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INTRODUCTION

Soil health plays a vital role to sustain plants, animals, and humans (Lehmann et al., 2020).
Microbial indicators are superior to physical or chemical indicators in the evaluation of soil
health (Fierer et al., 2021), as microorganisms have a short reproductive cycle and are sensitive
to environmental changes (Tang et al., 2019; Gorain and Paul, 2021). Researchers have begun to use
the abundance and diversity of microorganisms as new ecological evaluation indicators (Li et al.,
2020; Schlatter et al., 2022).

The latest nationwide survey of soil contamination in China indicates that 16% of soil sites were
polluted primarily with heavymetals (Zhao et al., 2015). Heavymetals are one of the greatest threats
to soil health (Yang et al., 2021). The potential ecological risk index (RI) is one of the most widely
used methods in soil heavy metal contamination assessment (Nag et al., 2022; Wei et al., 2022).
However, microbial communities, which show high sensitivity to environmental disturbances, are
generally ignored in RI. It remains largely unknown whether the applicability of the conventional
toxicity factor (TF) for assessing the risk of heavy metals to soil microorganisms. Previous research
has shown that the TF of Cu was underestimated when it is applied to assessing the risk to soil
bacteria in combined Cu and Cd contamination (Chen et al., 2020). Nevertheless, whether the TF
values for other heavy metals need to be adjusted is still controversial. In addition, the abundance
and diversity of bacteria and fungi exhibit distinct responses to heavymetal stress (Xiao et al., 2021),
therefore, considering only the variation in bacterial parameters limits our understanding of the
applicability of TF values.

In this study, we selected Pb with the same TF as Cu to construct a microcosm experiment and
designed different Pb (TF = 5) and Cd (TF = 30) concentrations under different ecological risk
levels. The purposes of this work were: (1) to investigate the influence of Pb and Cd on microbial
abundance and diversity (2) to evaluate whether the TF of Pb and Cd fit in the ecological risk
assessment for microorganisms.

MATERIALS AND METHODS

We took sample soils for the microcosm construction from a pine forest (Pinus tabuliformis
Carr.) in the Tianlong Mountain Nature Reserve (37◦42’N, 112◦27’E), Shanxi Province, China.
The determination method of soil physicochemical and heavy metal content (As, Pb, Zn, Cr, Cd,
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Cu, and Ni) were described in the previous paper (Chen et al.,
2020), and soil properties were in Supplementary Table S1. The
RI was calculated through the following equation (Hakanson,
1980):

RI =
∑n

i
Eir =

∑n

i

(

Ti
r ×

ciD
ciR

)

whereCi
D andCi

R are themeasured concentrations of heavymetal
i in the sample and its background reference value (mg kg−1),
respectively. Ti

r represents the TF for heavy metal i. Eir denotes
the single potential ecological risk factor for heavy metal i.

Soil microcosms were constructed according to the risk
assessment criteria in Supplementary Table S2. We added fresh
soil (equivalent to 40 g dry soil) into 150ml vials, respectively.
The three RI levels, low (L, RI = 100), moderate (M, RI
= 200), and high (H, RI = 400), were achieved by adding
different amount of Pb (CH3COO)2·3H2O and CdCl2·2.5H2O.
There were 5,6 and 6 treatments for three RI levels, respectively
(Supplementary Table S3). We set original soil as control (CK).
Each treatment was with five replicates. All microcosms were
incubated at 25◦C in the dark. Soil were maintained at
60% water-filled pore space by regularly weighing the vials
and replenishing water. Aerobic conditions were maintained
by opening microcosm regularly for fresh air exchange. The
samples were collected on 45 days for the determination of
molecular analysis.

16S rRNA (primer set 338F/518R) and ITS (primer set
ITS1F-ITS2R) genes were quantified through qPCR to assess
the abundance of bacteria and fungi, respectively. 16S rRNA
(primer set 515F/806R) and ITS (primer set ITS1F-ITS2R) genes
were determined by high-throughput sequencing to analysis
bacterial and fungal communities. High-throughput sequencing
and qPCR were performed by Shanghai Majorbio Bio-pharm
Technology Co., Ltd, China. Soil microbial diversity was assessed
using the Simpson Diversity Index (D). The formulas are shown
in Supplementary Table S4.

We applied the Biolog Ecoplate and FFplate (Biolog Inc.,
USA) to analysis the functional diversity of the bacterial and
fungal communities, respectively. The measurements were made
as previously described (Xie et al., 2021). The absorbance
measured at 168 h was used to evaluate the functional
diversity of microorganisms, as this showed the optimum
range of absorbance (Supplementary Figure S1). The metabolic
characteristics of the microbial communities were indicated by
the average well color development (AWCD). The functional
diversity (utilization of carbon sources) of soil microorganism is
assessed using the McIntosh diversity Index (U). All formulas are
shown in Supplementary Table S4.

The multidiversity index was calculated by averaging the
Simpson indices (normalized to between 0 and 1) for bacteria
and fungi. The multifunctional index was calculated by averaging
the McIntosh indices (normalized to between 0 and 1) for
bacteria and fungi. These multifunctionality and multidiversity
indices were used widely in the current literature on biodiversity
function (Soliveres et al., 2016; Delgado-Baquerizo et al., 2020).

The multifunctionality and multidiversity indices are collectively
referred to as the Multidiversity index.

Analyses of variance (ANOVA) were performed at the
identical and different RI levels to test bacterial/fungal
abundance, McIntosh diversity (U), AWCD, Simpson diversity
(D) and Multidiversity indices. We used the ggpubr package
to perform an ANOVA test in R. Correlations between RI and
microbial parameters were determined using Pearson linear
correlation analysis. Pearson correlation analysis were done with
SPSS Statistics 22.0. R software (version 3.6.2) was performed to
visualize all of the figures.

RESULTS AND DISCUSSION

At the same RI level, there were no significant changes among
different treatments in the soil bacterial and fungal abundance,
diversity indices and Multidiversity indices (Figure 1), which
suggests that different proportions of Pb and Cd have minimal
effect on microbial abundance and diversity. However, most
studies showed that the toxicity of compound heavy metal
pollution tomicroorganisms is greater than that of single element
pollution (Song et al., 2018; Xu et al., 2019), and these studies
have only focused on the effects of different concentrations of
heavy metals on microorganisms and have ignored the role of TF
of heavy metals. Therefore, the effect of compound pollution on
microorganisms may be overestimated if the TF of heavy metals
is not considered. It is essential to strongly consider the status of
TF when assessing the risk of heavy metals to microorganisms.

Under different RI levels, there were significant differences
in soil bacterial and fungal abundances, diversity indices and
Multidiversity indices (p < 0.01; Supplementary Figure S2),
which might have been caused by the stimulatory or inhibitory
effects due to the different concentrations of heavy metal
(Calabrese and Baldwin, 2003; Guo et al., 2020; Fan et al.,
2021a). The concentrations of Pb and Cd were significantly
correlated with the microbial parameters (Table 1), which
were also found in other studies (Li et al., 2021; Shuaib
et al., 2021). Compared to Pb and Cd, the RI demonstrated
higher correlations with microbial parameters (Table 1), and
the RI was more significantly correlated with fungal McIntosh,
multidiversity and multifunctionality indices than with Pb and
Cd (Supplementary Table S5). This result suggests that changes
in microbial abundance and diversity are more dependent
on RI levels than on different ratios of Pb and Cd. We
also found that the RI level was negatively correlated with
bacterial abundances and positively correlated with fungal
ones (p < 0.01), which might be due to the different
toxicological thresholds for bacteria and fungi (Singh et al.,
2019; Fan et al., 2021b). In addition, the heavy metal
stress changed the competition for resources among bacteria
and fungi (Wang et al., 2010).

In our research, we discovered that the TF of Pb and
Cd were more appropriate for assessing the influence
of heavy metals on microbial diversity and abundance
than the concentrations of Pb and Cd. This study
further elucidates the applicability of TF in soil microbial
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FIGURE 1 | Differences in microbial parameters among different treatments at the same RI level. 16S rRNA (A) and ITS genes abundance (B); Average well color

development in Biolog Ecoplate (C) and FFplate (D); McIntosh diversity of bacteria (E) and fungi (F); Simpson diversity of bacteria (G) and fungi (H); multifunctionality

(I) and multidiversity (J) index of microorganisms. Uncontaminated original soil as control (CK). Low level (L, RI = 100) includes L1-L5 treatments. Moderate level (M,

RI = 200) includes M1-M6 treatments. High level (H, RI = 400) includes H1-H6 treatments. ANOVA was used to determine whether the differences in various indexes

are significant (p < 0.05) among different treatments at the same RI level.
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TABLE 1 | The correlation of RI, Pb and Cd content with microbial abundance and diversity.

Bacteria Fungi Multidiversity

16S rRNA Simpson AWCD McIntosh ITS Simpson AWCD McIntosh Multidiversity Multifunctionality

RI −0.791** 0.748** −0.769** −0.414** 0.758** 0.739** −0.337* −0.869** 0.876** −0.840**

Pb −0.418** 0.235 −0.428** −0.054 0.598** 0.514** −0.460** −0.500** 0.454** −0.385**

Cd −0.421** 0.561** −0.544** −0.459** 0.319* 0.314* −0.182 −0.484** 0.500** −0.578**

**Correlation is significant at the 0.01 level (2-tailed). *Correlation is significant at the 0.05 level (2-tailed).

community risk assessment, especially in fungi. To improve
the accuracy of heavy metal risk assessment, we should
investigate the applicability of other heavy metals TF
for microbes.
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