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Type 2 diabetes mellitus (T2DM) and periodontitis are common and interrelated 

diseases, resulting in altered host response microbiota. The subgingival micro-

organisms play a key role in periodontitis pathogenesis. To assess the shift of 

subgingival microbiome and metabolome in T2DM, we performed an analysis 

of the subgingival microbiome in patients with T2DM (n = 20) compared with 

non-diabetes (ND) subjects (n = 21). Furthermore, patients were subdivided 

into 10 T2DM with periodontitis (DP), 10 T2DM without periodontitis (DNP), 

10 periodontitis (P), and 11 healthy control (H) groups. 16SrRNA gene 

sequencing combined with ultra high-performance liquid chromatography-

mass spectrometry (UHPLC–MS) based metabolomics was performed in 

all participants. T lymphocyte immunity was analyzed by flow cytometry. 

Furthermore, the network relationship among subgingival micro-organisms, 

metabolites, blood glucose level, and T lymphocyte immunity were analyzed. 

The results showed that the difference of the subgingival microbiome 

from healthy to periodontitis status was less prominent in T2DM compared 

with ND, though the clinical signs of disease were similar. The bacteria 

Eubacterium nodatum group, Filifactor, Fretibacterium, Peptostreptococcus, 

and Desulfovibrio, amongst others, may be  important in the pathopoiesia 

of periodontitis in the T2DM state. In addition, some dominant bacteria 

showed network relationships. The Treg/Th17 ratio was lower in the DP and 

DNP groups than in the P and H groups—though that of P was lower than 

for H. The percentage of CD4+/CD8+ PD1 and CD8+ PDL1 was higher in the 

DP and DNP groups than in the H group; the percentage of CD8+ PDL1 was 

higher in the DP than P groups. Subgingival micro-organisms in periodontitis 

had a significant metabolic shift in terms of their signature metabolites. 

Butyrate metabolism and phenylalanine metabolism may play a role in the 

pathogenesis of periodontitis with/without T2DM. Specifically, biphenyl 

degradation, tryptophan metabolism, and the two-component system may 

play important roles in periodontitis with T2DM. Lastly, the network relationship 
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among subgingival micro-organisms, metabolites, blood glucose level, and 

T lymphocyte immunity were unbalanced. This study identified the changes 

in the subgingival microbiome associated with periodontitis in T2DM, as well 

as the associated network between bacterial flora, metabolism dysbiosis, and 

immune regulation.

KEYWORDS

type 2 diabetes, periodontitis, subgingival micro-organisms, metabonomics, T 
lymphocyte

Introduction

Diabetes mellitus is a systemic disease at globally epidemic 
proportions, and the number of individuals with type 2 diabetes 
mellitus (T2DM) has dramatically increased worldwide in the past 
few decades (Hu and Jia, 2018). It has been suggested by clinical 
evidence that T2DM increases the risk of developing inflammatory 
diseases such as periodontitis—an oral disease affecting more than 
half of patients with T2DM (Preshaw et al., 2012; Verhulst et al., 
2019). Diabetes upregulates inflammatory response and promotes 
tissue destruction, while periodontal inflammation can affect 
blood glucose metabolism in patients with T2DM through insulin 
resistance (Lalla and Papapanou, 2011; Taylor et  al., 2013). 
Although various studies have confirmed a two-way relationship 
between diabetes and periodontitis (Preshaw et al., 2012), the 
specific mechanism of their interaction remains unclear.

T2DM patients may be  more susceptible to shifts in the 
subgingival microbiome toward dysbiosis (Longo et al., 2018; Shi 
et  al., 2020). Although there are many studies, there is no 
consistent conclusion (Shi et al., 2020; Balmasova et al., 2021). 
Subgingival microbiota metabolites may be  an important role 
player between diabetes and periodontitis. Periodontal microbial 
antigen components, toxins, metabolites, and enzymes, can 
altogether contribute to local inflammation, periodontal tissue 
destruction, and once circulated into deep tissue areas stimulate 
the host immune response and systemic inflammatory response 
(Cunningham et al., 2014; Kumar, 2017; Sudhakara et al., 2018). 
Nevertheless, the metabolic function of the subgingival 
microbiome and immunity associated with concurrent T2DM and 
periodontitis have not yet been investigated.

A variety of periodontal pathogens (Porphyromonas gingivalis, 
Prevotella intermedia, etc.) have been confirmed to inhibit T 
lymphocyte cell function (Do Vale et al., 2004; Gaddis et al., 2013). 
For instance, P. gingivalis can up-regulate the expression of PD1/
PDL1 in CD4+T lymphocytes (Keir et al., 2008). The PD1/PDL1 
signaling pathway, comprised of the programmed cell death 
protein 1 (PD1) and programmed cell death ligand 1 (PDL1) 
expressed on the surface of T lymphocyte cells, can inhibit the 
proliferation of T lymphocyte cells and down-regulate specific T 
lymphocyte immune function to limit immune-mediated host 
tissue damage and promote the persistence of infection (Francisco 
et al., 2010; Noack and Miossec, 2014). The PD1/PDL1 pathway is 
closely related to Treg proliferation, and PDL1 can lead to Treg cell 
differentiation and maintain its function. In contrast, PDL1 
deficiency causes impaired Tregs in vivo (Mcgee et  al., 2010). 
Meanwhile, the PD1/PDL1 pathway controls the complex 
dynamic interactions with effector T cells (Francisco et al., 2010; 
Gianchecchi et al., 2013). Low levels of inflammation are also 
likely to cause insulin resistance. Despite progress made in our 
understanding of subgingival micro-organism interactions, the 
correlation and network relationship between their metabolites, 
blood glucose level effect, and T lymphocyte immunity in T2DM 
with/without periodontitis states is still unknown.

Therefore, this study analyzed the bacterial species of the 
subgingival microbiome, their metabolome, and their role in T 
lymphocyte immunity among patients with/without T2DM and/
or periodontitis. We  furthermore determined the species 
compositions and the correlative roles of subgingival microbiome 
metabolites in patients with T2DM and periodontitis. Lastly, 
we  aimed to demonstrate the relationship among species, 
metabolites, and T lymphocyte immunity associated with 
periodontitis in T2DM.

Materials and methods

Study population, selection criteria, and 
sample collection

The study was performed at the Guangxi Medical University 
College of Stomatology and the First Affiliated Hospital of 

Abbreviations: BMI, body mass index; EDTA, ethylenediaminetetraacetic acid; 

FBG, fasting blood glucose; HbA1c, glycated hemoglobin; mAb, monoclonal 

antibody; MS, mass spectrometry; OPLS-DA, partial least squares-discriminate 

analysis; PBMC, peripheral blood mononuclear cell; PCA, principal component 

analysis; PCBs, polychlorinated biphenyls; PD1, programmed cell death protein 

1; PDL1, programmed cell death ligand 1; PTS, phosphotransferase system; 

SEM, standard error of the mean; T2DM, type 2 diabetes mellitus; TCA, 

tricarboxylic acid cycle; TCS, two-component regulatory system; UPLC, 

ultra-performance liquid chromatography; VIP, variable importance plot.
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Guangxi Medical University, Nanning Guangxi, China. The study 
was approved by the Ethical Committee of the Guangxi Medical 
University (protocol number: #2020010). Each subject provided 
written informed consent before participation. All clinical 
procedures were performed in accordance with the Declaration of 
Helsinki and Good Clinical Practice Guidelines.

The inclusion criteria of participants conform to the World 
Health Organization or American Diabetes Association criteria 
and periodontitis 1999 International Classification for periodontal 
disease, and participants were divided into four groups, including 
10 patients with T2DM and periodontitis (DP), 10 patients with 
T2DM without periodontitis (DNP), 10 patients with periodontitis 
(P), and 11 healthy controls (H). An initial full-mouth 
examination for all participants was performed at the first visit to 
assess the clinical parameters of the periodontium including the 
gingival retraction, probing depth (PD), attachment level (AL), 
and bleeding on probing. Tooth sites with PD ≥ 5 mm and 
bleeding on probing at the first evaluation visit were considered 
diseased and sampled sites. Individuals with healthy periodontium 
were defined as presenting with PD ≤4 mm and minimal bleeding 
on probing (<10–15% of all sites); a tooth site with no bleeding on 
probing were considered sampled sites. The majority of samples 
were taken from molar or premolar tooth sites in the T2DM and 
ND subjects. All subjects were required to abstain from any mouth 
rinse with antibiotics 2 months prior to sampling, and abstain 
from localized scaling and root planing for 3 months prior to 
sampling. For all T2DM subjects, the blood glucose and glycated 
hemoglobin (HbA1c) levels were recorded. All ND subjects had a 
blood glucose level < 6.66 mM.

The exclusion criteria were as follows: pregnancy, lactation, 
use of antibiotic, anti-inflammatory, or immunosuppressive 
therapies within the last 6 months, history of smoking, long-term 
use of mouth rinses containing antimicrobials, use of orthodontic 
appliances, presence of other systemic conditions (e.g., 
cardiovascular, cerebral diseases, immunological disorders or 
osteoporosis, etc.).

The subgingival plaques were collected by sterile curettes, 
suspended directly in frozen storage tubes (containing 1 ml sterile 
double-steamed water), and immediately stored at −80°C till 
further analysis.

16S rRNA microbial community analysis

DNA from different samples was extracted from tool using the 
E.Z.N.A. ®Stool DNA Kit (D4015, Omega, Inc., United States) 
according to manufacturer’s instructions. To analyze the 
taxonomic composition of the bacterial community, the V3-V4 
region of the 16S rRNA gene was selected for the subsequent 
pyrosequencing. Amplicon polymerase chain reaction (PCR) was 
performed for the 16S rRNA hypervariable region V3-V4 
(Primers: 338F (5’-ACTCCTACGGGAGGCAGCAG-3); 806R 
(5’-GGACTACHVGGGTWTCTAAT-3′)). The 5′ ends of the 
primers were tagged with specific barcods per sample and 
sequencing universal primers. The PCR products were purifyied 

by AMPure XT beads (Beckman Coulter Genomics, Danvers, 
MA, United  States) and quantified by Qubit (Invitrogen, 
United States). The amplicon pools were prepared for sequencing 
and the size and quantity of the amplicon library were assessed on 
Agilent 2,100 Bioanalyzer (Agilent, United States) and with the 
Library Quantification Kit for Illumina (Kapa Biosciences, 
Woburn, MA, United  States), respectively. The libraries were 
sequenced on NovaSeq PE250 platform. Samples were sequenced 
on an Illumina NovaSeq platform according to the manufacturer’s 
recommendations, provided by LC-Bio. Paired-end reads was 
assigned to samples based on their unique barcode and truncated 
by cutting off the barcode and primer sequence. Paired-end reads 
were merged using FLASH. Quality filtering on the raw tags were 
performed under specific filtering conditions to obtain the high-
quality clean tags according to the fqtrim (V 0.94). Chimeric 
sequences were filtered using Vsearch software (v2.3.4). Sequences 
with ≥97% similarity were assigned to the same operational 
taxonomic units (OTUs) by Vsearch (v2.3.4). Representative 
sequences were chosen for each OTU, and taxonomic data were 
then assigned to each representative sequence using the RDP 
(Ribosomal Database Project) classifier. OTUs abundance 
information were normalized using a standard of sequence 
number corresponding to the sample with the least sequences. 
Alpha diversity is applied in analyzing complexity of species 
diversity for a sample through 5 indices, including Chao1, 
Observed species, Goods coverage, Shannon, Simpson, and all this 
indices in our samples were calculated with QIIME (Version 
1.8.0). Beta diversity analysis was used to evaluate differences of 
samples in species complexity. Beta diversity were calculated by 
(PCoA) and cluster analysis by QIIME software. Blast was used 
for sequence alignment, and the OTU representative sequences 
were annotated with RDP (ribosome database) and NCBI-16S 
database for each representative sequence. Other diagrams were 
implemented using the R package (V3.4.4).

We searched for bacterial biomarkers of T2DM patient with 
periodontitis using Linear discriminant analysis (LDA) effect size 
(LEfSe). The cut-off value was the log value>3.0 and Wilcoxon 
rank-sum test: p < 0.05. The biomarker’s taxon at the genus level 
was subjected to the logistic regression analysis to develop a 
diagnostic model.

Metabolic profiling

Sample preparation
The collected samples (20 μl) were extracted with 120 μl 

precooled 50% methanol, incubated at 25°C for 10 min, and stored 
overnight at − 20°C. After centrifugation at 4,000 g for 20 min, the 
supernatants were collected and stored at − 80°C till LC–MS 
analysis. In addition, pooled QC samples were also prepared by 
combining 10 μl of each extraction mixture. LC–MS analysis.

All chromatographic separations were performed using an 
ultra-performance liquid chromatography (UPLC) system (Sciex, 
Framingham, MA, United  States). An ACQUITY UPLC T3 
column (100 mm × 2.1 mm, 1.8 μm; Waters, Milford, MA, 
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United States) was used for the reversed-phase separation. A high-
resolution tandem mass spectrometer TripleTOF5600plus (Sciex) 
was used to detect metabolites eluted from the column. The 
Q-TOF was operated in both positive and negative ion modes. 
During the acquisition, mass accuracy was calibrated every 20 
samples. Furthermore, to evaluate the stability of the LC–MS 
during the whole acquisition, a quality control sample (pool of all 
samples) was acquired every 10 samples.

The acquired MS data pre-treatments including peak picking, 
peak grouping, retention time correction, second peak grouping, 
and annotation of isotopes and adducts were performed using 
XCMS v3.16.1. LC–MS raw data files were converted into mzXML 
format and then processed by the XCMS, CAMERA and metaX 
toolbox implemented with the R software. Each ion was identified 
by combining retention time (RT) and m/z data. Intensities of 
each peaks were recorded and a three dimensional matrix 
containing arbitrarily assigned peak indices (RT-m/z pairs), 
sample names(observations) and ion intensity information 
(variables) was generated. The online KEGG, HMDB database was 
used to annotate the metabolites by matching the exact molecular 
mass data (m/z) of samples with those from database. If a mass 
difference between observed and the database value was less than 
10 ppm, the metabolite would be annotated and the molecular 
formula of metabolites would further be identified and validated 
by the isotopic distribution measurements. We  also used a 
in-house fragment spectrum library of metabolites to validate the 
metabolite identidification. The intensity of peak data was further 
preprocessed by metaX. Those features that were detected in less 
than 50% of QC samples or 80% of biological samples were 
removed, the remaining peaks with missing values were imputed 
with the k-nearest neighbor algorithm to further improve the data 
quality. PCA was performed for outlier detection and batch effects 
evaluation using the pre-processed dataset. Quality control-based 
robust LOESS signal correction was fitted to the QC data with 
respect to the order of injection to minimize signal intensity drift 
over time. In addition, the relative standard deviations of the 
metabolic features were calculated across all QC samples, and 
those >30% were then removed. Student t-tests were conducted to 
detect differences in metabolite concentrations between 2 
phenotype. The p value was adjusted for multiple tests using an 
FDR(Benjamini–Hochberg). Supervised PLS-DA was conducted 
through metaX to discriminate the different variables between 
groups. The VIP value was calculated. A VIP cut-off value of 1.0 
was used to select important features.

Percentage of Treg/Th17 and CD4+/CD8+ 
PD1/PDL1 analysis

Blood samples were collected in ethylenediaminetetraacetic 
acid (EDTA) tubes and processed to extract the peripheral blood 
mononuclear cell (PBMC) fraction using a Ficoll gradient. Cell 
staining was performed as manufacturer’s requirements. Briefly, 
cells were incubated with BB515-conjugated anti-human CD279, 
APC-conjugated anti-human CD274, AF700-conjugated 

anti-human CD4 monoclonal antibody (mAb), and PerCP-Cy5.5-
conjugated anti-human CD25 mAb for surface staining at 4°C for 
20 min, to detect the percentage of CD4+ PD1/PDL1. For Tregs 
detection, the cells were fixed and permeabilized at 25°C for 
45 min, and then stained with PE-conjugated anti-human FOXP3 
mAb in FOXP3/transcription staining buffer.

For Th17 cell and CD8+ PD1/PDL1 detection, the PBMCs 
were resuspended in a complete RPMI1640 medium with a cell 
activation cocktail for 5 h in a CO2 incubator. Stimulated cells were 
washed twice with staining buffer, a surface staining protocol was 
performed, and then cells were incubated with BB515-conjugated 
anti-human CD279, APC-conjugated anti-human CD274, AF700-
conjugated anti-human CD3 mAb, and PerCP-Cy5.5-conjugated 
anti-human CD8 mAb for surface staining at 4°C for 20 min. In 
addition, cells were stained with PE-conjugated anti-human 
IL17A mAb and incubated for 45 min at 25°C. BB515-conjugated 
rat IgG2a was used as the isotype control for CD279 staining. All 
the conjugated antibodies and reagents were purchased from BD 
Bioscience (Franklin Lakes, NJ, United States). All fluorescence-
activated cell sorting assays were performed using FACS Canto II 
(BD Bioscience) and the data were analyzed using FlowJo v10 
(Tree Star, Ashland, OR, United States).

Association analysis between microbial 
taxa, metabolites and clinical parameters

To determine the association between different genus and 
secondary metabolites in T2D and/or with/without periodontitis, 
we constructed a correlation analysis among genus with Relative 
relation value (r) > 0.3 to get top  10 genus, and a correlation 
analysis among differential metabolites with r > 0.8 to get top 80 
metabolites by Spearman’s correlations in R version 3.2.5. At last, 
Spearson’s correlation between the top 10 differential genus of two 
groups, and top 80 metabolites, clinical parameters were computed 
by the R package stats (version 3.2.5). The network graphs were 
made using Cytoscape (version 3.7.1).

Statistical analysis

The Kolmogorov–Smirnov test was used to check for 
normality; the Mann–Whitney U test was used to compare any 
two data sets that were not normally distributed; otherwise, 
one-way ANOVA followed by the Student–Newman–Keuls 
method was used, and the values were presented as 
mean ± standard error of the mean (SEM); p-values were adjusted 
by the Benjamini–Hochberg method. Both the T test or Wilcoxon 
rank-sum test combined with the Benjamini-Hochberg method 
and a two-stage statistical procedure were applied to compare 
bacteria taxa. Microbial correlation was estimated using 
SparCC. The significantly distinguished taxa and predicted 
pathways by PICRUSt were screened by comparison among 
groups by the T test or Wilcoxon test. Metabolites with >2-fold, 
VIP ≥ 1, p < 0.05 (T test) between two groups were selected to 
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analyze. Spearman’s rank correlation test and Cytoscape v3.9.1 
were used to analyze the relationship among variables including 
bacteria, metabolites, and clinical parameters; the results were 
further justified by the empirical permutation test. A two-sided 
p < 0.05 was considered significant.

Results

Sample and data collection

A total of 41 participants were enrolled in this study according 
to the inclusion and exclusion criteria. Table  1 shows the 
demographic characteristics, as well as the fasting blood glucose 
(FBG) and HbA1c levels of the patients. There were no significant 
differences among groups in terms of sex or body mass index 
(BMI). However, the age of patients with diabetes was higher than 
those without (p < 0.05). Besides, the FBG and HbA1c levels of 
patients with DP were higher than those with DNP (p < 0.05). 
There was no significant difference in PD, AL, and BI between the 
patients with DP or P (p > 0.05; Table 1).

Subgingival microbiota changes of 
patients

Changes of the subgingival microbiome in 
different periodontal states In T2DM and ND 
subjects

There were differences in subgingival microbiome 
composition among the four groups (Figure 1). Altogether, 39 
genera were found to be  significantly differentially abundant 

between the DP and DNP group; and 33 genera were more 
abundant in the DP group, including Prevotella, Fretibacterium, 
Peptostreptococcus, Filifactor, E. saphenum, E. nodatum, and 
others (Figure  2A). Furthermore, 41 genera were found to 
be  significantly differentially abundant between the P and H 
groups; and 29 genera were more abundant in the P group, 
including Treponema 2, Fretibacterium, Filifactor, E. nodatum, 
Tannerella, Pyramidobacter, Phocaeicola, Pseudoramibacter, 
Selenomonas 4, Peptostreptococcus, Desulfovibrio, and so on 
(Figure 2B). There were 23 genera which were differential genus 
between the DP and DNP group and between the P and H 
groups (Figure 2C).

We next investigated the microbiome differences between 
T2DM and ND subjects at the level of bacterial genus. We found 
9 genera significantly more abundant in the DP vs. P groups 
(Figure  3A). Furthermore, 7 genera were significantly more 
abundant in the DNP vs. H groups (Figure  3B). Lastly, the 
differential bacteria between T2DM and ND subjects were 
Haemophilus and Flexilinea (Figure 3C).

Microbial analysis of differences between 
groups

By LEfSe analysis, 20 genera were found to be differentially 
abundant between the DP and DNP groups. For example, the DP 
group had a higher abundance of Prevotella, Fretibacterium, 
Peptostreptococcus, Filifactor, E. saphenum, E. nodatum, and 
Phocaeicola, while a lower abundance of Lautropia, Actinomyces, 
Cardiobacterium, Comamonas, and Neisseria. In addition, 
we  found that there were 38 genera differentially abundant 
between the P and H groups. The P group had a higher abundance 

TABLE 1 Demographic and clinical characteristics of subjects.

Group T2DM with periodontitis 
(DP) (n = 10)

T2DM without 
periodontitis (DNP) 

(n = 10)
Periodontitis (P) (n = 10) Healthy (H) (n = 11)

Age 63.00 ± 9.99 64.10 ± 6.29 49.9 ± 7.50 44.18 ± 8.14

Gender

Male 5 5 5 6

Female 5 5 5 5

Nationality

Han 9 9 9 9

Minority 1 1 1 2

BMI 23.64 ± 2.57 23.63 ± 6.02 22.78 ± 3.01 22.60 ± 3.85

FBG (mM) 8.41 ± 2.96 6.22 ± 1.76 5.22 ± 0.26 5.02 ± 0.29

HbA1c (%) 7.01 ± 1.32 6.69 ± 0.32 <6.50 <6.50

PD (mm) 4.04 ± 0.69 2.42 ± 0.78 4.51 ± 0.42 ------

AL (mm) 4.27 ± 0.99 2.51 ± 0.22 4.64 ± 0.61 ------

BI 2.80 ± 0.35 0.95 ± 0.16 3.10 ± 0.39 0.82 ± 0.25

Data are presented as mean ± S.E.M. unless otherwise indicated. 
BI, bleeding index; PD, probe depth of the sampling site; AL, attachment loss; BMI, body mass index; T2DM, type 2 diabetes mellitus. 
The age of patients with T2DM was higher than those without diabetes (p < 0.05); The FBG and HbA1c levels were higher in patients with DP than DNP (p < 0.05); There was no 
significant difference in PD, AL, or BI between the DP and P groups (p > 0.05)
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of Treponema 2, Fretibacterium, Filifactor, E. nodatum, Tannerella, 
Pyramidobacter, Phocaeicola, Pseudoramibacter, Selenomonas 4, 
Peptostreptococcus, and Desulfovibrio, while a lower abundance of 
Fusobacterium, Capnocytophaga, Actinomyces, Corynebacterium, 
and Rothia (Figure 4).

Species correlation analysis

The relationship of the top 30 abundant genera among the DP, 
DNP, P, and H groups by network analysis showed that 
Porphyromonas, Tannerella, Filifactor, Fretibacterium, 
Treponema-2, Capnocytophaga, Lautropia, Neisseria, Prevotella, 
and other genera constituted network interaction relationship 
(Figure 5).

The gene function prediction of flora

To compare the functional changes of the subgingival flora, 
PICRUSt2 was used to analyze the 16S rRNA gene sequencing data 
to predict the functions. The results showed that there were 
significant differences in the function of 30 genes between the DP 
and DNP groups. The enriched pathways in the DP group included 
amino acid synthesis and metabolism, as well as guanosine, 
uridine, pyrimidine deoxyribonucleotide, nucleotide synthesis, 
pyruvate metabolism, and pentose phosphate metabolism. There 
were significant differences in the function of 30 genes between the 
P and H groups. The enriched pathways in the P group included 
amino acid synthesis and metabolism, glycolysis, nucleotide 
synthesis, and the tricarboxylic acid cycle (Figure 6).

Metabolic profiling and Treg/Th17 
balance

Demographic and clinical characteristics
We investigated the demographic characteristics of all 

participants, including 10 DP, 9 DNP, 10 P, and 8 H. The FBG and 
HbA1c of patients with T2DM were higher than those with ND 
(p < 0.05). In addition, there were no significant statistical differences 
in AL and PD between the DP and P groups (p > 0.05; Table 2).

Treg/Th17 balance and The percentage 
of CD4+ /CD8+PD1/PDL1

The percentage of Th17 in the DP, DNP, and P groups was 
higher than that in the H group (p < 0.001, p = 0.001, and p < 0.001, 
respectively). The Treg/Th17 ratio of the DP and DNP groups was 
lower than that of the P and H groups (p < 0.001). The Treg/Th17 
ratio of the P group was lower than the H group (p = 0.046). The 
percentage of CD4+ PD1 in the DP and DNP groups was higher 
than in the H group (p = 0.042 and p = 0.048, respectively), and the 
percentage of CD4+ PDL1 in the DNP group was higher than in the 
H group (p = 0.016). Similarly, the percentage of CD8+ PD1 in the 
DP and DNP groups was higher than in the H group (p = 0.03 and 
p = 0.01, respectively); besides, the percentage of CD8+ PDL1 in the 
DP and DNP groups was higher than in the H group (p = 0.005 and 
p = 0.044, respectively), and the percentage of CD8+ PDL1 in the 
DP group was higher than the P group (p = 0.014; Figure 7).

Differential analysis of metabolites

Multivariate analyses were performed to evaluate the 
metabolite differences among the four groups. PCA and PLS-DA 
demonstrated differences between the four groups, respectively. 
The model presented satisfactory accuracy and prediction (pos. 
R2X: 0.467, R2Y: 0.518, Q2: 0.403; neg. R2X: 0.543, R2Y: 0.495, 
Q2: 0.404) (Figures 8A,B).

A

B

FIGURE 1

Distribution of differential genera among four groups. 
(A) Principal Co-ordinates Analysis of bacterial communities in 
different groups. Each symbol represents one sample; Each color 
represents one group. (B) The subgingival microbial 
compositions profiles of four groups at the genus level. The 
abundance of different subgingival genera in different group. 
Blue represents lower abundance, and red represents higher 
abundance.
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Comparison of different metabolites 
among groups

The results revealed numerous secondary metabolites between 
the P and NP groups (Table 3), and the distribution of secondary 

metabolites between the P and NP groups demonstrated 20 up- or 
downregulated metabolites (see Figure  9). The levels of 29 
metabolites in the DP group were either higher or lower compared 
to the DNP group only; besides, the levels of 98 metabolites in the 
P group were either higher or lower than in the H group only 

A

B

C

FIGURE 2

Distribution of differential genera between patients with/without T2DM. (A) Difference of relative abundances of subgingival bacterial genera 
between patients with DP or DNP; (B) Difference of relative abundances of subgingival bacterial genera between patients with P or H; (C) The 39 
genera differentially abundant between the DP and DNP groups; 41 differentially abundant between the P and H groups. There were 23 genera 
which were both differential genus between the DP and DNP group, and between the P and H groups. Besides, 16 genera were differential genus 
between the DP and DNP group only; in addition, 18 genera were only differential genus between the P and H groups only.

https://doi.org/10.3389/fmicb.2022.939608
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Jiang et al. 10.3389/fmicb.2022.939608

Frontiers in Microbiology 08 frontiersin.org

(Figure  9). However, there were few differences in metabolite 
levels between the DNP and H groups, and no metabolic pathway 
was enriched with metabolites.

KEGG metabolic pathway analysis

KEGG and HMDB pathway analyses were used to analyze 
related metabolites, and the results were submitted to 

MetaboAnalyst to display the results of the informatics analysis. 
The pathway analysis results are shown in Figures 10A–C. The 
most influenced metabolic pathway was considered a pathway 
influence cut-off value >0.1 to filter out less important pathways. 
A total of 16 prominent metabolic pathways were identified 
between the DP and DNP groups, including the 
phosphotransferase system, biphenyl degradation, citrate cycle, 
tryptophan metabolism, two-component system, etc (Figure 10). 
Furthermore, 10 important metabolic pathways were identified 

A

B

C

FIGURE 3

Distribution of differential genera between patients with periodontitis with/without T2DM. (A) Difference in relative abundances of subgingival 
bacterial genera between the DP and P groups; (B) Difference in relative abundances of subgingival bacterial genera between the DNP and H 
groups; (C) The nine genera significantly more abundant in the DP vs. P groups; 7 genera significantly more abundant in the DNP than H groups.
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A

B

FIGURE 4

Differences in subgingival micro-organism composition among DP, DNP, P, and H groups. (A) Differential subgingival microbial taxa between DP 
and DNP shown as cladogram by LEfSe analysis; (B) Differential subgingival microbial taxa between P and H shown as cladogram by LEfSe 
analysis. The phylum, class, order, family, and genus levels are listed in order from inside to outside of the cladogram and the labels for levels of 
class, order, family, and genus are abbreviated by a single letter. The green and red circles represent the bacteria enriched in the group of H or 
DNP, P or DP, respectively, whereas the yellow circles represent the taxa with no significant differences between groups.
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between the P and H groups, including the C5-branched dibasic 
acid metabolism, aminoacyl−tRNA biosynthesis, phenylalanine, 
tyrosine, and tryptophan biosynthesis, etc (Figure 10C). There 
were three metabolic pathways identified between all four groups, 
including the ABC transport systems, phenylalanine metabolism, 
and butyrate metabolism (Figure 10C).

Analysis correlation of different 
metabolites and clinical indicators

The correlation was determined among metabolites, 
periodontal clinical treatment, Th17%, Treg%, Treg/Th17 ratio, 
CD4+ PD1%, CD4+ PDL1%, CD8+ PD1%, CD8+ PDL1% by 
correlation analysis (Figure 11).

Combined analysis of different bacteria, 
different metabolites, periodontal clinical 
treatment, Treg/Th17 ratio, and blood 
glucose

In the comparison analysis of DP and DNP group, the genus 
Fretibacterium was negatively related to Actinomyces and 
Cardiobacterium; meanwhile, Actinomyces was positively related 

to Cardiobacterium. In addition, Fretibacterium was positively 
related to AL, BI, PD, Histidine, Tryptophan, D-Tartaric acid, 
Betonicine, Oxaloacetic acid that involve tryptophan metabolism, 
Two-component system; however, it was negatively related to 
Glucose 6_phosphate that involve Phosphotransferase system. 
Actinomyces and Cardiobacterium was negatively related to AL, 
BI, PD; they were positively related to Sucrose, Glucose 
6-phosphate. Actinomyces was negatively related to Indolelactic 
acid, trans-Cinnamic acid, Pyruvic acid that involve Butanoate 
metabolism, phenylalanine metabolism. Cardiobacterium was 
negatively related to 4-Chlorobenzoic acid that involve Biphenyl 
degradation (Figure 12).

In the comparison analysis of P and H group, Pyramidobacter 
was positively related to Fretibacterium, Treg%, Trehalose, 
Linoleic acid, 3 − Hydroxycinnamic acid, 
cis − 5,8,11,14 − Eicosatetraenoic acid, 11,14,17 − Eicosatrienoic 
acid, (Z,Z,Z)−, (−) − Riboflavin, Mesaconic acid, D − Malic acid 
that involve Biosynthesis of unsaturated fatty acids, Butanoate 
metabolism, phenylalanine metabolism, Phenylalanine, tyrosine 
and tryptophan biosynthesis; but it was positively related to 
O-Cresol, Gamma−Butyrolactone Trehalose. Fretibacterium was 
positively related to 2,4_Dichlorobenzoic acid (Figure 13). The 
correlation and network relationship among bacteria, metabolites, 
periodontal clinical treatment, Th17%, Treg%, Treg/Th17 ratio, 
CD4+ PD1%, CD4+ PDL1%, CD8+ PD1%, CD8+ PDL1%, and 
blood glucose by correlation and network analysis (Figure 13).

Discussion

Both diabetes and periodontitis are prevalent chronic diseases 
affecting epidemic proportions of adults globally (Shi et al., 2020). 
The two diseases have intertwined pathogenesis: diabetes 
increasing the risk for periodontitis, periodontal inflammation 
adversely affecting glycemic control (Lalla and Papapanou, 2011; 
Shi et al., 2020). While there is a clear relationship between the 
degree of hyperglycemia and the severity of periodontitis, immune 
regulation, systemic inflammation, and cytokine biology have also 
been implicated in the pathogenesis (Taylor et al., 2013; Shi et al., 
2020). Nevertheless, the mechanism of the link between the two 
conditions is unclear.

In this study, we aimed to elucidate the link between T2D and 
periodontitis from the microbiome perspective. We investigated 
the subgingival microbiome and metabolome differences between 
patients with T2D and systemically healthy subjects at the 
metagenomic and metabolome levels in periodontal health. 
We found that the subgingival microbiome and metabolome in 
the periodontitis state differed from that of the healthy state in 
both groups by varying degrees.

In our study, there were significant differences in the 
composition of the subgingival microflora between the P and NP 
groups. However, there were also significant differences in some 
low-abundance bacteria between the DP and P groups though the 
compositions and composition ratios were similar. Besides, both 

FIGURE 5

Network analysis of subgingival dominant bacteria genera. 
Different nodes represent different dominant bacterial genera. 
The connection between the nodes indicates that there is a 
correlation between the two genera. By default, we display the 
relationship pair with a correlation coefficient |rho| > 0.4, and the 
thickness of the line indicates the strength of the correlation. The 
thicker the line, the stronger the correlation; the thinner the line, 
the weaker the correlation. Solid lines indicate positive 
correlations, dashed lines indicate negative correlations. The size 
of the node represents the abundance of the flora, the greater 
the abundance, the larger the node; the lower the abundance, 
the smaller the node.
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patients with DP or P have shown obvious subgingival 
dysbacteriosis, with subgingival high-abundance of 
Porphyromonas, Treponema 2, Fusobacterium, Neisseria, 
Capnocytophaga, and Leptotrichia consistent with the results of 
other scholars (Boyer et  al., 2020). Furthermore, the relative 
abundance of these genera in the saliva and subgingival plaque of 
patients with periodontitis was also significantly higher than that 
of healthy individuals, in accordance with other studies (Socransky 
et al., 1998; Colombo et al., 2012; Cui et al., 2019). In addition, the 
abundances of Desulfovibrio, E. nodatum, Filifactor, Fretibacterium, 

Peptostreptococcus, and Phocaeicola, predominated in DP and P 
which may play a key role in periodontitis. E. brachy, E. saphenum, 
Parvimonas, Prevotella, and Prevotellaceae UCG-001 may also play 
a significant role in only the occurrence of periodontitis in patients 
with diabetes. Moreover, E. nodatum, E. brachy, and E. saphenum 
are considered novel periodontal pathogens related to 
periodontitis, which are mainly detected in the subgingival plaque 
of patients with moderate or severe periodontitis (Hill et al., 1987; 
Liu et al., 2020). Consistent with the results of other researchers, 
the abundance of Porphyromonas, Filifactor, E. nodatum, 

A

B

FIGURE 6

Different pathways between DP and DNP groups, as well as between P and H groups. Comparison of the KEGG Pathway of different bacterial 
groups and screening out pathways with significant differences between groups. The histogram on the left represents the abundance of metabolic 
pathways as a percentage of all metabolic pathways in the two sets of samples, while the histogram on the right is the corrected p-value. (A, B) 
Comparison of the KEGG Pathway of different bacterial groups and screening out pathways with significant differences between (A) DP and DNP; 
or (B) P and H.
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Tannerella, and Treponema in patients with DP are less than that 
found in patients with P (Casarin et al., 2013; Park et al., 2015; 
Graves et al., 2019).

Our results demonstrate that there were positive relationships 
among Porphyromonas, Tannerella, Filifactor, Fretibacterium, and 
Treponema 2, and subgingival micro-organisms were 
interconnected by parasitic symbiosis, predator symbiosis, 
harmless symbiosis, competitive symbiosis, etc. (Graves et  al., 
2019). Therefore, there may be a synergistic or mutually beneficial 
relationship between these pathogenic bacteria, whereas there 
may also be  a competition or predation relationship between 
pathogenic bacteria and non-pathogenic bacteria (Faust and Raes, 
2012; Liu et al., 2020). Moreover, information can be exchanged 
among bacteria through network relationships, playing a vital role 
and affecting the homeostasis of the flora, such as Porphyromonas 
and Capnocytophaga. For example, Porphyromonas gingivalis is a 
major pathogen responsible for severe and chronic manifestations 
of periodontal disease.

In our study, the percentage of Th17 in the DP, DNP, and P 
groups was higher than in the H group. The Treg/Th17 ratio of the 
DP and DNP groups was lower than in the P and H groups. The 
Treg/Th17 ratio of the P group was also lower than the H group. 
It is known that people with inherent Th17 defects have less 
periodontal disease (Dutzan et  al., 2018), consistent with the 
importance of Th17 in periodontal inflammation and bone loss 
(Nikolajczyk and Dawson, 2019). Th17-associated mechanisms 
heighten the risk of PD in people with T2D. The percentage of 
CD4+ PD1 and CD8+ PD1/PDL1 in the DP and DNP group was 
higher than in the H group, and the percentage of CD8+ PDL1 in 
the DP group was higher than in the P group. PD1 inhibitory 
signals play critical roles in regulating the threshold for T cell 
activation and limiting effector T cell responses, as well as 
controlling T cell tolerance, resolution of inflammation, and T cell 
exhaustion (Tan et al., 2021). Therefore, PD1 may play a prominent 
role in T cell immunity of T2DM.

Pathway function prediction revealed that there were 
significant differences in subgingival microbial metabolism 
pathway functions between groups, suggesting that periodontitis 
may be related to aberrant subgingival microbe metabolism. For 
instance, butyrate metabolism was different between the 
periodontitis and non-periodontitis groups, as well as between 
the DP and P groups. Butyrate is an important short-chain fatty 
acid that can act on a variety of cells, such as gingival fibroblasts, 
gingival epithelial cells, and T cells. It can induce periodontitis 
by inhibiting the cell cycle, promoting cell death, stimulating 
oxidative stress, inducing inflammatory reactions, and 
destroying periodontal tissue (Tsuda et al., 2010; Shirasugi et al., 
2018). In our study, patients with DP or DNP showed 
correlations between butyrate metabolism-related metabolites 
and periodontal clinical index (BI, PD, AL), Th17%, Treg/Th17 
ratio, CD4+ PDL1%, and CD8+ PD1%, indicative of the 
relationship between the severity and immunological state 
of periodontitis.

Carbohydrate-, glycol-, amino acid-, and energy 
metabolisms may play important roles in maintaining the 
balance of microflora. Our results showed abnormalities in the 
ABC transport system and phenylalanine metabolism between 
patients with or without periodontitis. In addition, amino 
acids are not only the basic unit of protein synthesis in the 
body but also the precursors of a variety of biologically active 
molecules and metabolic energy substrates. The transcriptome 
analysis of subgingival plaque shows that amino acid 
metabolism is closely related to microbial flora imbalance 
(Szafranski et al., 2015; Sakanaka et al., 2017), and non-target 
metabolites analysis of saliva from patients with aggressive 
periodontitis revealed abnormal phenylalanine metabolism 
(Sakanaka et al., 2017). Besides, subgingival plaque micro-
organisms in different disease states have shown amino acid 
metabolism abnormalities, such as tryptophan, histidine, and 
phenylalanine metabolism, tryptophan biosynthesis. Our 
results also showed differences in subgingival microbial PTS 
metabolism between the DP and DNP groups, which may 
affect the balance of the flora to a certain extent. The 
phosphotransferase system (PTS) is a translocation molecule 
in the carrier family. It plays a role in bacterial transport of 
carbohydrates, inhibition of catabolism, reserve storage of 
carbon, as well as coordinating the carbon and nitrogen 
metabolism balance. Moreover, we found differences in the 
tricarboxylic acid cycle (TCA) and glycolysis/synthesis 
between the DP and DNP groups, which was consistent with 
the results of the saliva metabolome detection of patients with 
periodontitis (Sakanaka et al., 2017). The TCA is crucial to 
energy metabolism. It can also bring about a series of chemical 
reactions to synthesize glucose, fatty acids, and amino acids to 
meet the needs of cells (Baldwin and Krebs, 1981). Therefore, 
our study showed evidence of changes in carbohydrate 
metabolism, amino acid metabolism, energy utilization, and 
glycometabolism of subgingival plaque micro-organisms in 
patients with periodontitis.

TABLE 2 Demographic and clinical characteristics of subjects.

Group DP (n = 10) DNP (n = 9) P (n = 10) H (n = 8)

Age 63.00 ± 9.99 63.67 ± 6.52 49.90 ± 7.50 40.88 ± 6.5

Gender

Male 6 5 5 4

Female 4 4 5 4

Nationality

Han 10 8 9 8

Minority 0 1 1 0

FBG (mM) 8.41 ± 2.96 6.47 ± 1.67 5.22 ± 0.26 4.99 ± 0.32

HbA1c (%) 7.01 ± 1.32 6.69 ± 1.02 <6.50 <6.50

PD (mm) 4.04 ± 0.69 2.44 ± 0.05 4.51 ± 0.42 2.19 ± 0.07

AL (mm) 4.27 ± 0.99 2.53 ± 0.22 4.64 ± 0.01 ------

BI 2.80 ± 0.35 1.06 ± 0.17 3.10 ± 0.39 0.80 ± 0.23

The FBG and HbA1c of patients with T2DM were higher than ND (p < 0.05). In 
addition, there were no significant statistical differences in AL and PD between the DP 
and P groups (p > 0.05).
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Biphenyls and polychlorinated biphenyls (PCBs) are common 
environmental compounds (Xing et al., 2020) with bio-accumulative 
effects and potential carcinogenicity (Jacobson and Jacobson, 1996; 

Akahane et al., 2018; Weber et al., 2018). In addition, biphenyls and 
PCBs can also inhibit the growth of bacterial cells and up-regulate 
inflammatory genes (Hoffman et al., 2020; Stiborova et al., 2020). For 
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FIGURE 7

Percentage of Treg and Th17, Treg/Th17 ratio, and expression of PD1 and PDL1 in CD4+ and CD8+T lymphocytes in peripheral blood. (A–G): The 
percentage of Treg cells (A), Th17 cells (B), Treg/Th17 ratio (C), and PD1/PDL1 CD4+/CD8+ (D–G) in peripheral blood determined by flow 
cytometry. (H) Comparison of the frequencies of CD4 + CD25 + FoxP3 + T cells, CD4 + PD1/PDL1 cells in the DP, DNP, P, and H. (I) Comparison of the 
frequencies of CD3 + CD8-IL17 + T cells, CD8 + PD1/PDL1 cells in the DP, DNP, P, and H. *p < 0.05, **p < 0.001 (one-way ANOVA test with Tukey’s 
multiple comparisons test).
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TABLE 3 Distribution of secondary metabolites.

Disease status Groups compared Total secondary metabolites Up-regulated Down-regulated

P vs. NP DNP/Dp 49 17 32

P/H 118 84 33

D vs. ND DNP/H 2 0 2

DP/P 87 13 74

A

B

FIGURE 8

PCA and PLS-DA score plots of plasma samples among groups. (A) PCA score plots in ESI+ model (left panel) or ESI– model (right panel); (B) PLS-
DA shows a significant difference among groups with satisfactory accuracy and prediction (pos R2X: 0.467, R2Y: 0.518, Q2: 0.403; neg R2X: 0.543, 
R2Y: 0.495, Q2: 0.404).
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example, PCB153 can cause intestinal epithelial cells to produce an 
inflammatory response, with additional side-effects on intestinal 
microbes (Phillips et al., 2018). PCBs can also inhibit the growth of 
Serratia, Pseudomonas, and a few Bacillus bacteria (Bourquin and 
Cassidy, 1975; Blakemore and Carey, 1978). Our research showed 
that 4-chlorobenzoic acid was up-regulated in patients with DP 
compared to those with DNP, and could serve as positive periodontal 
clinical indicators. Therefore, subgingival microbial biphenyl 
metabolism in patients with DP may have a certain effect on the 
occurrence and development of periodontitis. In addition, the 
two-component regulatory system (TCS) was significantly different 
between patients with DP and those with DNP. The TCS is an 
important signal transduction mechanism widely used by bacteria 
to maintain their survival in stressful environments. The 
transmission of chemical signals in response to environmental stress 
can regulate the transcription of stress-related genes throughout the 
body (Zschiedrich et  al., 2016). Bacteria not only regulate the 
pathogenic process, virulence, and drug resistance but also regulate 
the expression of genes related to bacterial amino acid metabolism 
by the TCS (Lee et al., 2005; Dalebroux and Miller, 2014; Deka et al., 
2017). Therefore, the TCS may promote pathogenic effects by 
regulating the local environment and its virulence (Cotter and Hill, 
2003; Li et al., 2015), which play a certain role in the occurrence of 
periodontitis in patients with T2DM.

The multi-pathway exchange and co-metabolism of 
compounds between the host and microbiota produces a 

secondary metabolism that is biologically active in the host and 
micro-organisms affecting gene regulation. The micro-
organisms interact with the host through their metabolic 
activities, affecting normal physiological activities and disease 
susceptibility (Lozupone et al., 2012). Metabolites are the bridge 
between micro-organisms and the host, and there is a two-way 
relationship between micro-organisms and metabolites. Further 
network analysis revealed a relationship between the different 
groups of bacteria and their metabolites, periodontal clinical 
indicators, Th17%, Treg%, Treg/Th17 ratio, and PD1/PDL1 
expression on CD4+/CD8+T lymphocytes. Furthermore, there 
was a network relationship among subgingival flora, 
metabolites, periodontal clinical index, blood glucose level, and 
T lymphocyte immunity. Fretibacterium and Filifactor were 
positively correlated with periodontal clinical index in patients 
with periodontitis and non-periodontitis, which is consistent 
with previous studies (Khemwong et  al., 2019; Boyer 
et al., 2020).

In summary, T2DM patients with periodontitis have less 
obvious subgingival flora imbalance than patients with simple 
periodontitis. The bacteria E. nodatum, Filifactor, 
Fretibacterium, Peptostreptococcus, and Desulfovibrio, 
amongst others, may be of importance in the occurrence and 
development of periodontitis; the genus of DP subgingival 
was significantly different from that of DNP. A network 
relationship occurred among some dominant bacteria. 

FIGURE 9

Distribution of differential metabolite in four groups. Distribution of differential metabolite between DP and DNP groups, and between P and H 
groups. There were 20 metabolite which were both differential metabolite between the DP and DNP group, and between the P and H groups. 
Besides, 29 metabolite were differential metabolite between the DP and DNP group only; in addition, 98 metabolite were only differential 
metabolite between the P and H groups only.
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Patients with periodontitis with/without T2DM have obvious 
metabolic disorders in subgingival microbes, but their marker 
metabolites are different. Butyrate metabolism, phenylalanine 
metabolism, and ABC transport system may play a prominent 
role in periodontitis in T2DM or ND state. Biphenyl 
degradation, tryptophan metabolism, and the TCS may play 
a supporting role in T2DM with periodontitis. The 
subgingival flora, metabolites, blood glucose level, and T 
lymphocyte immunity presented with an unbalanced network 
relationship in patients with T2DM and periodontitis.

Conclusion

In this study, 16SrRNA gene sequencing combined with 
UHPLC–MS-based metabolomics was used to investigate the 
subgingival microbiome of patients with T2DM and 
periodontitis. We found that the change of the subgingival 
microbiome from healthy status to periodontitis status was 
less prominent in T2DM compared with ND, and the clinical 

signs of the disease were similar. E. nodatum, Filifactor, 
Fretibacterium, Peptostreptococcus, and Desulfovibrio, 
amongst others, may play an important role in the 
pathopoiesia of periodontitis in T2DM. In addition, some 
dominant bacteria have network relationships. There was an 
imbalance of Treg/Th17  in T2DM. Subgingival micro-
organisms in patients with periodontitis had a significant 
metabolic shift. The butyrate metabolism and phenylalanine 
metabolism may play a role in periodontitis with/without 
T2DM. The biphenyl degradation, tryptophan metabolism, 
and the TCS may play a key role in T2DM with periodontitis. 
The network relationship among subgingival micro-
organisms, metabolites, blood glucose control, and T 
lymphocyte immunity were unbalanced.

Data availability statement

The data present in the study are deposited in the National 
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FIGURE 10

KEGG pathway enrichment of differential metabolites (scatter plot). (A–C) KEGG pathway enrichment of differential metabolites including 
between DNP and DP groups, P and H groups. (C) Left part represents KEGG pathway which were both differential pathway between the DP 
and DNP group, and between the P and H groups. Besides, intersections represent KEGG pathway were differential pathway between the DP 
and DNP group only; in addition, Right part represents KEGG pathway were only differential pathway between the P and H groups only. The 
results of KEGG enrichment analysis using ggplot2 are shown in a scatter map. Rich factor = S gene number/B gene number. The left name of 
the pathway, the smaller the p-value, the higher the KEGG enrichment.
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FIGURE 11

Correlation analysis between differential metabolites and clinical index in DP and DNP, P and H, or DP and P groups. (A–B): Correlation of 
differential metabolites, clinical index (BI, PD, AL), Th17%, Treg%, Treg/Th17 ratio, and CD4+/CD8+ PD1/PDL1 expression between (A), DP 
and DNP, or (B), P and H groups. Blue is negative correlation, red is positive correlation (*p  < 0.05, **p  < 0.001).
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FIGURE 12

The relationship among genus, metabolites, and clinical index of DP and DNP groups. (A) Correlation between differential bacteria and 
metabolites, with clinical indicators. Red indicates positive correlation, blue indicates negative correlation (*p < 0.05, **p < 0.001). (B) Network 
relationship among differential genera, metabolites, and clinical index of DP and DNP groups. The connection between the microbiota and 
metabolites represents a correlation between them; the solid line represents a positive correlation, and the dotted line represents a negative 
correlation.
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FIGURE 13

The relationship among genera, metabolites, and clinical index of P and H groups. (A) Correlation between differential bacteria and metabolites, 
with clinical indicators. Red indicates positive correlation, blue indicates negative correlation (*p < 0.05, **p < 0.001). (B) Network relationship among 
differential genera, metabolites, and clinical index of DP and DNP groups. The connection between the microbiota and metabolites represents a 
correlation between them; the solid line represents a positive correlation, and the dotted line represents a negative correlation.
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