance to evaluate the similarity between the different species tissues and habitats. Each sample is represented by a triangle (from HT) or 
a circle (from SFR). The red and blue triangles and circles inherit from the gills and guts of P. argenteus, while those from green and purple nuclei 
inherit from the gills and guts of R. aspera.
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(Figure 3C). In addition, there was a sharp distinction between 
microbial communities associated with each environmental 
source of fish for each analyzed organ in both species.

Taxonomic classification

A total of 33 phyla, 61 classes, 133 orders, 220 families, and 295 
genera distributed within the gills and guts of R. aspera and 
P. argenteus from the SFR and hatchery systems were resolved. The 
most abundant phyla were Proteobacteria, Fusobacteriota, 
Bacteroidota, Planctomycetes, Actinobacteria, Cyanobacteria, and 
Verrumicrobia. Among these, Proteobacteria and Fusobacteriota 
were predominant in both fish species (Supplementary Table 3 and 
Supplementary Figure 1), regardless of the environmental source, 
with the former being more abundant in the SFR (45.11 and 51.3% 
from R. aspera and 74 and 74.75% from P. argenteus), respectively 
in gills and gut and the latter being more abundant in the HT 
environment (46 and 49% from R. aspera and 42 and 68% from 
P. argenteus, respectively in gills and gut. The Bacteroidota phylum 
was abundant in the gills of R. aspera from SFR (16%) and the guts 
of P. argenteus from HT (8.8%). Besides these shared phyla, an 
exclusive phylum was detected for the SFR: Cyanobacteria, whose 
abundance varied from 0.87 to 3% in the gills and guts of both 
species. Other rare phyla were associated with the gills and gut of 
both species (Armatimonadota, Firmicutes_C, Gemmatimonadota 
and Spirochaetota), only with the gut of both species 
(Acidobacteriota, Chloroflexota-A, Dependentiae, and 
Desulfobacteriota, Myxococcota), only with the gills of P. argenteus 
(Chloroflexota, Elusimicrobiota, and Desulfuromonadota); only 
the gut of P. argenteus (Binatota and Dormibacterota); only the gut 
of R. aspera (Firmicutes_B); associated with the gills of both species 
and the gut of P. argenteus (Deinoccota) (Supplementary Table 3 
and Supplementary Figure 1).

At the genera level, the highest diversity was recorded in fish 
from the SFR (289) when compared with those from the HT (39) 
(Supplementary Table  3 and Supplementary Figure  2). 
Furthermore, among the fish from the SFR, genera diversity was 
higher in both the gut (138) and gills (155) of P. argenteus than in 
the counterparts (54 and 119, respectively) of R. aspera 
(Supplementary Table 3 and Supplementary Figure 2).

Microbiome characterization of 
Rhinelepis aspera and Prochilodus 
argenteus × environment

The number of unique and shared genera of 
microorganisms among species, environments, and organs 
can be  viewed in Figures  4A–D. Taxonomic details are 
presented in Table  2. The gills and gut microbiomes of 
R. aspera from both environments showed 155 bacterial taxa 
for the genera, whereas those of P. argenteus had 234 
identified taxa (Figures 4A,B). Only 6.45% (10 genera) were 

shared among organs and environments for the sampled 
R. aspera. In contrast, only 3.41% were common among the 
234 identified taxa in the sampled P. argenteus (Figures 4A,B).

Microbiome characterization of 
Rhinelepis aspera and Prochilodus 
argenteus × organs

The abundance of exclusive genera belonging to the 
microbiomes associated with different organs in each host species 
(Figure 4C) indicates the occurrence of interspecific phylogenetic 
variability that distinguishes the microbiome present in these 
structures. Furthermore, the distinction between bacterial 
communities in different organs of P. argenteus and R. aspera in 
the SFR was supported by the shared genera proportions of 28.63 
and 14.56%, respectively. The same trend of microbial diversity 
reduction was observed in P. argenteus from HT (Figure 4D).

Microbiota associated only with SFR 
fishes

The R. aspera gill microbiome comprised 21 phyla, 30 classes, 
98 families, and 119 genera. Among them, 84 exclusive (54.2%) to 
SFR (Figure  4B). Proteobacteria (45.41%), Fusobacteriota 
(11.66%), and Bacteroidota (16%) were the dominant phyla 
(Supplementary Figure 1). The phylum Fibrobacteriota (<1%) was 
exclusively associated with the gill microbiota of this species. The 
phylum Proteobacteria was identified by 68 ASVs that attributed 
taxonomical classification to 58 genera, with 19 affiliated with 
Betaproteobacteria, 16 with Gammaproteobacteria, and 13 
with Alphaproteobacteria.

The most diverse orders were Burkholderiales, Enterobacterales, 
and Pseudomonadales. The phylum Bacteroidota was identified by 
44 ASVs that classified 33 genera, distributed mainly by the orders 
Cytophagales, Flavobacteriales, Bacteroidales, and Chitinophagales 
(Supplementary Figure 1). Interestingly, the phylum Fusobacteriota 
was identified only by two ASVs, and by an integrated gill microbiome 
with an average relative abundance of approximately 20%. The phyla 
Bacteroidota and Proteobacteria comprised 38 exclusive genera to the 
gill microbiome of R. aspera, including Taibaiella_B, Fluviicola, 
Runella, Flexibacter, Pseudopedobacter, Solirubrum, 
Pseudoxanthomonas_A, Porphyrobacter, Cellvibrio, Dechloromonas, 
and Methylophilus. The most abundant genera were Aeromonas 
(18%), Cetobacterium_A (19.6%), Flavobacterium (16.1%), 
Shewanella (5.7%), Pseudoduganella (4.34%), Vogesella (4.23%), 
Acinetobacter (3%), and Plesiomonas (3%) (Supplementary Figure 2).

The gut microbiome of R. aspera from the SFR exhibited the 
lowest observed diversity among other microbiomes in this 
environment (Figures 4A–C), with 18 phyla, 22 classes, 49 orders, 66 
families, and 54 genera, with 30 unique phylotypes (55.55%). The 
dominant phyla (Supplementary Figure  1) were Proteobacteria 
(55.44%), identified by 29 ASVs, followed by Fusobacteriota, 
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identified by only three ASVs, representing approximately 28%. Other 
less abundant phyla included Actinobacteriota (0.72%), Bacteroidota 
(0.7%), Firmicutes (0.04%), Cyanobacteria (3%), and Planctomycetota 
(3%). In contrast to the gill microbiome of this species, the phylum 
Bacteroidota was represented by the families Bacteroidaceae, 
Weeksellaceae, and Tannerellaceae. The phylum Proteobacteria was 
diverse, with microorganisms from the class Gammaproteobacteria, 
from the order Enterobacteriales, and the Aeromonadaceae, 
Shewanellaceae, and Enterobacteriaceae families, with Shewanella 
(46.17%), Plesiomonas (19.48%), and Aeromonas (5.74%) standing 
out in abundance (Supplementary Figure 1). The phyla Firmicutes_A 
and Firmicutes, represented by the classes Clostridia and Bacilli, 
respectively, constituted 3.1% of the gut microbiome for this species.

Tenant microbial communities of 
Prochilodus argenteus from the SFR

The tenant gill microbiome of P. argenteus was composed of 23 
phyla, 46 classes, 99 orders, 129 families, and 154 genera (Figure 4A), 
of which 86 (55.84%) were exclusive to this organ (Figure 4B). The 
dominant phyla were Proteobacteria (74.3%) and Fusobacteriota 
(14.63%) (Supplementary Figure 1). Some poor abundant phyla 
were identified by numerically conspicuous sequences, such as 
Bacteroidota (30 ASVs), Actinobacteria (31 ASVs), and Firmicutes 
(26 ASVs), which together comprised 58 genera, undoubtedly 
contributing to increasing microbial diversity but adding less 
abundant microorganisms to the gill microbiome. Three phyla 

A B
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FIGURE 4

(A) Presence and absence of ASVs that attributed taxonomies at the genera level, illustrating the differences in the structure of the gill and intestinal 
microbiomes of R. aspera and P. argenteus collected in SFR and HT. Below the heatmap are shown the ways of comparison whose numbers are 
expressed in Venn diagrams (B–D) indicating the number of total, shared, and unique phylotypes in terms of genera level of the microorganisms 
associated with samples obtained from fish, according to the host species resident in different ecological systems (B), different colonized body 
niches (C) and the host habitats (D).
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exclusive to the gill microbiome were observed: Chloroflexota, 
Desulfuromonadota, and Elusimicrobiota. The most diverse taxa 
included the genera Aeromonas (28.84%), Cetobacterium_A 
(14.63%), Plesiomonas (13.33%), Acinetobacter (2.94%), Vogesella 
(1.55%), Polynucleobacter (1.13%), and other unidentified genera 
belonging to the Enterobacteriaceae (4%) and Burkhoderiaceae 
(1.87%) families, in addition to microorganisms exclusive to this 
organ, Caedimonas (6.22%), and Caedibacter (2.44%).

The gut microbiome was composed of 26 phyla, 36 classes, 93 
orders, 136 families, and 138 genera, with 70 of these genera 
(50.7%) occurring only for this niche in the host (Figure 4B). The 
phyla Dormibacteriota and Binatota were present only in the gut 
microbiome of P. argenteus. The dominant phyla were 
Proteobacteria (47%), Fusobacteriota (25.97%), Planctomycetota 
(6.2%), Verrumicrobiota (1.7%), and Cyanobacteria (1.46%). 
Although 31 sequences (ASVs) have been attributed to the 
phylum Actinobacteria, with 22 genera, this taxon integrated the 
microbiome with low abundance (<1%). The order 
Enterobacterales and Fusobacteriales contained the most 
abundant genera, Aeromonas (7.55%), Plesiomonas (23.24%), and 
Cetobacterium_A (25.9%), respectively. From the phylum 
Spirochaetes, the family Brevinemataceae was recorded only in the 
gut microbiome of P. argenteus. The phylum Dependentiae was 
observed as part of the intestinal microbiome of both R. aspera 
and P. argenteus, collected from the SFR.

Microbiota associated only with HT fishes

The gill microbiota of R. aspera reared in HT consisted of 8 
phyla, 24 families, 15 orders, 9 classes, and 25 genera. The 
dominant phyla (Supplementary Figure 1) were Fusobacteriota 
(49%), Proteobacteria (24.6%), and Bacteroidota (0.76%). Less 
abundant phyla (<1%) included Actinobacteria, Bdellovibrionata, 
Firmicutes, Patescibacteria, and Verrumicrobiota. The phylum 
Firmicutes was represented by a single family, 
Erysipelotrichaceae, and by a single genus, Anaerorhabdus. The 
phylum Campylobacterota showed only the genera Aliarcobacter, 
constituting an exclusive taxon to the gill microbiome of 
R. aspera and P. argenteus. We  found 9 phyla, 10 classes, 16 
orders, 21 families, and 19 genera in the gut microbiome. In 
addition, there were two unique and less abundant genera (<1%), 
Bosea and Desulfovibrio (Table 2). The samples isolated from 
both niches were dominated by Fusobacteriaceae and 
Enterobacteriaceae families. At the genera level, similarly to the 
fish obtained from the SFR, the gills and gut microbiome were 
dominated by Cetobacterium_ A (49 and 46%), Plesiomonas 
(15.7 and 27.9%), and Aeromonas (24 and 5%), Edwardsiella 
(1.12 and 1.59%) and Bacteroides (0.82 and 1.9%), respectively 
(Supplementary Figure 2). The Anderseniellaceae family was 
observed at a higher relative abundance (7.5%), integrating the 
gut microbiome of R. aspera.

TABLE 2 Unique communities at the genera level of the gill and gut microbiomes of species recruited from the SFR and HT.

Environment Species Organs Unique taxons

SFR R. aspera Gills UBA11704, GN02-873, Aalborg-AAW-1, 2-02-FULL-55-14, OLB5, UBA2475, UBA4416, Haliscomenobacter, 

Taibaiella_B,UBA1931, UBA8137, JJ008, Vibrionimona, Pedobacter, Pseudopedobacter, OLB11, Fluviicola, 

Flavobacterium_A, Soonwooa, Solirubrum, Flexibacter, Rudanella, Runella, Rhodoluna, Pseudanabaena, Paenibacillus_G, 

Veillonella, IMCC26134_A, Gemmatimonas), Deinococcus_C, Bacteriovorax, Bdellovibrio_A, Sandarakinorhabdus, 

Altererythrobacter_B, Porphyrobacter, Cellvibrio, Dechloromonas, Alkanindiges,CAG-495,Thiolinea, Agitococcus, 

Pseudoxanthomonas_A, 2013Ark19i, Methylophilus, Lautropia, Limnobacter, Pseudoduganella, JOSHI-001, Sphaerotilus, 

Paucibacter, Hydrogenophaga, Rhodoferax.

Gut Blastococcus, Schlegelella, Bartonella,Ga0077555,OLB17, TC1, Planctomicrobium.

P.argenteus Gills UBA1568,UBA6899, SZUA-254,Vibrionimonas,Empedobacter, F0040, Porphyromonas, Rufibacter, Spirosoma, 2-02-FULL-

39-32, JKG1, Dietzia, Dermacoccus, Curtobacterium, Leucobacter, Pseudonocardia, Nanopelagicus, Planktophila, 

Obscuribacter, Chroococcidiopsis, Chroogloeocystis, Scytonema_B, Calothrix,UBA7541, Roseburia, Clostridium_J, 

Anaerococcus, Acetobacterium, Parageobacillus, Piscibacillus, Brevibacillus, Pediococcus,Granulicatella, Abiotrophia, 

Solobacterium, Pirellula, Sphingopyxis, Caedimonas, Nucleicultrix,Caedibacter, Moraxella_C, Haemophilus_D, Neisseria, 

Kingella_B, Chromobacterium, UKL13-2, Bordetella, Castellaniella, Ralstonia, Piscinibacter

Gut Brevinema, GWE1-39-12, UBA12053, UBA7522, UBA4664, Pseudosphingobacterium, Elizabethkingia, 

UBA12411,IMCC26256, Marmoricola, Aeromicrobium, Actinomyces, Brevibacterium, Janibacter, Geodermatophilus 

Planktothricoides, Vulcanococcus, Ruminococcus_E, UBA3792, Clostridium_AN, Neofamilia, Finegoldia, Turicibacter, 

Lysinibacillus_C, Weissella, Exiguobacterium_A, Exiguobacterium, Centipeda, Dormibacter, Luteitalea, UBA10511, 

Terrimicrobium, SZUA-320, Oligoflexus, HRBIN30, Anaeromyxobacter, Neorickettsia, Neorhizobium, Rubellimicrobium, 

Hyphomicrobium, Phenylobacterium, Sphingobium, Sphingomonas_A, Microvirga Z2-YC6860, Alsobacter, Labrys, 2-02-

FULL-42-43, Nitrosomonas, Cupriavidus, Sulfuritalea, Lautropia.

HT R. aspera Gills None.

Gut Desulfovibrio, Bosea.

P.argenteus Gills None.

Gut UBA5150, Niameybacter.
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The gill microbiota consisted of 7 phyla, 7 classes, 11 orders, 
15 families, and 14 genera (Supplementary Figure 1). The structure 
of the gill and gut microbiomes was strongly modulated by the 
environmental conditions imposed by HT (Figure 4A). However, 
the gill and gut microbial communities did not differ significantly 
in their taxonomic ASV identities.

The intestinal microbiota was composed of 7 phyla, 10 classes, 
17 orders, 24 families, and 21 genera, and among these, 6 exclusive 
genera were identified (Figure  4B). The dominant and most 
diverse phyla on the gill microbiota and the gut microbiota of 
P. argenteus were Proteobacteria (51 and 12.79%) and 
Fusobacteriota (44 and 60.82%, respectively). In the gills, the 
genera Aeromonas (16.9%), Cetobacterium_A (42%), and 
Plesiomonas (33.40%) dominated the microbial assemblage 
(Supplementary Figure 2). The gut presented a reduced relative 
abundance of the genera Aeromonas (3.66%) and Plesiomonas 
(12.79%), as well as an increase in Bacteroides (8.37%) and 
Edwardsiella (3.96%) (Figure 5).

Unique microbiota associated with 
organs

Of the 295 bacterial genera identified among all the different 
samples, 215 were reported to be associated with gills (Figure 4C), 
with 12 genera (5.58%) shared among all samples originating from 
the gills (SFR and HT). Of these, 214 were associated with the gill 
microbiomes of the fish recruited from the SFR (119 in R. aspera 

and 154 in P. argenteus), both of which shared 27.5% in common. 
The interspecific difference in the gill microbial community 
composition was evidenced by the number of exclusive genera in 
R. aspera (54) and P. argenteus (93). The dominant genera in both 
species included Cetobacterium_A, Aeromonas, and Plesiomonas 
(Supplementary Figure 2).

Although present in both species, the genera Flavobacterium, 
Shewanella, Vogesella, and Pseudoduganella were more abundant 
in the gills of R. aspera from the SFR (Supplementary Figure 2). 
Some of the exclusive taxa from the gill microbiome (Table 2) were 
mainly classified within the Bacteroidetes phylum (Fluviicola, 
Flavobacterium, Soonwooa, Solirubrum, Haliscomenobacter, 
Taibaiella, Pedobacter, Sphingobacterium, and Flexibacter), 
Betaproteobacteria (Rhodoferax, Hydrogenophaga, Paucibacter, 
Sphaerotilus, Limnobacter) and Gammaproteobacteria 
(Alkanindiges, Cellvibrio, Pseudoxanthomonas, Thiolinea).

Some of the unique microbial taxa associated with the gills of 
P. argenteus included Caedimonas, Caedibacter, Vibrionimonas, 
Porphyromonas, Nanopelagicus, Planktophila, Scytonema, 
Dermacoccus, Dietzia, Granulicatella, Rufibacter, Leucobacter, 
Curtobacterium, Moraxella_C, Acetobacterium, Haemophilus, 
Chromobacterium).

Reduced microbial diversity was associated with gills from 
both species recruited from the HT, with more remarkable 
interspecific similarity (53.84% of shared genera) of the identified 
microorganisms. The proportion of commonly shared genera in 
comparing the same species (SFR vs. HT) was 9% for P. argenteus 
and 19% for R. aspera (Figure  4C). The gill microbiome was 

FIGURE 5

Hypothetical model of the adaptive relationship of species in SFR, in HT, and after being returned to SFR after restocking. Impacts of 
anthropogenic actions in SFR and zootechnical management in HT on the constitution of R. aspera and P. argenteus microbiomes should 
contribute to microbiota structure. The reduction of genetic diversity and the gill and gut microbiota can massively interfere with the adaptation of 
fish after restocking.
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dominated by the Fusobacteriaceae, Enterobacteriaceae, 
Aeromonadaceae, and Bacteroidaceae families.

Microbiota communities associated with 
medium gut

The patterns of interspecific variations became conspicuous 
when comparing bacterial communities colonizing the medium 
gut of P. argenteus and R. aspera from SFR, which amounted to the 
lowest microbial diversity of the characterized microbiomes from 
this environment. We registered 151 genera, with 7.28% of this 
total shared among the two host fish species (Figure 4C).

The microbial community in the guts of P. argenteus comprised 
138 genera, of which 94 (67.4%) were exclusive to that host 
(Figure  4C). These results clearly distinguish the intestinal 
microbiota of the evaluated fish species. The intestinal microbiota in 
both fish, recruited from SFR and HT, was predominantly composed 
of the microorganisms Cetobacterium_A, Aeromonas, and 
Plesiomonas. Differences were noted in the higher abundance of the 
Shewanella genera (46.17%), integrating the intestinal microbiota of 
R. aspera from the SFR. The Edwardsiella genera was observed over 
the gills and guts of both species, varying in abundance from 0.45 to 
3.96%, with more significant proportions found in the samples of 
hosts reared in HT. Among the unique genera associated with the 
enteric microbiota of P. argenteus (Table  2), we  observed 
microorganisms affiliated with the classes Alphaproteobacteria 
(Rubellimicrobium, Hyphomicrobium, Phenylobacterium, 
Sphingomonas_A, Microvirga) and Betaproteobacteria 
(Nitrosomonas, Cupriavidus, Sulfuritalea, Lautropia).

The HT environment also negatively affected the gut 
microbiome composition in both species, with only 19 and 21 
genera colonizing the guts of R. aspera and P. argenteus, 
respectively. However, the relatively small number of exclusive 
taxa (Figure 4C) in R. aspera (3) and P. argenteus (4) indicates that 
there is little interspecific variability in the microbial diversity of 
the guts of both host species.

Phylogenetically distinct host species 
share a central microbiome in different 
ecological systems

The central microbiota comprised the proportion of the 
microbial community shared among all samples. The gill and gut 
microbiomes of both species share many broader taxonomic 
groups. At the genera level, the gill and gut microbiomes shared 
between R. aspera and P. argenteus were remarkably low, 
accounting for only 3.4 to 6.92% of the total when compared 
between fish species and environments. Interestingly, most diverse 
genera, like Aeromonas (3.6 to 28.84%), Cetobacterium (19 to 
60.82%), and Plesiomonas (3 to 33.40%), were shared between 
organs and species of the SFR and the HT (Supplementary Figure 2). 
Other taxa shared at the genera level at least 75% of the total 

biological samples included Bacteroides, Akkermansia, 
Edwardsiella, Pseudomonas, and Shewanella, among other 
non-identified associated with Burkholderiaceae, 
Enterobacteriaceae e Fusobacteriaceae families.

Discussion

SFR is one of the most important Brazilian rivers. It 
contributes to the national energy matrix, favoring tourism and 
agriculture in its surroundings and providing fish to those who 
depend on it (Sun et al., 2016; Castro and Pereira, 2019). However, 
throughout their extension, these activities have contributed to the 
decline of the ichthyofauna, especially related to endemic and 
native species to this watershed (Holanda et al., 2009; Barbosa 
et al., 2017; Figueiredo, 2018).

This worrying scenario, which repeats in other basins around 
the world, puts aquaculture as a positive contributor to increasing 
the supply of fish as a source of animal protein (FAO, 2016). That 
minimizes the pressure on population stocks at the same time that 
it can support stochastic re-population strategies to preserve 
biodiversity (Klinger and Naylor, 2012).

However, studies indicate that the release of fish cultivated in 
re-population programs can pose risks of disease transmission to 
native populations due to the decrease in genetic variability and 
the possible introduction of exotic alleles that can compromise 
wild populations (Araki and Schmid, 2010; Cheng et al., 2015; 
Pavlova et al., 2017; Savary et al., 2017). Additionally, very little is 
known about the microbiomes associated with wildlife. Therefore, 
the first characterization of the structure of not yet known 
microbiomes associated with fish species may reveal an as-yet 
undescribed and particular microbiota (Levin et  al., 2021). 
Furthermore, there is limited research on the relationship between 
species confinement and the modulation of microbiota associated 
with important tissues such as skin, gills, and guts.

In an attempt to reduce this knowledge gap and effectively 
contribute to studies involving fish species of ecological and 
commercial interest, this work characterized and compared for 
the first time the intestinal and gill microbiota of the species 
P. argenteus and R. aspera from the SFR and kept in an HT, both 
endemic to SFR natives, by high-throughput DNA sequencing. 
This culture-free method allows a broader view of microbial 
diversity associated with organisms, organs, and environments.

The present research findings indicate that fish-rearing 
conditions significantly altered the structure of the gut and gill 
microbiome of R. aspera and P. argenteus from the HT, suggesting 
that it was strongly modulated by the environmental conditions 
imposed by the host habitat. The microbiomes of the confined fish 
showed an 87% reduction in the diversity of taxa compared with 
the same species collected from the river. Studies show that the 
composition of microbiomes in teleost fish can differ under the 
influence of several factors such as phylogenetic position, trophic 
level and diet composition, the microhabitat used by hosts, its 
environment, and the stocking and rearing densities in hatchery 

https://doi.org/10.3389/fmicb.2022.966436
https://www.frontiersin.org/journals/microbiology


Damasceno et al. 10.3389/fmicb.2022.966436

Frontiers in Microbiology 13 frontiersin.org

environments (Sullam et al., 2012; Ursell et al., 2012; Boutin et al., 
2013; Sylvain et al., 2016; Uren Webster et al., 2018, 2020; Tarnecki 
et  al., 2019). In this context, dysbiosis caused by the drastic 
decrease in microbial diversity due to environmental variables and 
changes in diet can affect the nutritional and immunological status 
of fish, making them more vulnerable and susceptible to 
opportunistic pathogens (Boutin et  al., 2013; Pękala-Safińska, 
2018) and compromising aquaculture and food security.

The structure of microbiomes from fish confined in HT 
showed greater uniformity, with the predominance of the phyla 
Fusobacteriota and Proteobacteria, which affiliated with the 
majority (> 95%) of the identified taxonomic signatures. These 
results are consistent with other findings in other fish species 
evaluated in a confinement system, such as the cultivation of 
Panaque sp., Lates calcarifer, Oreochromis niloticus, and Arapaimas 
gigas (Di Maiuta et al., 2013; Zhai et al., 2017; Ramírez et al., 2018; 
Xia et al., 2020). In contrast, the wild fish microbiomes (SFR) 
showed greater richness and diversity, mainly composed of 
Proteobacteria of the classes Alphaproteobacteria, 
Betaproteobacteria, and Gammaproteobacteria, followed by 
Fusobacteriota, Bacteroidota, Planctomycetota, and 
Cyanobacteria. The environmental heterogeneity expected from 
the river (more so given its diffuse anthropic impacts) should 
impact fish-associated microbiomes (Krotman et al., 2020). Being 
illiophagous, both fish grate the substrate and feed over fresh and 
decomposing algae and also have an intimate relationship with a 
more anoxic layer of the benthos, where a whole community of 
specialized microorganisms would be expected.

It is increasingly evident that microbiomes associated with wild 
animals provide these hosts with metabolic adaptations for survival 
in environments contaminated by recalcitrant pollutants and the 
consumption of toxic foods or those deteriorated by pathogens 
(Tarnecki et al., 2019; Levin et al., 2021). At the same time, some 
taxa can be characterized as possible biomarkers of environmental 
pollution (Caruso, 2016; Sylvain et al., 2016; Ventorino et al., 2018; 
Tarnecki et al., 2019; Nolorbe-Payahua et al., 2020). Cetobacterium, 
Aeromonas, and Plesiomonas also enriched SFR and HT fish 
microbiomes. The predominance of Cetobacterium was notably 
observed as associated with the gills and gut of P. argenteus and 
R. aspera collected from HT and has also been reported for other 
commonly cultivated fish species such as Cyprinus carpio (van 
Kessel et al., 2011), Panaque nigrolineatus (Di Maiuta et al., 2013), 
Ictalurus punctatus, Micropterus salmoides, Lepomis macrochirus 
(Larsen et al., 2014), Arapaimas gigas (Ramírez et al., 2018) and 
Oreochromis niloticus (Yu et al., 2019). The genera Aeromonas and 
Plesiomonas were prevalent in all samples, with a higher relative 
abundance of Aeromonas in the gills of R. aspera (24%) and 
P. argenteus (28.43%) from the HR and SFR, respectively, 
contrasting with the reduced abundance associated with intestinal 
samples (between 3.66 and 7.55%) in both hosts recruited from the 
SFR and HT. The genera Aeromonas is highly pathogenic, 
comprising 36 genera that establish symbiotic and pathogenic 
interactions with their hosts (Fernández-Bravo and Figueras, 
2020). They carry multiple virulence factors (Nam and Joh, 2007) 

and are resistant to antimicrobials (Cízek et al., 2010; Nguyen et al., 
2014) and heavy metals (Akinbowale et al., 2007). Plesiomonas is 
commonly found in the aquatic environment and associated with 
fish, being recognized as potential enteropathogens (Pękala-
Safińska, 2018). Plesiomonas integrated the SFR and HT fish 
microbiota in relative abundance from 3% gill of R. aspera from 
SFR to 33.4%. These results corroborate those reported for 
Plesiomonas commonly found in fish microbiota (Duarte et al., 
2014; Mohammed and Arias, 2014), with a higher prevalence rate 
in fish spawn in aquaculture.

The most diverse taxa of the microbiomes characterized in 
this study for R. aspera and P. argenteus were Aeromonas, 
Flavobacterium, Acinetobacter, Plesiomonas, and Shewanella, 
which frequently colonize the mucous surfaces of fish and are 
associated with severe pathologies in these hosts (Wu et al., 2012; 
Latha and Mohan, 2013; Liu et al., 2016; Tarnecki et al., 2016; 
Pękala-Safińska, 2018; Pratte et al., 2018). In this context, Sylvain 
et al. (2016) considered Flavobacterium a natural biomarker of 
environmental stress, susceptible to acidic pH, in the context of its 
abundance decrease, in the skin mucus and feces microbiome of 
Colossoma macropomum while exposed to ever-increasing acid 
concentrations. In contrast, Yu et al. (2019) demonstrated that 
exposure of Nile tilapia to aluminum significantly increased the 
abundance of Flavobacterium and decreased Plesiomonas. 
Acinetobacter was detected in greater quantities, integrating both 
wild species’ gill and gut microbiomes. They are reported as 
emerging pathogens, often associated with polluted environments, 
carrying antimicrobial resistance genes, which have also been 
reported as alkane degraders (Manchanda et al., 2010; Costa et al., 
2015) and have been isolated from Oncorhynchus mykiss and 
Cyprinus carpio, causing severe damage to organisms (Pękala-
Safińska, 2018). The genera Shewanella was observed in 46% of the 
guts of wild R. aspera, which was different from that reported by 
Pratte et al. (2018), where it was among the most diverse OTUs in 
gill microbiomes of 15 species of teleost fish recruited from coral 
reefs. Bacterial strains of the genera Shewanella have been 
intensively researched as candidates for biotechnological 
applications, especially in the bioremediation of hydrocarbons and 
metallic pollutants (Lemaire et  al., 2020), and also have been 
reported to cause infections in popular freshwater-reared species 
Cyprinus carpio and Oncorhynchus mykiss (Pękala et al., 2015). 
The genera Edwardsiella is frequently reported to be associated 
with fish microbiota and includes pathogens such as E. tarda and 
E. ictaluri (Pękala-Safińska, 2018); and is also related to the 
massive mortality of Myleus micans (pacu), an important fisheries 
resource in the SFR, that occurred in the turn of 2005/2006 (Lima 
et al., 2008). The present study shows that the microbiota of these 
fish confined in this hatchery system had an increased abundance 
of Edwardsiella spp. (0.84% a 3.96%); therefore, it is a potential 
genus to risk the aquaculture production of the investigated species.

The phylum Cyanobacteria was observed only in samples 
originating from wild fish, aggregating 11 genera, among which 
Planktothrix and Pseudanabaena are frequently related to 
flowering and production of cyanotoxins (Su et  al., 2015) in 
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eutrophic environments with high concentrations of nitrogen and 
phosphorus (Paerl, 2018). These results corroborate those 
presented by the Instituto de Gestão da Águas de Minas Gerais 
(IGAM, 2018), indicating frequent events of bacterial blooms in 
the middle SFR. Bacteroidetes of the order Chitinophagales and 
Cytophagales were prevalent and more abundant in the gill 
microbiota of R. aspera in the SFR, and together, they affiliated 
with nine unique genera. The Chitinophagales family was 
associated with environments contaminated by heavy metals and 
impacted by agricultural activities (Costa et al., 2015; Júnior et al., 
2021), which are also configured as common scenarios for 
the SFR.

Some taxonomic signatures were prevalent in the different 
body niches of both species, recruited from their natural habitat 
and captivity under the microbiomes characterized in this study. 
Therefore, we corroborate the hypothesis that phylogenetically 
diverse species may share basal or nuclear microbiomes (Roeselers 
et al., 2011; Lowrey et al., 2015; Hennersdorf et al., 2016; Liu et al., 
2016). Interestingly, these shared taxonomic signatures correspond 
to 2.65% of the total chains from the R. aspera and P. argenteus 
microbiome, the most abundant taxa found in the samples: 
Cetobacterium, Plesiomonas, and Aeromonas. Finally, in this study, 
no significant differences were found in the diversity index α 
(Shannon and Simpson) between the compared microbiomes, 
considering species and organs of fish collected in the SFR. This 
result suggests that the sympatric occurrence of R. aspera and 
P. argenteus is associated with the iliophagous ecological 
convergence and has contributed to the microbial similarity 
observed in phylogenetically distinct fish species. Previous studies 
on the characterization of bird, mammal, and fish microbiomes 
have described the overlap of the ecological niche with increased 
interspecific microbial convergence (van Veelen et al., 2017; Baldo 
et al., 2019; Song et al., 2020).

However, a particular distinction between the microbiomes of 
different tissues of wild fish can be supported by the expressive 
number of unique taxa found only in the hosts’ gills and guts and 
by the percentage of shared taxa. In P. argenteus, only 28.6% of the 
taxa at the genera level were shared between gills and guts. This 
result corroborates the findings of Pratte et  al. (2018), which 
characterized microbiomes of different populations of fish 
recruited from coral reefs, reporting between 20 to 25% of taxa 
shared between the gill and intestinal microbiota of individuals of 
the same species. The intestinal microbiota of R. aspera obtained 
from the SFR harbored a lower richness of bacterial consortia 
considering this environment compared to P. argenteus, also 
showing a high intraspecific variation between the gill and gut 
microbiota by sharing only 14.56% of genera. A similar result was 
reported for other Siluriformes related to the enteric microbiota, 
mucus, and gut content of P. nigrolineatus, Hypostomus 
auroguttatus, and Pelteobagrus fulvidraco (Wu et al., 2010, 2012; 
Duarte et  al., 2014). Therefore, the observed variations may 
be directly related to the phylogeny and diet of the hosts, as well 
as the role that these tissues play in fish (Ngugi et al., 2017; Pratte 
et al., 2018; Levin et al., 2021).

From the perspective of fish farming for the repopulation of 
endangered species, our study brings a new discussion to the 
debate. The confinement of fish of the species R. aspera and 
P. argenteus resulted in a considerable discrepancy between the 
microbiota from wild and domesticated animals, with a massive 
reduction of bacterial diversity both in the gills and in the gut of 
HT fish. This effect probably reflects the contrasting selective 
pressures of the farming system and the natural habitat and points 
to vulnerabilities to the aquaculture of these species. Microbiomes 
as small as those observed in this study in confined fish can 
negatively impact the hosts’ health, resulting in economic losses 
and a possible reduction in the ability of cultured fish to 
be reintroduced into nature to rebuild wild populations (Figure 5). 
This effect, associated with a decrease in the genetic variability of 
individuals in confinement, can lead to high production costs with 
low adaptive capacity in the wild, thus opening new investigative 
windows in proposals for reintroducing native and 
endemic species.

One of the biggest challenges to the growth of industrial 
aquaculture is disease control (Zheng et al., 2020; Karvonen et al., 
2021). In this context, the commensal microbiota is important in 
the innate and adaptive immunity of animals (Vadstein et  al., 
2018; Sehnal et al., 2021; Huang et al., 2022), whose change in 
composition can promote or mitigate disease states in hosts 
(Sehnal et  al., 2021). Thus, the reduction in gut and gill 
microbiome diversity reported in fish farmed in closed systems 
may have epidemiological relevance and should not be overlooked 
(Pękala-Safińska, 2018; Tarnecki et al., 2019; Amillano-Cisneros 
et al., 2022). This perspective is supported by similar studies in 
Cyprinus carpio (Ruzauskas et  al., 2021), Chirostoma estor 
(Amillano-Cisneros et al., 2022), Tor tambroides (Tan et al., 2019), 
Salmo salar (Uren Webster et  al., 2018; Lavoie et  al., 2021), 
Centropomus undecimalis (Tarnecki et al., 2019), and Paralichthys 
adspersus (Salas-Leiva et al., 2017).

Recent research, conducted mainly in mammals, has 
demonstrated the importance of microbiota-host interactions, 
including the development and regulation of the host’s immune 
response in the fight against infections and diseases. Reports in 
the literature relate the loss of microbial diversity in fish exposed 
to stress or disease (Legrand et al., 2020). In this context, exposure 
of D. rerio to the pathogen Aeromonas hydrophila decreased the 
abundance of beneficial microbial species and increased the 
abundance of harmful microorganisms and reactive oxygen 
species (Yang et  al., 2017). Inflammatory disorders such as 
intestinal enteritis have been affecting the rearing of several fish 
species and were positively correlated with dietary supplements 
enriched with soybean meal and changes in the structure and 
diversity of the host microbiota (Urán et al., 2008; Legrand et al., 
2020). Intestinal enteritis-induced Mycoplasmataceae enrichment 
and drastic loss of skin diversity were found in sick yellow-tailed 
kingfish (Legrand et al., 2020). Such changes can lead to functional 
dysbiosis in the host and loss of resistance to the invasion of 
opportunistic pathogens (De Schryver and Vadstein, 2014), 
demonstrating that the disruption of the host’s microbial flora 
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homeostasis makes it more susceptible to diseases. Bacterial phyla 
associated with the gut microbiota that metabolize steroid 
hormones, including progesterone, estradiol, and testosterone, 
have also been reported in several animal models (Hussain et al., 
2021), thus evidencing the involvement of the intestinal 
microbiota in reproduction. Lavoie et al., 2021 pointed out the 
relevance of monitoring bacterial communities of fish kept in 
captivity for repopulation programs, as they observed that the 
microbiota of confined fish remained different from that of wild 
fish, even after 2 years of translocation, with resistance to 
colonization by bacterioplankton bacteria in the natural habitat. 
Even though this study resolves fish-associated microbial diversity 
at the genera level, it is reasonable to assume many of the ASVs 
listed here represent new species. Thus, this line of inquiry would 
benefit from the whole assembly metagenome in the future to 
reveal this hidden biodiversity (Levin et al., 2021).

Our study revealed that wild species harbor highly diverse 
microbial communities. This repertoire of information will 
contribute to the understanding of microbiota-host 
bioecological interactions. Additional studies are needed to 
investigate the functional profile of wild microbiota on fish 
health and assess the impacts of reduced microbial diversity 
on farmed fish. Such information will constitute a reference 
for future studies, either as an attribute of comparing 
information to other systems and biological models or for 
implementing improvements in fish production for 
consumption or repopulation of natural environments.

In conclusion, the stress conditions the fish from HT are 
subjected to negatively modify the composition of the 
microbiomes of the host fish from both species, with a significant 
loss of diversity compared to the microbiomes of their wild 
counterparts. The set of bacterial communities associated with the 
body niches of both fish species reared in tanks points to a picture 
of dysbiosis with a possible decrease in the immune response of 
host fish and low resistance to colonization by pathogens, which 
can cause significant losses to aquaculture. We also identified taxa 
where the investigated species can establish important symbiotic 
interactions such as nutrition, detoxification, and protection. 
However, genera frequently reported as opportunistic pathogens 
were also associated with the investigated tissues, causing public 
health risks because they are conveyed in water and various foods. 
This study is the first to characterize the structure and composition 
of microbial diversity in R. aspera and P. argenteus via high-
throughput sequencing of the 16S rRNA gene. These results can 
be used as a departure point to evaluate the putative effects of 
stocking impacted environments with fish spawn in hatcheries in 
the context of conservation, fisheries, and fish production in 
the SFR.
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