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Coxsackievirus B3 (CVB3) is a leading cause of viral myocarditis, but no

e�ective treatment strategy against CVB3 is available. Viruses lack an inherent

metabolic system and thus depend on host cellular metabolism for their

benefit. In this study, we observed that CVB3 enhanced glycolysis in H9c2

rat cardiomyocytes and HL-1 mouse cardiomyocytes. Therefore, three key

glycolytic enzymes, namely, hexokinase 2 (HK2), muscle phosphofructokinase

(PFKM), and pyruvate kinase M2 (PKM2), were measured in CVB3-infected

H9c2 and HL-1 cells. Expression levels of HK2 and PFKM, but not PKM2,

were increased in CVB3-infected H9c2 cells. All three key glycolytic

enzymes showed elevated expression in CVB3-infected HL-1 cells. To

further investigate this, we used 2 deoxyglucose, sodium citrate, and

shikonin as glycolysis inhibitors for HK2, PFKM, and PKM2, respectively.

Glycolysis inhibitors significantly reducedCVB3 replication, while the glycolysis

enhancer dramatically promoted it. In addition, glycolysis inhibitors decreased

autophagy and accelerated autophagosome degradation. The autophagy

inducer eliminated partial inhibition e�ects of glycolysis inhibitors on CVB3

replication. These results demonstrate that CVB3 infection enhances glycolysis

and thus benefits viral replication.

KEYWORDS

coxsackievirus B3, glycolysis, hexokinase 2, muscle phosphofructokinase, pyruvate

kinase M2, autophagy, glycolysis inhibitor

Introduction

CVB3 belongs to the virus family Picornaviridae and genus Enterovirus,

and is a positive single-stranded RNA virus, which is a leading causative

agent of viral myocarditis (VMC) (Rivadeneyra et al., 2018). VMC is

myocardial inflammation due to a virus infection that can lead to severe heart

muscle injury, resulting in dilated cardiomyopathy and sudden cardiac death
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(Lee et al., 2017). CVB3 infection begins by coupling of the virus

to host cell receptors, and no treatment is effective in preventing

CVB3 infection at present (Selinka et al., 2004).

Viruses rely on host cell factors to replicate, modifying

cellular metabolism to complete their life cycle. Most viruses

examined to date induce aerobic glycolysis, also known as

the Warburg effect, which means glucose is primarily utilized

to produce lactic acid even in the presence of abundant

oxygen. Glycolysis favors virus infections as it produces rapid

energy (Pfeiffer et al., 2001; Chi et al., 2018), generates

precursors (Vastag et al., 2011; Fernandes-Siqueira et al., 2018;

Gualdoni et al., 2018), and restores the host redox balance

(Chen et al., 2016). While oxidative phosphorylation provides

significantly more ATP per glucose molecule, glycolysis is a

much faster process that rapidly provides ATP. The virus

also activates glycolysis to generate precursors for nucleotide

and protein synthesis required for viral replication. Glycolysis

simultaneously elevates the NADH/NAD+ ratio to counteract

the high levels of reactive oxygen species produced in response

to virus infection. Thus, most viruses require glycolysis for

optimal replication. But, some viruses, such as vaccinia virus, do

not induce glycolysis for replication (Fontaine et al., 2014).

Despite extensive explorations in virus infection and

glycolysis (Polcicova et al., 2020), little is known about glucose

metabolomic change in CVB3-infected cardiomyocytes.

Therefore, we propose a hypothesis regarding glucose

metabolism changes in CVB3-infected cardiomyocytes. We

also present relevant experiments using myocardial cell

lines, namely, H9c2 rat cardiomyocytes and HL-1 mouse

cardiomyocytes, to support this hypothesis. The present study

reveals that glucose metabolism is involved in CVB3 infection

and is required for CVB3 replication.

Materials and methods

Cell culture

The myocardial cell lines H9c2 and HL-1 were obtained

from the Institute of Oncology, Central South University,

China, and grown in Dulbecco’s modified Eagle medium

(DMEM, Gibco, Life Technologies, Inc, Waltham, MA, USA)

supplemented with 10% heat-inactivated fetal bovine serum

(FBS, Gibco), and Claycomb medium (Sigma-Aldrich, St. Louis,

MO USA) with 10% FBS, respectively. The cells were cultured at

37◦C in a humidified incubator with 5% CO2.

Virus infection

Coxsackievirus B3 (Nancy strain) was obtained from

Shanghai Jiao Tong University School of Medicine and

propagated and maintained in H9c2 cells. The viral titer was

routinely examined prior to each experiment. The cells were

washed with phosphate-buffered saline (PBS), serum-starved for

2 h prior to infection, and then mock-infected or CVB3-infected

at a multiplicity of infection of 10 in serum-free medium for 1 h.

Glycolytic inhibitor treatment and
stimulation experiment

The cells were infected with CVB3 at a multiplicity

of infection of 10 in a serum-free medium for 1 h. 2-

Deoxy-d-glucose (2DG) (Sigma-Aldrich, Germany) and sodium

citrate (SCT) (Sigma-Aldrich, Germany) were solubilized in

cell culture medium for each experiment and added to the

experimental medium at a final concentration of 10mM.

Shikonin (Sigma-Aldrich, Germany) was solubilized in DMSO

for each experiment and added to the experimental medium at

a final concentration of 1µM. For glycolysis inhibitor studies,

CVB3-infected cells were treated with glycolysis inhibitors,

namely, 2DG, SCT, and shikonin, at indicated concentrations.

PS48 (Abcam, Cambridge, UK) and rapamycin (Sigma-Aldrich,

Germany) were solubilized in DMSO for each experiment and

added to the experimental medium at indicated concentrations.

For glycolysis activation experiments, CVB3-infected cells were

treated with 10mMPS48. For autophagy induction experiments,

CVB3-infected cells were treated with 100 nM rapamycin.

Plaque assay

The virus titer in the cell supernatant was determined

using an agar overlay plaque assay, as previously described (Si

et al., 2007). In brief, the cells were infected with serial 10-fold

dilutions of the virus supernatants for 1 h. Then, the cells were

washed with PBS and covered with a medium containing 0.75%

agarose. After 72 h of incubation, the plates were stained with

1% crystal violet The visible plaques were counted, and the viral

titer was calculated as plaque-forming units per milliliter.

Glucose consumption and lactate
production

Glucose consumption and lactate production were

measured by using a glucose assay kit (BC2500,

Solarbio, Beijing, China) and a lactate assay kit

(BC2230, Solarbio, China) in accordance with the

manufacturers’ instructions. All data were normalized to

the cell numbers.
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TABLE 1 Primer sequences for H9c2 rat cardiomyocytes.

Target gene Primers Sequence (5
′

-3
′

) Amplicon length (bp)

CVB3 Forward ACGAATCCCAGTGTGTTTTGG 67

Reverse TGCTCAAAAACGGTATGGACAT

GLUT4 Forward GCCTGCCCGAAAGAGTCTAA 275

Reverse CAGCTCCTATGGTGGCGTAG

HK2 Forward AGGGATTCAAGGCATCTGGC 86

Reverse CAGGTCAAACTCCTCTCGCC

PFKM Forward CCATCAGCCTTTGACCGGAT 165

Reverse GGTCACGTCTTTGGTCACCT

PKM2 Forward ATGAAGGTGTCCGCAGGTTT 137

Reverse TCGGTTGCATCGTCCAATCA

Atg5 Forward ACCTCGGTTTGGCTTGGTT 103

Reverse AAACCACACGTCTCGAAGCA

Beclin1 Forward CCCAGCCAGGATGATGTCTAC 96

Reverse AGTCTCCGGCTGAGGTTCTC

β-Actin Forward CGCGAGTACAACCTTCTTGC 70

Reverse CGTCATCCATGGCGAACTGG

TABLE 2 Primers sequences for HL-1 mouse cardiomyocytes.

Target gene Primers Sequence (5
′

-3
′

) Amplicon length (bp)

CVB3 Forward ACGAATCCCAGTGTGTTTTGG 67

Reverse TGCTCAAAAACGGTATGGACAT

GLUT4 Forward AAACAAGATGCCGTCGGGT 173

Reverse AGCTCTGTTCAATCACCTTCTG

HK2 Forward GGCTAGGAGCTACCACACAC 91

Reverse AACTCGCCATGTTCTGTCCC

PFKM Forward ATTCGCGATCTCCAGGTGAA 211

Reverse CAAAGGGAGTTGGGCTTCCA

PKM2 Forward GCATGCAGCACCTGATAGCTC 78

Reverse AGGCTCGCACAAGCTCTTCA

Atg5 Forward TGCATCAAGTTCAGCTCTTCC 224

Reverse ACTGGTCAAATCTGTCATTCTGC

Beclin1 Forward CCAGCCTCTGAAACTGGACA 82

Reverse TGTGGTAAGTAATGGAGCTGTGA

β-Actin Forward CACTGTCGAGTCGCGTCCA 88

Reverse CATCCATGGCGAACTGGTGG

Cell counting kit-8 assay

To evaluate the chemical cytotoxicity, cell counting

kit-8 (CCK-8) experiments were performed following the

manufacturer’s instructions. In brief, the cells were seeded in 96-

well plates at a density of 5 × 103 cells/ml for 24 h and then

exposed to the drugs or controls for 0, 6, 12, and 24 h. The

cells were analyzed by adding 5 mg/ml of the CCK-8 reagent

(Vazyme Biotech, Nanjing, China). After a 2-h incubation,

absorbance was measured by wavelength spectrophotometry at

450 nm.

Creatine kinase isoenzyme MB
measurements

The cells were seeded in six-well plates for 24 h at

6 × 105 cells per well and then exposed to the drugs

Frontiers inMicrobiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2022.962766
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Qian et al. 10.3389/fmicb.2022.962766

FIGURE 1

Coxsackievirus B3 infection induces glycolysis. Myocardial cells, H9c2 and HL-1 cells, were mock-infected or infected with coxsackievirus B3 at

a multiplicity of infection of 10, and were harvested at 24h post-infection. Glucose consumption (A) and lactate production (B) were measured

and calculated. The expressions of GLUT4, HK2, PFKM, and PKM2 were analyzed by qPCR (C) and Western blot (D). Data are indicated as mean

± SEM; data represent three independent experiments with three technical replicates per experiment; *P < 0.05.

or controls. The medium was collected at each time

point, and the creatine kinase-MB (CK-MB) levels were

immediately examined using an Olympus (Tokyo, Japan)

AU5400 analyzer.

Real-time quantitative polymerase chain
reaction assay

The TaqMan software was used to design the real-time

quantitative polymerase chain reaction (RT-qPCR) based on

exon junctions to prevent co-amplification of genomic DNA.

Total mRNA was extracted using an RNA extraction kit (Omega

Bio-Tek, Norcross, GA, USA) and reverse-transcribed into

cDNA using a PrimeScript RT reagent kit with a gDNA

eraser (Takara, Kusatsu, Japan). The primers used for the

genes indicated were designed using Primer Blast. The primer

sequences are listed in Tables 1, 2. The reaction was performed

using a LightCycler R© 480II analyzer (Roche, Mannheim,

Germany), and the amplifications were carried out for 35

cycles. β-Actin was used as the internal control, and the

2−1Ct method was used to calculate the differences in mRNA

transcript levels.

Western blot analysis

The cells were washed with PBS and then lysed on

ice in a radioimmunoprecipitation assay (RIPA) buffer

(Kangwei, Beijing, China). The total protein concentration

was measured by bicinchoninic acid (BCA) protein assay

(CWBIO, Beijing, China). Subsequently, 30 µg of protein

was subjected to SDS-PAGE and subsequently transferred

to PVDF membranes (Millipore Corporation, Billerica,

MA, United States). The membranes were blocked for 1 h

with 5% non-fat milk before being incubated with primary

antibodies [HK2, PKM2, GLUT4: Cell Signaling Technology,

Danvers, USA. LC3-I/II: Sigma-Aldrich, Germany; ATG5,

Beclin1, PFKM, β-actin: Proteintech Group, Inc., Chicago,

IL, USA; monoclonal anti-enterovirus antibody (viral

capsid protein, VP1) Dako, Carpinteria, CA, USA] at 4◦C

overnight, followed by incubation with an IRDye R©800CW

goat anti-rabbit secondary antibody (1:8,000, 926-32211,

LI-COR R©, USA) for another 1 h. Immunoblotting bands were

visualized under an Odyssey CLx infrared imaging system

(LI-COR R©, USA). Protein expression levels were quantified by

densitometry using the ImageJ software and were normalized

to β-actin.
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FIGURE 2

Glycolysis inhibitors reduce CVB3 replication. H9c2 and HL-1 cells were infected with coxsackievirus B3 (CVB3) at a multiplicity of infection of

10, with or without glycolytic inhibitor treatment, and were harvested at 24h post-infection. Intracellular VP1 levels were measured by Western

blotting (A), and CVB3 RNA levels were measured by quantitative PCR (B). Cell supernatant was harvested at 24h post-infection, and CVB3 viral

titer levels were measured by plaque forming unit assay (C). Myocardial cells treated with or without 2-deoxy-D-glucose, sodium citrate, or

shikonin were detected at 0, 6, 12, and 24h by using the CCK-8 method (D), and the culture supernatant creatine kinase MB levels were tested

at the same time points (E). Data are indicated as mean ± SEM; data represent three independent experiments with at least three technical

replicates per experiment; *P < 0.05.

Statistical analysis

Data were presented as the mean ± standard

error of the mean (SEM), and statistical analyses

were performed by using SPSS software version 18.0.

Student’s t-test was used to determine statistical

significance. Results with a P < 0.05 were considered

statistically significant.

Results

CVB3 infection induces glycolysis

To determine whether CVB3 induces glycolysis in

myocardial cells, H9c2 and HL-1 cells were infected with CVB3

to establish cellular models of viral myocarditis (Tabor-Godwin

et al., 2012; Li et al., 2014, 2019; Wang et al., 2018; Li and Xie,

2022; Pappritz et al., 2022). We measured glucose consumption

and lactate production, which approximatelyreflect fluctuations

in glycolysis (Sun et al., 2011; Mazzon et al., 2018; Lee

et al., 2020). Compared with the mock group, the CVB3

group showed an increase in glucose consumption (P <

0.05; Figure 1A). Meanwhile, the lactate level in the CVB3

group was higher than that in the mock group (P < 0.05;

Figure 1B). The increase in glucose consumption and lactate

production suggests a possible increase in glucose transport

and metabolism. To confirm this speculation, we detected the

expression of glucose transporter 4 (GLUT4), which is mainly

expressed in the myocardial cells and transported glucose into

cells (Wang et al., 2020). The key glycolytic enzymes hexokinase

2 (HK2), muscle phosphofructokinase (PFKM), and pyruvate

kinase M2 (PKM2) were detected. Indeed, compared with

the mock group, the expression of GLUT4 in CVB3-infected

myocardial cells was increased. Expression levels of HK2

and PFKM, but not PKM2, were increased in CVB3-infected

H9c2 cells. All three key glycolytic enzymes showed elevated

expression in CVB3-infected HL-1 cells (Figures 1C,D). Taken

together, these results suggest that glycolysis was enhanced after

CVB3 infection in H9c2 and HL-1 cells.
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FIGURE 3

Glycolysis enhancer promotes coxsackievirus B3 replication. H9c2 and HL-1 cells were infected with coxsackievirus B3 at a multiplicity of

infection of 10, with or without simultaneous PS48 (10mM) treatment. Cells were harvested at 24h post-infection, and the intracellular VP1 level

was measured by Western blotting (A), and viral RNA was measured by quantitative PCR (B). Cell supernatants were harvested at 24h

post-infection, viral titer levels were measured by plaque-forming unit assay (C), and creatine kinase-MB levels were tested (D). Data are

indicated as mean ± SEM; Data represent three independent experiments, with three technical replicates per experiment; *P < 0.05.

Glycolysis inhibitors reduce CVB3
replication

As demonstrated before, glycolysis was elevated after

CVB3 infection. Previous studies have shown that metabolic

reprogramming is beneficial for viral replication in host cells

(Thai et al., 2014, 2015; Fontaine et al., 2015; Passalacqua

et al., 2019). To examine whether the disruption of glycolysis

affects the replication of CVB3, we utilized 2DG and SCT as

glycolysis inhibitors to inhibit the increased HK2 and PFKM

expression levels in H9c2 cells, respectively, and 2DG, SCT, and

shikonin as glycolysis inhibitors to inhibit the increased HK2,

PFKM, and PKM2 expression levels in HL-1 cells, respectively.

Intracellular viral capsid protein VP1 and CVB3 RNA were

detected by Western blotting and qPCR, respectively. As shown

in Figures 2A,B, exposure to glycolysis inhibitors dramatically

decreased CVB3 replication. Furthermore, the CVB3 titer in the

cell supernatant was also significantly reduced upon glycolysis

inhibitor treatment (Figure 2C). To exclude drug cytotoxicity as

the mediator of inhibition, viability assays were undertaken with

each compound. Uninfected cells were incubated with 2DG,

SCT, or shikonin. The inhibitors did not elicit measurable effects

on cell viability at any time points, and the culture supernatant

did not show an increased level of CK-MB relative to the

untreated controls (Figures 2D,E). These exclude the possibility

that glycolysis inhibitor toxicity may impair myocardial cells.

Enhancing the glycolysis pathway
promotes CVB3 replication

To further confirm the effect of enhanced glycolysis on

CVB3 replication, we used PS48 to induce a Warburg-like

metabolic state. PS48 shifts glucose metabolism from the TCA

cycle to glycolysis by activating pyruvate dehydrogenase kinase

1 (PDK1) (Hindie et al., 2009; Han et al., 2017). As shown

in Figure 3, exposure to PS48 dramatically promoted CVB3
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FIGURE 4

Coxsackievirus B3 replication is enhanced by activating autophagy. H9c2 cells were divided into four groups: a mock-infected group,

coxsackievirus B3 (CVB3)-infected group, CVB3-infected group treated with 2-deoxy-D-glucose, and CVB3-infected group treated with sodium

citrate. HL-1 cells were divided into five groups: a mock-infected group, CVB3-infected group, CVB3-infected group treated with

2-deoxy-D-glucose, CVB3-infected group treated with sodium citrate, and CVB3-infected group treated with shikonin, and cells were harvested

at 24h post-infection. ATG5, Beclin1, LC3 II,/I, and p62 were measured by Western blotting (A), and ATG5 and Beclin1 were further measured

using quantitative PCR (B). Subsequently, cells were infected with CVB3 at a multiplicity of infection of 10 and treated with glycolysis inhibitors,

with or without rapamycin (100nM), and cells were harvested at 24h post-infection. VP1 levels were measured by Western blotting (C–E), and

CVB3 RNA levels were measured by quantitative PCR (F,G). Cell supernatant was harvested at 24h post-infection, and CVB3 viral titer levels were

measured by plaque-forming unit assay (H,I). R, rapamycin. Data are indicated as mean ± SEM; data represent three independent experiments

with three technical replicates per experiment; *P < 0.05.

replication. As viral replication increased, PS48 aggravated

CVB3-infected cell injury.

Glycolysis promotes CVB3 replication via

autophagy pathway

Autophagy is involved in the replication of many viruses

(Wang et al., 2019; Kong et al., 2020; Zhang et al., 2021). In

order to investigate how glycolysis affects CVB3 replication,

we detected the key protein of the autophagy pathway.

We found that CVB3 infection increased the expression of

ATG5 and Beclin1, and the LC3II/LC3I ratio, which was

indicative of a higher level of autophagy. Concurrently, the

level of p62 increased, pointing to p62 accumulation and

autophagosome degradation blockage (Figures 4A,B). The

high level of autophagy and autophagosome degradation

blockage served as an excellent platform for viral replication

and efficiently promoted virus replication, as shown in

previous studies (Mao et al., 2019; Wang et al., 2019; Lin

et al., 2020; Li et al., 2021). It is therefore possible that CVB3

may utilize enhanced autophagy and blocked autophagosome

degradation to benefit its replication. Furthermore, we used

glycolysis inhibitors to test whether glycolysis inhibition affects

CVB3-induced autophagy in H9c2 and HL-1 cells. We found

that exposure to glycolysis inhibitors dramatically decreased

ATG5 and Beclin1 expression levels, further accelerating

the degradation of autophagosomes as the LC3II/LC3I

ratio and p62 expression decreased (Figures 4A,B). These

suggested that CVB3 may benefit its replication by inhibiting

glycolysis and promoting autophagy. To further determine

if autophagy was important for CVB3 replication, we used

rapamycin as an autophagy activator. Compared with glycolysis

inhibitor-treated CVB3-infected cells, rapamycin increased

CVB3 replication and the yields of CVB3 viral progeny

(Figure 4).
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Discussion

In this study, CVB3 infection altered glycolysis, fostering

favorable intracellular conditions for virus replication via

autophagy. Consistent with most viruses that induce glycolysis

(Sanchez and Lagunoff, 2015), CVB3 infection elevated glucose

consumption and GLUT4, the most abundant form of

glucose transporters (GLUTs) by which glucose uptake into

cardiomyocytes, in cardiomyocyte cell lines H9c2 and HL-1.

Viruses can accelerate glucose uptake to match the increased

metabolic rate, through the upregulation of GLUT4, a more

efficient glucose transporter (Yu et al., 2011). GLUTs may

increase in a viral MOI-dependent manner in virus infection

(Lee et al., 2020). In addition to an increased requirement

for glucose, there was an increase in lactate production, the

terminal product of glycolysis, in CVB3-infected cardiomyocyte

cells. Most virus-infected cells presented an increase in glucose

consumption, accompanied by an increase in lactate production

(El-Bacha et al., 2004; Chen et al., 2011; Ramiere et al.,

2014). However, the virus can also induce a glycolytic flux

through a lactate-independent pathway (Lee et al., 2020).

The key glycolytic enzymes were elevated, as in the case of

most of the studies reporting on glycolysis in virus infection

(Ren et al., 2021). However, changes in the key glycolytic

enzymes were not always consistent. As shown in white spot

syndrome virus (WSSV) infection, expressions of hexokinase

and phosphofructokinase were increased, but not pyruvate

kinase (Ng et al., 2022). Furthermore, pyruvate kinase activity

was also inhibited byWSSV infection (Chen et al., 2016). Several

viral proteins have been reported to interact with pyruvate

kinase as a critical factor in viral pathogenesis (Zwerschke et al.,

1999; Wu et al., 2008; Wei et al., 2012). It is interesting to

find some changes in PKM2 expression in CVB3-infected H9c2

cells, while HK2 and PFKM increased in CVB3-infected H9c2

cells, and all the three key glycolytic enzymes increased in

CVB3-infected HL-1 cells. This may be caused by the different

metabolic stress to virus infection of different cell lines. The

results indicate that glycolysis is activated in CVB3 infection.

Using glycolysis key enzyme inhibitors and a glycolysis

enhancer in CVB3-infected H9c2 and HL-1 cells, we found

that glycolysis is indeed required for viral replication. Our

data are consistent with other studies on several other virus

infections (Findlay and Ulaeto, 2015; Passalacqua et al., 2019;

Ren et al., 2021; Zhou et al., 2021). These data illustrate that

several viruses, including CVB3, require glycolysis for optimal

viral replication as it provides rapid energy, substrates, and

immune escape. However, unlike most viruses examined to

date, vaccinia virus does not activate glycolysis to facilitate viral

replication (Fontaine et al., 2014). Furthermore, our results

showed that CVB3 infection triggered autophagy but impaired

an autophagy flux as massive amounts of p62 accumulated. The

cells respond to various stressors, including virus infection, by

triggering autophagy, thereby allowing cells to survive. CVB3

infection induces autophagy and exploits this process to gain a

replication advantage (Tanaka et al., 2000; Wong et al., 2008; Shi

et al., 2016; Meng et al., 2020; Mohamud et al., 2021). Although

previous studies have considered that CVB3 infection activates

autophagy, favoring viral replication, the relationship between

glycolysis and autophagy in CVB3 replication remains unclear.

In our study, glycolysis inhibitors impaired CVB3 replication

by downregulating the autophagy pathway and accelerating the

autophagosome degradation. An autophagy inducer eliminates,

at least in part, the effect of glycolysis inhibition on CVB3

replication, indicating that the effect of glycolysis on CVB3

replication may be partly dependent on autophagy. However,

future studies will be needed to elucidate this mechanism.

Interestingly, in dengue virus infection, inhibition of glycolysis

decreases viral replication but increases the autophagy pathway

(Lee et al., 2020). This discrepancy indicates a complex and

unknown regulation mechanism influencing the relationship

between glycolysis and autophagy in virus infection.

In summary, we found CVB3 infection increased glucose

consumption, expression levels of GLUT4 and key glycolytic

enzymes, and autophagic activity in myocardial cells. As

glycolysis inhibitors reduced CVB3 replication, it appears as

a promising target for the treatment of viral myocarditis.

The limitation of this study is that we did not set up a

control group with mock infection to detect CVB3 replication

in glycolysis inhibition experiments and glycolysis activation

experiments. Setting up control groups with a mock group

would be more rigorous.
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